共查询到20条相似文献,搜索用时 15 毫秒
1.
P Etienne Y Robitaille S Gauthier N P Nair 《Canadian journal of physiology and pharmacology》1986,64(3):318-324
All our advanced severe cases of Alzheimer's disease had dramatic cholinergic cell loss in the basal forebrain, even after correction for cell or nucleolus shrinkage. We examined the relation between cell loss in the various subdivisions of the nucleus basalis of Meynert and plaque counts in corresponding and noncorresponding projection areas. This relation was not interpretable because of the ambiguity in the data. 相似文献
2.
3.
The alternative splicing of tau exon 10 and its regulatory proteins CLK2 and TRA2-BETA1 changes in sporadic Alzheimer's disease 总被引:1,自引:0,他引:1
Glatz DC Rujescu D Tang Y Berendt FJ Hartmann AM Faltraco F Rosenberg C Hulette C Jellinger K Hampel H Riederer P Möller HJ Andreadis A Henkel K Stamm S 《Journal of neurochemistry》2006,96(3):635-644
4.
5.
The mechanism by which (CTG)n expansion in the 3' UTR of the DMPK gene causes myotonic dystrophy (DM) is unknown. We identified four RNA splicing factors--hnRNP C, U2AF (U2 auxiliary factor), PTB (polypyrimidine tract binding protein), and PSF (PTB associated splicing factor)--that bind to two short regions 3' of the (CUG)n, and found a novel 3' DMPK exon resulting in an mRNA lacking the repeats. We propose that the (CUG)n is an essential cis acting element for this splicing event. In contrast to (CUG)n containing mRNAs, the novel isoform is not retained in the nucleus in DM cells, resulting in imbalances in relative levels of cytoplasmic DMPK mRNA isoforms and a new dominant effect of the mutation on DMPK. 相似文献
6.
Denys-Drash syndrome (DDS) is characterized by early onset nephropathy, pseudohermaphroditism in males and a high risk for developing Wilms' tumour (WT). The exact cause of DDS is unknown but germline mutations in the Wilms' tumour suppressor gene (WT1) have recently been described in the majority of DDS patients studied. These mutations occur de novo and are clustered around the zinc finger (ZF) coding exons of the WT1 gene. Analysis of exons 2–10 of the WT1 gene in constitutional DNA from five patients with DDS was carried out using the polymerase chain reaction (PCR) and direct DNA sequencing. In four out of the five patients, heterozygous germline mutations were found: a novel point mutation in exon 8 (ZF2) at codon 377 altering the wild-type histidine to arginine, and three previously described point mutations in exon 9 (ZF3) in the codons corresponding to amino acids 394Arg and 396Asp. In one patient, no mutations could be demonstrated. In three patients where parental DNA was available, the mutations were shown to have occurred de novo. Furthermore, since tumour DNA in two of these cases had lost the wild-type allele, polymorphic markers from the short arm of chromosome 11 were used to determine the parental origin of the mutant chromosome. In both cases, the mutant chromosome was shown to be of paternal origin. Since the majority of published WT1 mutations in DDS patients alter a RsrII restriction site in exon 9, we were able to perform PCR-based diagnosis in a female patient with early renal insufficiency and normal external genitalia. 相似文献
7.
In the absence of wounding, the epidermis is only rarely involved in cell or organ fusion events; in fact, intact epidermal
layers prevent graft unions. In Zea mays L. the mutation adherent1 (ad1) shows abnormal fusions between cells and organs. Fusions involve epidermal cells of vegetative and floral organs and occur
early in the ontogeny of organs. Even so, epidermal cell types differentiate normally in the fused regions and internal tissue
identities are maintained. In contrast, the extracellular matrix (cell wall and cuticle) of the epidermal cells is perturbed.
Epidermal cell walls in adherent leaves are thicker than normal. Epicuticular wax particles appear reduced in size and number
and altered in shape in mutant leaves. In addition, the outer epidermal cell walls of adherent leaves fluoresce when stained
with aniline blue, a reagent that binds to callose. Immunolocalizations to specific cell wall epitopes suggest that pectins
but not arabinogalactans may have a role in the fusion events. Taken together, these results suggest that the ad1 mutation results in cell-wall and epicuticular-wax defects similar to responses seen in wounding, pollination by incompatible
pollen, or pathogen attack. Since cell wall components and epicuticular waxes are extracellular secreted products, the ad1 mutation may disrupt normal functioning and/or composition of the secretory pathway and its cargo.
Received: 30 January 1998 / Accepted: 5 March 1998 相似文献
8.
A naturally arising mutation of a potential silencer of exon splicing in human immunodeficiency virus type 1 induces dominant aberrant splicing and arrests virus production. 总被引:4,自引:2,他引:4 下载免费PDF全文
We have isolated a naturally arising human immunodeficiency type 1 (HIV-1) mutant containing a point mutation within the env gene. The point mutation resulted in complete loss of balanced splicing, with dominant production of aberrant mRNAs. The aberrant RNAs arose via activation of normally cryptic splice sites flanking the mutation within the env terminal exon to create exon 6D, which was subsequently incorporated in aberrant env, tat, rev, and nef mRNAs. Aberrant multiply spliced messages contributed to reduced virus replication as a result of a reduction in wild-type Rev protein. The point mutation within exon 6D activated exon 6D inclusion when the exon and its flanking splice sites were transferred to a heterologous minigene. Introduction of the point mutation into an otherwise wild-type HIV-1 proviral clone resulted in virus that was severely inhibited for replication in T cells and displayed elevated usage of exon 6D. Exon 6D contains a bipartite element similar to that seen in tat exon 3 of HIV-1, consisting of a potential exon splicing silencer (ESS) juxtaposed to a purine-rich sequence similar to known exon splicing enhancers. In the absence of a flanking 5' splice site, the point mutation within the exon 6D ESS-like element strongly activated env splicing, suggesting that the putative ESS plays a natural role in limiting the level of env splicing. We propose, therefore, that exon silencers may be a common element in the HIV-1 genome used to create balanced splicing of multiple products from a single precursor RNA. 相似文献
9.
