首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
D C Thomas  D C Rein    R R Meyer 《Nucleic acids research》1988,16(14A):6447-6464
DNA-dependent ATPase IV has been purified to near homogeneity from the Novikoff rat hepatoma. The enzyme is devoid of DNA polymerase, RNA polymerase, exonuclease, endonuclease, phosphomonoesterase, 3'- or 5'-phosphodiesterase, polynucleotide kinase, protein kinase, topoisomerase, helicase or DNA reannealing activities at a detection level of 10(-5) to 10(-7) relative to the ATPase activity. The enzyme is a monomer of Mr 110,000, has a sedimentation coefficient of 5.9 S, a Stokes radius of 40 A and a frictional coefficient of 1.32. In the presence of Mg2+ ion and a polynucleotide effector, ATPase IV hydrolyzes either ATP or dATP to the nucleoside diphosphate plus Pi. Other ribo- or deoxyribonucleoside triphosphates are not substrates. ATPase IV utilizes double-stranded DNA and single-stranded DNA as effector; however, it does not utilize poly(dT). The Km for dsDNA or ssDNA is 2.2 microM (nucleotide). A variety of ATP analogues were found to be competitive inhibitors of ATPase IV.  相似文献   

2.
The requirements of cofactor DNA for DNA-dependent ATPases B and C3 were analyzed in detail. ATPase B and C3 required the presence of a polynucleotide for their activities. Among the DNAs tested, ATPase B showed a preference for poly(dT) as its cofactor. The other deoxyhomopolymers, except poly(dG) and heat-denatured DNA also were effective. The alternating polydeoxyribonucleotide, poly[d(A-T)] had an efficiency 23% that of heat-denatured DNA. Unlike ATPase B, ATPase C3 showed almost no activity with deoxyhomopolymers. The most effective cofactor for ATPase C3 so far tested is poly[d(A-T)]. Relatively high activity was obtained with heat-denatured DNA. The high activity of ATPase B with poly(dT) was reduced by the addition of poly(dA). The addition of noncomplementary homopolymers did not affect enzyme activity. ATPase C3 activity in the presence of 10 microM poly(dT) increased gradually with concentrations of poly(dA) up to 20 microM, after which it decreased. Almost no increase in activity was observed when noncomplementary homopolymers were added. The relatively high activity of ATPase C3 with heat-denatured DNA was suggested by its high sensitivity to ethidium bromide to be due to the double-stranded region in the heat-denatured DNA formed by self-annealing.  相似文献   

3.
Intrinsic DNA-dependent ATPase activity of reverse gyrase   总被引:4,自引:0,他引:4  
Reverse gyrase is a type I DNA topoisomerase that promotes positive supercoiling of closed-circular double-stranded DNA through an ATP-dependent reaction, and it was purified from an archaebacterium, Sulfolobus. When ATP is replaced by UTP, GTP, or CTP, this enzyme just relaxes the negatively supercoiled closed-circular double-stranded DNA. We found that reverse gyrase hydrolyzes ATP through a double-stranded DNA-dependent reaction. The superhelicity of the DNA did not affect the ATPase activity. However, reverse gyrase does not hydrolyze UTP, GTP, or CTP. Therefore, any of the four nucleotide 5'-triphosphates acts as an effector for the topoisomerase activity of reverse gyrase, but only ATP supports the positive supercoiling of closed-circular double-stranded DNA, through the energy released on its hydrolysis. Single-stranded DNA was a much more potent cofactor for the ATPase activity of the enzyme than double-stranded DNA, and it acted as a potent inhibitor for the topoisomerase activity on double-stranded DNA. These results indicate that reverse gyrase has higher affinity to single-stranded DNA than to double-stranded DNA, which suggests a cellular function of the enzyme.  相似文献   

