首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
2.
Z H Yang  S Bobin    J S Krakow 《Nucleic acids research》1991,19(15):4253-4257
CRP is resistant to attack by carboxypeptidase Y at 37 degrees C, whereas cAMP-CRP is digested yielding a core terminating at Thr-202 and lacking the seven carboxyl-terminal amino acid residues. A similar core (CRPCY) is formed when CRP is incubated with carboxypeptidase Y at 47 degrees C in the absence of cAMP. CRPCY has a more open conformation than CRP at 37 degrees C. While unliganded CRP is resistant to trypsin, CRPCY is sensitive to tryptic attack. Dithionitrobenzoic acid-mediated intersubunit disulfide crosslinking of CRP requires cAMP, CRPCY subunits are crosslinked in the absence of cAMP. The carboxyl-terminal region of unliganded CRP is conformationally restricted at 37 degrees C. The CRPCY retains cAMP binding activity. The CRPCY which terminates at Thr-202, no longer binds lac P+ DNA nor stimulates abortive initiation by RNA polymerase from the lac P+ promoter. The results indicate that the C-terminal region of CRP participates in the conformational stability of the closed form of CRP and indirectly in DNA binding by the open cAMP-CRP conformer.  相似文献   

3.
The tsx-p2 promoter is one of at least seven Escherichia coli promoters that are activated by the cyclic AMP (cAMP)-cAMP receptor protein (CRP) complex and negatively regulated by the CytR repressor. DNase I footprinting assays were used to study the interactions of these regulatory proteins with the tsx-p2 promoter region and to characterize tsx-p2 regulatory mutants exhibiting an altered response to CytR. We show that the cAMP-CRP activator complex recognizes two sites in tsx-p2 that are separated by 33 bp: a high-affinity site (CRP-1) overlaps the -35 region, and a low-affinity site (CRP-2) is centered around position -74 bp. The CytR repressor protects a DNA segment that is located between the two CRP sites and partially overlaps the CRP-1 target. In combination, the cAMP-CRP and CytR proteins bind cooperatively to tsx-p2, and the nucleoprotein complex formed covers a region of 78 bp extending from the CRP-2 site close to the -10 region. The inducer for the CytR repressor, cytidine, does not prevent in vitro DNA binding of CytR, but releases the repressor from the nucleoprotein complex and leaves the cAMP-CRP activator bound to its two DNA targets. Thus, cytidine interferes with the cooperative DNA binding of cAMP-CRP and CytR to tsx-p2. We characterized four tsx-p2 mutants exhibiting a reduced response to CytR; three carried mutations in the CRP-2 site, and one carried a mutation in the region between CRP-1 and the -10 sequence. Formation of the cAMP-CRP-CytR DNA nucleoprotein complex in vitro was perturbed in each mutant. These data indicate that the CytR repressor relies on the presence of the cAMP-CRP activator complex to regulate tsx-p2 promoter activity and that the formation of an active repression complex requires the combined interactions of cAMP-CRP and CytR at tsx-p2.  相似文献   

4.
D Porschke  W Hillen    M Takahashi 《The EMBO journal》1984,3(12):2873-2878
The structure of complexes formed between cAMP receptor protein (CRP) and various restriction fragments from the promoter region of the lactose operon has been analysed by measurements of electrodichroism. Binding of CRP to a 62-bp fragment containing the major site leads to an increase of the rotation time constant from 0.33 to 0.43 microseconds; addition of cAMP to the complex induces a decrease to 0.25 microseconds. Similar data are obtained for a 80-bp fragment containing the operator site; however, in this case the decrease of the rotation time for the specific complex is only observed when the salt concentration is increased from 3 to 13 mM. A 203-bp fragment containing both sites showed a corresponding change after pre-incubation at 50 mM salt. The salt dependence of the rotation time for the specific complex formed with the 203-bp fragment also indicates that a compact structure is formed at 13 mM salt, whereas the structure is not as compact at 3 mM salt. A 98-bp fragment without specific CRP sites did not reveal changes corresponding to those observed for the specific fragments. The rotation time constants together with the dichroism amplitudes indicate that binding of CRP to specific sites in the presence of cAMP leads to the formation of compact structures, which are consistent with bending of DNA helices. The observed strong salt dependence of the structure is apparently due to electrostatic repulsion between adjoining helix segments.  相似文献   