4.
RNA-dependent ATPase from Saccharomyces cerevisiae   总被引:2,自引:0,他引:2  
A new RNA-dependent ATPase has been isolated from yeast chromatin extracts and partially characterized. The protein has a sedimentation coefficient of about 7 S. The enzyme hydrolyzes specifically ATP (or dATP) to ADP (or dADP) and Pi in the presence of Mg2+ or Mn2+ ions and requires a single-stranded polynucleotide as cofactor. The order of efficiency of synthetic polymers is poly(rU) > poly(rI) greater than or equal to poly(dU) > poly(rA) greater than or equal to poly(rC). Among natural polymers, single-stranded DNA and poly(rA)-containing mRNA from yeast are also active but less so than poly(rU). The enzyme exhibits a pH optimum of 8 and is fully inhibited by 0.25 M NaCl. The Km for ATP is0.2 mM. The resemblance between this ATPase and DNA-dependent ATPases from other sources, as well as the termination factor rho, is discussed.  相似文献   

5.
Model peptides--L-Arg-Gly-L-Arg, L-Arg-L-Tyr-L-Arg and L-Arg-L-Phe-L-Arg bind to different DNAs and synthetic polynucleotides and are found in the major groove of the double helix. Polynucleotide complexes containing L-Arg-Gly-L-Arg were studied in order to consider the influence of the arginine residues on the polynucleotide melting temperature. It was shown, that L-Arg-L-Tyr-L-Arg and L-Arg-L-Phe--L-Arg lowers the melting temperature in all polynucleotides studied. The dependence of the melting temperature of polynucleotide (DNA)--L-Arg-L-Tyr(L-Phe)-L-Arg complexes upon the polynucleotide GC-content has been detected. These effects reflect the intercalation of peptide tyrosyl (or phenylalanyl) residues into the double-stranded polynucleotide.  相似文献   

6.
7.
An RNA-dependent ATPase from Chlamydomonas reinhardII   总被引:1,自引:0,他引:1  
An RNA-dependent ATPase has been isolated from extracts of Chlamydomonas reinhardii. The enzyme catalyzes the hydrolysis of ATP, dATP, CTP and dCTP to the corresponding nucleoside diphosphate and Pi in the presence of Mg2+ or Mn2+ and an RNA cofactor. In 1 mM MgCl2 it displays the greatest activity with poly(A), poly(I) and poly(U); and somewhat lower activity with poly(C) and T7 RNA. Although the enzyme is active with single-stranded DNA, all the single-stranded RNAs tested were significantly more effective cofactors than any of the single or double-stranded DNAs tested. A comparison of this ATPase with other RNA-dependent ATPases indicates that is has more in common with the ATPase isolated from the nuclei of animal cells than with the RNA synthesis termination protein rho, the major RNA-dependent ATPase from Escherichia coli. Although chloroplasts of C. reinhardii are known to contain many bacterial-like gene expression components, the presence of an enzyme with close homology to the E. coli rho protein was not detected.  相似文献   

8.
A single-stranded DNA-dependent ATPase from monkey kidney tissue culture cells (CV-1) has been found associated with SV40 chromatin. This ATPase activity is distinguishable from the ATPase activity of T-antigen by the following properties: the Km for ATP, elution from phosphocellulose, and stimulation of the ATPase activity by single-stranded DNA but not by double-stranded DNA. The ATPase has been isolated and characterized from the nuclei of uninfected cells. ATP hydrolysis is dependent on single-stranded DNA and a divalent cation. The km values for ATP and single-stranded DNA are 0.024 mM and 0.09 microgram/ml, respectively. The affinity of the ATPase for single-stranded DNA is sufficiently high that the enzyme co-sediments with single-stranded DNA in glycerol gradients. The binding of single-stranded DNA is independent of ATP and MgCl2; however, ATP hydrolysis increases the exchange of enzyme between different DNA molecules. Form I (superhelical) SV40 DNA is also a substrate for ATPase binding, but relaxed Form I, Form II (nicked circular), and double-stranded linear SV40 DNAs are not substrates. Because the DNA helix within chromatin is not under the same kind of tortional strain as Form I DNA, we hypothesize that the ATPase is bound to the single-stranded regions of replication forks in the SV40 chromatin.  相似文献   

9.
We have isolated from Bacillus subtilis three deoxyribonucleic acid (DNA)-dependent adenosine triphosphatases (ATPases) (gamma-phosphohydrolases). The enzymes were extensively purified, and their physicochemical and functional properties were determined. The three enzymes (ATPases I, II, and III) were shown to be different by several criteria. ATPases II and III showed an absolute requirement for single-stranded DNA as a cofactor, whereas ATPase I had some residual activity also with double-stranded DNA. They required Mg2+ and had a pH optimum of 6.5 to 7. Only adenosine 5'-triphosphate and deoxyadenosine 5'-triphosphate were hydrolyzed. The molecular weights of ATPases I, II, and III were 108,000, 115,000, and 148,000, respectively. Km values for adenosine 5'-triphosphate and DNA were also evaluated and shown to be different for each enzyme. All three enzymes formed physical complexes with single-stranded DNA. We present evidence that ATPases I and II might migrate along DNA during adenosine 5'-triphosphate hydrolysis. On the other hand, this effect was not observed with ATPase III, which exhibited the highest affinity for single-stranded DNA.  相似文献   

10.
The catalytic activity of topoisomerase II is stimulated approximately 2-3-fold following phosphorylation by casein kinase II (Ackerman, P., Glover, C. V. C., and Osheroff, N. (1985) Proc. Natl. Acad. Sci. U. S. A. 82, 3164-3168). In order to delineate the mechanism by which the activity of the enzyme is enhanced, the effects of casein kinase II-mediated phosphorylation on the individual steps of the catalytic cycle of Drosophila topoisomerase II were characterized. Phosphorylation did not affect reaction steps that preceded hydrolysis of the enzyme's high energy ATP cofactor. This included enzyme-DNA binding, pre-strand passage DNA cleavage/religation, the double-stranded DNA passage event, and post-strand passage DNA cleavage/religation. In contrast, the rate of topoisomerase II-mediated ATP hydrolysis was stimulated 2.7-fold following phosphorylation by casein kinase II. Since ATP hydrolysis is a prerequisite for enzyme turnover, it is concluded that phosphorylation modulates the overall catalytic activity of topoisomerase II by stimulating the enzyme's ATPase activity.  相似文献   

11.
In our previous study, we identified four chromatographically distinct DNA-dependent ATPases, B, C1, C2, and C3, in mouse FM3A cells (Tawaragi, Y., Enomoto, T., Watanabe, Y., Hanaoka, F., and Yamada, M. (1984) Biochemistry 23, 529-533). The DNA-dependent ATPase C1 has been purified and characterized in detail. A divalent cation and a polynucleotide cofactor were required for the ATPase activity. Poly(dT), single-stranded circular DNA, and heat-denatured DNA were very effective. Almost no ATPase activity was observed with S1 nuclease-treated native DNA. ATPase C1 hydrolyzed ATP only among the ribo- and deoxyribonucleoside triphosphates tested, and this fact distinguished ATPase C1 from ATPases B, C2, and C3, because the latter enzymes are capable of hydrolyzing both ATP and dATP. The purified DNA-dependent ATPase C1 fraction was shown to have a DNA helicase activity that was dependent on hydrolysis of ATP. The helicase activity and DNA-dependent ATPase activity cosedimented at 5.2 S on glycerol gradient centrifugation. Both activities showed similar preferences for nucleoside 5'-triphosphates and similar requirements for divalent cations. The DNA helicase activity was inhibited by the addition of single-stranded DNAs that served as cofactor for the ATPase activity. The efficiency of a single-stranded DNA to inhibit DNA helicase activity correlated well with the capacity of the DNA to serve as cofactor for DNA-dependent ATPase activity. The helicase was shown to migrate along the DNA strand in the 5' to 3' direction, which is the same direction of migration of the mouse DNA helicase B (Seki, M., Enomoto, T., Yanagisawa, J., Hanaoka, F., and Ui, M. (1988) Biochemistry 27, 1766-1771).  相似文献   