5.
The effect of specific DNA binding of the cAMP . cAMP receptor protein complex to two DNA fragments (301 and 2685 base-pairs in length) containing the lac operon has been investigated by electron microscopy. It is shown that specific DNA binding of the cAMP . cAMP receptor protein complex induces a kink of 30 to 45 degrees in the DNA with the apex of the kink located at the site of protein attachment. These findings lend direct visual support for the kinking hypothesis based on the observation of anomalous electrophoretic mobility of DNA fragments containing specifically bound cAMP receptor protein.  相似文献   

6.
The rotation diffusion of DNA double helices and their complexes with the cAMP receptor protein (CRP) has been simulated by bead models, in order to derive information on their structure in solution by comparison with results obtained from dichroism decay measurements. Straight DNA double helices are simulated by linear, rigid strings of overlapping beads. The radius of the beads and the length of the string are increased simultaneously by the same increments from initial outer dimensions derived from crystallographic data to final values, which are fitted to experimental rotation time constants observed for short DNA fragments (less than 100 bp). The final values reflect the solvated structure with the same 'solvation layer' added in all three dimensions. The protein is simulated by overlapping beads, which are assembled to a structure very similar to that found by x-ray crystallography. Complexes of the protein with DNA are formed with the centres of palindromic DNA sites at the centre of the two helix-turn-helix-motifs of the protein with some overlap of the two components. Simulation of the experimental data obtained for CRP complexes with specific DNA in the presence of cAMP requires strong bending of the double helices. According to our simulation the DNA is almost completely wrapped around the protein both in the complexes with a 62 bp fragment containing the standard CRP site and with a 80 bp fragment containing the second binding site of the lac operon. Simulations of the data obtained for a 203 bp fragment with both binding sites suggest that the two bound CRP proteins are in contact with each other and that the DNA is wrapped around the two protein dimers. A stereochemical model is suggested with a tetrahedral arrangement of the four protein subunits, which provides the advantage that two binding sites of the protein formed by two subunits each are located favorable for tight contacts to two binding sites on bent DNA, provided that the DNA sites are separated by an integer number of helix turns. In summary, the simulations demonstrate strong bending, which can be reflected by an arc radius in the range around 50 A. According to these data the overall bending angle of our longest DNA fragment is approximately 180 degrees, and thus the protruding ends are sufficiently close to each other such that RNA polymerase, for example, could contact both helical segments.  相似文献   

7.
The influence of cation concentration on the thermal denaturation of DNA restriction fragments from the E. coli lac regulatory region and from pVH51, ranging in size from 43- to 880- bp, is described. Upon increasing the ionic strength, the melting transitions broaden in a cooperative manner at salt concentrations characteristic for the specific fragment. For three fragments studied in detail, the salt concentration dependence at the midpoint varied between 0.03 and 0.19 M Na+. Along with the broadening, the melting transitions become more symmetrical. This result is discussed with respect to the irreversibility of melting transitions at low ionic strength. After a cooperative broadening, the shape of the melting curves remains constant up to salt concentrations of 0.5 M Na+. The dTM/dlog[Na+] values for three fragments fall between 15.7 and 16.7. An easily applicable approximation of the van't Hoff equation is used to evaluate the enthalpies of 13 transitions arising from the denaturation of 43 to 600 bp. The results of this analysis are compared to calculations of the expected enthalpies based on calorimetric measurements. The TMs of most transitions were directly related to the base composition, but several deviations from the predicted behavior were observed. The possible influences of fragment length and sequence on the thermal stability are discussed. The experimental and mathematical procedure to resolve a thermal denaturation transition with a width f 0.17 +/- 0.01 degrees and its distinction from another preceeding transition only approximately 0.15 degrees away in an 880-bp Hae III fragment from pVH51 is described. This transition is about half as wide as the smallest one reported to date.  相似文献   

8.
Abstract

The rotation diffusion of DNA double helices and their complexes with the cAMP receptor protein (CRP) has been simulated by bead models, in order to derive information on their structure in solution by comparison with results obtained from dichroism decay measurements. Straight DNA double helices are simulated by linear, rigid strings of overlapping beads. The radius of the beads and the length of the string are increased simultaneously by the same increments from initial outer dimensions derived from crystallographic data to final values, which are fitted to experimental rotation time constants observed for short DNA fragments (< 100 bp). The final values reflect the solvated structure with the same ‘solvation layer’ added in all three dimensions. The protein is simulated by overlapping beads, which are assembled to a structure very similar to that found by x-ray crystallography. Complexes of the protein with DNA are formed with the centres of palindromic DNA sites at the centre of the two helix- turn-helix-motifs of the protein with some overlap of the two components. Simulation of the experimental data obtained for CRP complexes with specific DNA in the presence of cAMP requires strong bending of the double helices. According to our simulation the DNA is almost completely wrapped around the protein both in the complexes with a 62 bp fragment containing the standard CRP site and with a 80 bp fragment containing the second binding site of the lac operon. Simulations of the data obtained for a 203 bp fragment with both binding sites suggest that the two bound CRP proteins are in contact with each other and that the DNA is wrapped around the two protein dimers. A stereochemical model is suggested with a tetrahedral arrangement of the four protein subunits, which provides the advantage that two binding sites of the protein formed by two subunits each are located favorable for tight contacts to two binding sites on bent DNA provided that the DNA sites are separated by an integer number of helix turns. In summary, the simulations demonstrate strong bending, which can be reflected by an arc radius in the range around 50 Å. According to these data the overall bending angle of our longest DNA fragment is approximately 180°, and thus the protruding ends are sufficiently close to each other such that RNA polymerase, for example, could contact both helical segments.  相似文献   

9.
High resolution thermal denaturation profiles are presented for the DNAs of bacteriophages lambda and T7. It is concluded that the temperature increment in data gathering and the method of calculating results meet the requirements for quantitative recording of the large amount of information found in the thermal transitions of both DNAs. The high resolution derivative denaturation profiles of these bacteriophage DNAs demonstrate that individual subtransitions (thermalites) of natural DNA are Gaussian in form and have narrow transition widths. Curve resolution performed on these profiles indicates that the mean thermalite width (2 sigma) is 0.33 degrees C and that this breadth is relatively invariant. Transition widths are not influenced by the position of thermalites in the profile or by cation concentration in the range from 5 to 30 mM Na+. However, the relative position of thermalites within a denaturation profile is a function of the solution ionic strength. The distribution of lengths of the DNA sequences which these thermalites represent is broad, with a number average length of 900 base pairs. Although we find an approximate similarity between the number of thermalites in the denaturation profile of T7 DNA and the number of looping regions in the electron microscopic partial denaturation map of Gomez and Lang ((1972), J. Mol. Biol. 70, 239-251) we conclude that free solution thermal denaturation experiments can be compared only superficially to the mapping results.  相似文献   

10.
11.
The properties of the two monoclonal antibodies which were found to inhibit cyclic AMP receptor protein (CRP)-stimulated abortive initiation without affecting cAMP binding (Li, X.-M., and Krakow, J. S. (1986) J. Biol. Chem. 260, 4378-4383) have been characterized. Binding of monoclonal antibody (mAb) 66C3 to CRP is stimulated by cAMP while CRP binding by mAb 63B2 is not affected by cAMP. Binding of cAMP-CRP-mAb 63B2 to the lac P+ DNA is completely inhibited. Whereas cAMP-CRP forms a stable complex only at the CRP site 1 of the lac P+ promoter fragment, cAMP-CRP-mAb 66C3 binds to both site 1 and site 2. DNase I footprinting using a HpaII fragment carrying only the lac site 2 does not show any protection by cAMP-CRP-mAb 66C3. With the lac L8UV5 promoter, binding is not seen at either the L8 site 1 or the unaltered site 2. In the presence of 25% glycerol, cAMP-CRP-mAb 66C3 binds to both L8 site 1 and site 2. RNA polymerase is unable to bind to the cAMP-CRP-mAb 66C3-lac P+ complex. In the presence of RNA polymerase, cAMP-CRP forms a stable complex at the L8 site 1, the subsequent addition of mAb 66C3 results in the release of CRP. The CRP present in the lac P+ open promoter complex is partially resistant to subsequent incubation with mAb 66C3. The results provide further evidence regarding possible contacts between CRP and RNA polymerase involved in establishing the open promoter complex.  相似文献   

12.
13.
The cyclic AMP receptor protein (CRP) regulates the expression of many genes in Escherichia coli. The protein is a homodimer, and each monomer is folded into two distinct structural domains. In this study, we have used differential scanning calorimetry (DSC) and circular dichroism (CD) to measure the enthalpy change and melting temperature of the apo-CRP and CRP complexes with cAMP or DNA sequences lac, gal, and palindromic ICAP. DSC and CD measurements showed irreversible thermal denaturation process of CRP. Enthalpy of dissociation of the protein–DNA complex, as measured by DSC, depends on the DNA sequence. The thermal transition of the protein in CRP-DNA complexes, measured by CD, indicates that the protein stability in the complex is also DNA sequence-dependent.  相似文献   