12.
The NS3 protein of hepatitis C virus (HCV) is a bifunctional protein containing a serine protease in the N-terminal one-third, which is stimulated upon binding of the NS4A cofactor, and an RNA helicase in the C-terminal two-thirds. In this study, a C-terminal hexahistidine-tagged helicase domain of the HCV NS3 protein was expressed in Escherichia coli and purified to homogeneity by conventional chromatography. The purified HCV helicase domain has a basal ATPase activity, a polynucleotide-stimulated ATPase activity, and a nucleic acid unwinding activity and binds efficiently to single-stranded polynucleotide. Detailed characterization of the purified HCV helicase domain with regard to all four activities is presented. Recently, we published an X-ray crystallographic structure of a binary complex of the HCV helicase with a (dU)(8) oligonucleotide, in which several conserved residues of the HCV helicase were shown to be involved in interactions between the HCV helicase and oligonucleotide. Here, site-directed mutagenesis was used to elucidate the roles of these residues in helicase function. Four individual mutations, Thr to Ala at position 269, Thr to Ala at position 411, Trp to Leu at position 501, and Trp to Ala at position 501, produced a severe reduction of RNA binding and completely abolished unwinding activity and stimulation of ATPase activity by poly(U), although the basal ATPase activity (activity in the absence of polynucleotide) of these mutants remained intact. Alanine substitution at Ser-231 or Ser-370 resulted in enzymes that were indistinguishable from wild-type HCV helicase with regard to all four activities. A mutant bearing Phe at Trp-501 showed wild-type levels of basal ATPase, unwinding activity, and single-stranded RNA binding activity. Interestingly, ATPase activity of this mutant became less responsive to stimulation by poly(U) but not to stimulation by other polynucleotides, such as poly(C). Given the conservation of some of these residues in other DNA and RNA helicases, their role in the mechanism of unwinding of double-stranded nucleic acid is discussed.  相似文献   

13.
In this study, the double-stranded DNA-dependent activities of Deinococcus radiodurans RecA protein (Dr RecA) were characterized. The interactions of the Dr RecA protein with double-stranded DNA were determined, especially dsDNA-dependent ATP hydrolysis by the Dr RecA protein and the DNA strand exchange reaction, in which multiple branch points exist on a single RecA protein-DNA complex. A nucleotide cofactor (ATP or dATP ) was required for the Dr RecA protein binding to duplex DNA. In the presence of dATP, the nucleation step in the binding process occurred more rapidly than in the presence of ATP. Salts inhibited the binding of the Dr RecA protein to double-stranded DNA. Double-stranded DNA-dependent ATPase activities showed a different sensitivity to anion species. Glutamate had only a minimal effect on the double-stranded DNA-dependent ATPase activities, up to a concentration of 0.7 M. In the competition experiment for Dr RecA protein binding, the Dr RecA protein manifested a higher affinity to double-stranded DNA than was observed for single-stranded DNA.  相似文献   