14.
15.
G S Tan  P Kelly  J Kim  R M Wartell 《Biochemistry》1991,30(20):5076-5080
The secondary structures of the cAMP receptor protein (CRP), a complex of CRP and cAMP, and a cAMP-independent receptor protein mutant (CRP*141 gln) were examined by using Raman spectroscopy. Spectra were obtained from CRP and CRP*141 gln dissolved in 0.3 M NaCl and 30 mM sodium phosphate at protein concentrations of 30-40 mg/mL. CRP and CRP.cAMP1 were compared at lower protein concentrations (10-12 mg/mL) in a solvent of 0.35 M NaCl and 20 mM sodium phosphate. Raman analysis indicates that CRP structural changes induced by one bound cAMP or by the Gly to Gln mutation at residue 141 are small. Spectra of the three CRP samples are essentially identical from 400 to 1900 cm-1. This result differs from the Raman spectroscopy study of CRP and CRP.cAMP2 cocrystals [DeGrazia et al. (1990) Biochemistry 29, 3557]. The latter work showed spectral differences between CRP and CRP.cAMP2 consistent with alterations in the protein conformation. These studies indicate that CRP and CRP.cAMP1 in solution are similar in structure and differ from CRP.cAMP2 cocrystals. Protease digestion and a DNA binding assay were also employed to characterize the wild-type and mutant proteins. CRP*141 gln exhibited the same conformational characteristics of previously reported cAMP-independent mutant proteins. It was sensitive to proteolytic attack in the absence of cAMP, or upon addition of cGMP. In the absence of cAMP, both wild-type and mutant CRPs bound noncooperatively to a 62 bp lac promoter DNA. The equilibrium constants were approximately 10(6) M-1 in 0.1 M Na+. CRP*141 gln had a 2-4-fold higher affinity for the 62 bp DNA than CRP.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
17.
18.
The effect of catabolite activator protein, CAP, on the thermal stability of DNA was examined. Site specific binding was studied with a 62 bp DNA restriction fragment containing the primary CAP site of the E. coli lactose (lac) promoter. A 144 bp DNA containing the lac promoter region and a 234 bp DNA from the pBR322 plasmid provided other DNA sites. Thermal denaturation of protein-DNA complexes was carried out in a low ionic strength solvent with 40% dimethyl sulfoxide, DMSO. In this solvent free DNA denatured below the denaturation temperature of CAP. The temperature stability of CAP for site specific binding was monitored using an acrylamide gel electrophoresis assay. Results show that both specific and non-specific CAP binding stabilize duplex DNA. Site specific binding to the 62 bp DNA produced a 13.3 degrees C increase in the transition under conditions where non-specific binding stabilized this DNA by 2-3 degrees C.  相似文献   

19.
20.
This paper describes a generally applicable method for quantitative investigation of ligand-dependent binding of a regulatory protein to its target DNA at equilibrium. It is used here to analyse the coupled binding equilibria of cAMP receptor protein from Escherichia coli K12 (CRP) with DNA and the physiological effector cAMP. In principle, the DNA binding parameters of CRP dimers with either one or two ligands bound are determinable in such an approach. The change of protein fluorescence was used to measure CRP binding to its recognition sequence in the lac control region and to non-specific DNA. Furthermore, the binding of cAMP to preformed CRP-DNA complexes was independently studied by equilibrium dialysis. The data were analysed using a simple interactive model for two intrinsically identical sites and site-site interactions. The intrinsic binding constant K and the co-operativity factor alpha for binding of cAMP to free CRP depend only slightly on salt concentration between 0.01 M and 0.2 M. In contrast, the affinity of cAMP for CRP pre-bound to non-specific DNA increases with the salt concentration and the co-operativity changes from positive to negative. This results from cation rebinding to the DNA lattice upon forming the cAMP-CRP-DNA complex from cAMP and the pre-formed CRP-DNA complex. The CRP-cAMP1 complex shows almost the same affinity for specific and non-specific DNA as the CRP-cAMP2 complex, and both displace the same number of cations. It is concluded that the allosteric activation of CRP is induced upon binding of the first cAMP. These results are used to estimate the occupation of the CRP site in the lac control region in relation to the cAMP concentration in vivo. Under physiological conditions the lac promoter is activated by the CRP dimer complexed with only one cAMP. Furthermore, a model for the differential activation of various genes expressed under catabolite repression is presented and discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号