14.
DNA-dependent ATPases have been purified from logarithmically growing KB cells by chromatography on single-stranded DNA cellulose and phosphocellulose. Phosphocellulose resolved the DNA-dependent ATPases into three activities designated ATPase I, II and III, respectively. From gel filtration and sedimentation analysis ATPases II and III were found to be very similar, both with calculated molecular weights of 78,000. Due to the extreme lability these enzymes were not purified further. The molecular weight of ATPase I determined by gel filtration and sedimentation analysis was calculated to be 140,000. ATPase I was further purified by gradient elution on ATP-agarose, revealing two peaks of activity (IA and IB), and by sucrose gradient sedimentation. Analysis of the fractions from the sucrose gradient by sodium dodecylsulphate gel electrophoresis revealed only one broad polypeptide band co-sedimenting with both ATPase IA and ATPase IB. This band was composed of four closely spaced polypeptides with apparent molecular weights of 66,000, 68,000, 70,000 and 71,000. Comparison of the native molecule weight (140,000) with these results suggests that ATPase I is a dimer. ATPase IA and IB were indistinguishable in their structural and enzymatic properties and presumably represent the same enzyme. The purified enzyme has an apparent Km of 0.5 mM for ATP producing ADP + Pi. A maximum activity of 2,100 molecules of ATP hydrolyzed per enzyme molecular per minute was found. Hydrolysis of ATP requires the presence of divalent cations (Mg2+ greater than Ca2+ greater than Mn2+ greater than Co2+). A broad pH optimum (pH 6--8) was observed. The enzyme uses ATP or dATP preferentially as a substrate, while other deoxyribonucleoside or ribonucleoside triphosphates were inactive. ATPase I prefers denatured DNA as cofactor. The activity with native DNA is 40% of that with denatured DNA.  相似文献   

15.
Simian-virus-40 large-T-antigen-catalyzed DNA and RNA unwinding reactions   总被引:3,自引:0,他引:3  
Simian virus 40 large T antigen is a helicase separating the complementary strands of double-stranded DNA in the presence of hydrolyzable ATP and of double-stranded RNA in the presence of non-ATP nucleotides (GTP, CTP or UTP). We have constructed partially single-stranded nucleic acid substrates consisting of RNA or DNA strands hydrogen bonded to either RNA or DNA complements. We found that ATP is utilized as a cofactor for the T-antigen-catalyzed unwinding reaction when the substrates contain overhanging single-stranded DNA, regardless of whether the double-stranded region is DNA or hybrid DNA.RNA. Conversely, non-ATP nucleotides are used when the overhanging single strand is RNA. Based on these and additional findings, we propose that the bound nucleic acid induces a conformational change in T antigen resulting in a proper orientation of both nucleic acid and nucleotide relative to the active center of the ATPase/helicase domain of the enzyme. The implications of our conclusion for the roles which T antigen may play in vivo are discussed.  相似文献   

16.
S Higuchi  M Tsuboi 《Biopolymers》1966,4(8):837-854
The optical density–temperature profile of double-stranded poly(A + U), triple stranded poly(A + 2U), and double-stranded RNA from rice dwarf virus in solutions with and without poly-L -lysine has been examined. When poly-L -lysine is added, more than one melting temperature Tm is observed for poly(A + U) and poly(A + 2U). One of them is considered to correspond to the melting of the polynucleotide molecule free from poly-L -lysine, and another to the melting of a polynucleotide–poly-L -lysine complex. For rice dwarf virus RNA, the Tm assignable to the complex is not found to be lower than 99°C. In every case, however, the hyperchromicity observed at the Tm of the free poly-nucleotide molecule is lowered linearly as the amount of poly-L -lysine added to the solution increases. This fact is taken as indicating that there is a stoichiometric complex formed. The stoichiometric ratio lysine/nucleotide in each complex is determined by examining the relation between the amount of poly-L -lysine added to the solution and the percentage of hyperchromicity remaining at Tm of the free polynucleotide molecule. The ratio is found to be 2/3 for all of the three complexes. A discussion is given on the molecular conformations of four types of polynucleotide–polylysine complex hitherto found: (A) double-stranded DNA plus poly-L -lysine in which the lyslne/nucleotide ratio is 1, (B) three-stranded RNA [poly(A + 2U)] plus poly-L -lysine in which the ratio is 2/3, (C) double-stranded RNA [poly (A + U) or rice dwarf virus RNA] plus poly-L -lysine in which the ratio is 2/3, and (D) double-stranded RNA [poly(I + C)] plus poly-L -lysine in which the ratio is 1/2.  相似文献   

17.
An ATPase was purified from mouse myeloma MOPC 70E the activity of which depends on the presence of single-stranded DNA and divalent cations such as Mg2+, Mn2+, Ca2+, Ni2+ or Fe2+. The enzyme splits both ribonucleoside and deoxyribonucleoside triphosphates but preferentially ATP and dATP yielding nucleoside diphosphates and inorganic phosphate. The enzyme has an absolute requirement for single-stranded DNA. Alternating double-stranded polydeoxynucleotides are only slight effective, and native double-stranded DNA, single-stranded and double-stranded RNAs as well as DNA - RNA hybrids are ineffective in stimulating the ATPase. The enzyme has further characterized by sedimentation in a sucrose density gradient (s20, w = 5.5 S) and by isoelectric focussing in an ampholine pH gradient (pI = 6.5).  相似文献   

18.
A DNA-dependent ATPase (molecular weight 71 000) free of nuclease activity has been purified from Bacillus cereus. The enzyme shows similar characteristics as the enzyme isolated from Escherichia coli and Bacillus subtilis. Heat denatured DNA stimulates the rate of ATP hydrolysis to ADP and Pi to an extent about tenfold higher than the native DNA. Double stranded DNA without single stranded regions is not a suitable cofactor for the enzyme. The ATPase is inhibited by adenosine 5'-(beta, gamma-imino)-diphosphate, while another ATP analogue, adenosine 5'-(beta, gamma-methylene)-diphosphate has no effect on ATPase activity. KM for ATP is 0.38 mM, the apparent KM for nucleotide equivalent DNA is 1.2 microM. Evidence of the unwinding function of the enzyme is presented.  相似文献   

19.
RNA unwinding activity of SV40 large T antigen   总被引:32,自引:0,他引:32  
M Scheffner  R Knippers  H Stahl 《Cell》1989,57(6):955-963
Large T antigen, the regulatory protein encoded by simian virus 40, has DNA helicase activity and unwinds double-stranded DNA at the expense of ATP. T antigen also functions as an RNA helicase separating duplex regions in partially double-stranded RNA substrates. Surprisingly, T antigen RNA helicase activity requires UTP, CTP, or GTP as a cofactor, whereas ATP is an inefficient energy source for the RNA unwinding reaction. Accordingly, T antigen has both an intrinsic non-ATP NTPase activity that is stimulated by single-stranded RNA and an ATPase activity stimulated by single-stranded DNA. Thus, it appears that the bound nucleotide determines whether T antigen acts as an RNA helicase or as a DNA helicase.  相似文献   

20.
In crude extracts of T2L phage-infected Escherichia coli cells an enzyme activity was found that produced poly(A) from ATP as substrate. Purification of the extract led to the isolation of two enzymes, a polynucleotide phosphorylase and an ATPase. The polynucleotide phosphorylase possessed the same properties as the well-known enzyme from uninfected cells and its molecular weight was about 265 000. The ATPase was purified to over 90% purity; its molecular weight was estimated to be about 165 000 with three subunits of 55 000. The characterization of this enzyme showed that it was different from any ATPase known so far. Mg2+ cannot be replaced by Ca2+, as it can from the membrane-bound ATPases. The only product yielded by the enzyme was ADP; it was very specific for ATP, other ribonucleotide triphosphates being practically unaffected. The rate of ATP splitting was found to be very high, the turnover number being 2.51 X 10(4) min-1 at 37 degrees C. Even at 0 degree C the enzyme was still active. The optimal assay conditions for ATPase turned out to be very similar to those of polynucleotide phosphorylase. Thus the combination of the two enzymes very efficiently produced poly(A) from ATP. In this combination the polynucleotide phosphorylase was the rate-limiting enzyme, since its turnover number was about 40 times lower than that of the ATPase. The evaluation of a variety of properties of the poly(A)-synthesizing constituent found in the crude extracts led us to conclude that this activity arises from the combined action of ATPase and polynucleotide phosphorylase, and is not due to a poly(A) polymerase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号