Carter D. Wray Marisa W. Friederich Desiree du Sart Sarah Pantaleo Joél Smet Cathlin Kucera Laura Fenton Gunter Scharer Rudy Van Coster Johan L.K. Van Hove 《Mitochondrion》2013,13(6):656-661
New mutations in mitochondrial DNA encoded genes of complex I are rarely reported. An infant developed Leigh disease with infantile spasms. Complex I enzyme activity was deficient and response to increasing coenzyme Q concentrations was reduced. Complex I assembly was intact. A new mutation in MT-ND1 m.3928G>C p.V208L, affecting a conserved amino acid in a critical domain, part of the coenzyme Q binding pocket, was present at high heteroplasmy. The unaffected mother did not carry measurable mutant mitochondrial DNA, but concern remained for gonadal mosaicism. Prenatal testing was possible for a subsequent sibling. The ND1 p.V208L mutation causes Leigh disease. 相似文献
10.
Hernández F Pérez M Lucas JJ Mata AM Bhat R Avila J 《The Journal of biological chemistry》2004,279(5):3801-3806
Tauopathies, including Alzheimer's disease, are neurodegenerative disorders in which tau protein accumulates as a consequence of alterations in its metabolism. At least three different types of alterations have been described; in some cases, an aberrant mRNA splicing of tau exon 10 occurs; in other cases, the disorder is a consequence of missense mutations and, in most cases, aberrant tau hyperphosphorylation takes place. Glycogen synthase kinase-3 (GSK-3) has emerged as a key kinase that is able to interact with several proteins involved in the etiology of Alzheimer's disease and other tauopathies. Here, we have evaluated whether GSK-3 is also able to modulate tau-mRNA splicing. Our data demonstrate that GSK-3 inhibition in cultured neurons affects tau splicing resulting in an increase in tau mRNA containing exon 10. Pre-mRNA splicing is catalyzed by a multimolecular complex including members of the serine/arginine-rich (SR) family of splicing factors. Immunofluorescence studies showed that after GSK-3 inhibition, SC35, a member of the SR family, is redistributed and enriched in nuclear speckles and colocalizes with the kinase. Furthermore, immunoprecipitated SC35 is phosphorylated by recombinant GSK-3beta. Phosphorylation of a peptide from the SR domain by GSK-3 revealed that the peptide needs to be prephosphorylated, suggesting the involvement of a priming kinase. Our results demonstrate that GSK-3 plays a crucial role in tau exon 10 splicing, raising the possibility that GSK3 could contribute to tauopathies via aberrant tau splicing. 相似文献
11.
12.
Abnormal beta-hexosaminidase alpha chain mRNAs from an Ashkenazi Jewish patient with the classical infantile Tay-Sachs disease contained intact or truncated intron 12 sequences. Sequence analysis showed a single nucleotide transversion at the 5' donor site of intron 12 from the normal G to C. This provides the first evidence that this junctional mutation, also found independently in two other laboratories by analysis of genomic clones, results in functional abnormality. Analysis with normal and mutant oligonucleotides as probes indicated that our patient was a compound heterozygote with only one allele having the transversion. The patient studied in the other two laboratories was also a compound heterozygote. Another Ashkenazi Jewish patient was normal in this region in both alleles. Thus, the splicing defect is the underlying genetic cause in some but not all Ashkenazi Jewish patients with Tay-Sachs disease. 相似文献
13.
14.
Thomas J. Gross Eric Doran Amrita K. Cheema Elizabeth Head Ira T. Lott Mark Mapstone 《Developmental neurobiology》2019,79(7):622-638
Down syndrome (DS) is a well‐known neurodevelopmental disorder most commonly caused by trisomy of chromosome 21. Because individuals with DS almost universally develop heavy amyloid burden and Alzheimer's disease (AD), biomarker discovery in this population may be extremely fruitful. Moreover, any AD biomarker in DS that does not directly involve amyloid pathology may be of high value for understanding broader mechanisms of AD generalizable to the neurotypical population. In this retrospective biomarker discovery study, we examined banked peripheral plasma samples from 78 individuals with DS who met clinical criteria for AD at the time of the blood draw (DS‐AD) and 68 individuals with DS who did not (DS‐NAD). We measured the relative abundance of approximately 5,000 putative features in the plasma using untargeted mass spectrometry (MS). We found significantly higher levels of a peak putatively annotated as lactic acid in the DS‐AD group (q = .014), a finding confirmed using targeted MS (q = .011). Because lactate is the terminal product of glycolysis and subsequent lactic acid fermentation, we performed additional targeted MS focusing on central carbon metabolism which revealed significantly increased levels of pyruvic (q = .03) and methyladipic (q = .03) acids in addition to significantly lower levels of uridine (q = .007) in the DS‐AD group. These data suggest that AD in DS is accompanied by a shift from aerobic respiration toward the less efficient fermentative metabolism and that bioenergetically derived metabolites observable in peripheral blood may be useful for detecting this shift. 相似文献
15.
Double heterozygosity for a RET substitution interfering with splicing and an EDNRB missense mutation in Hirschsprung disease 总被引:2,自引:0,他引:2 下载免费PDF全文
Auricchio A Griseri P Carpentieri ML Betsos N Staiano A Tozzi A Priolo M Thompson H Bocciardi R Romeo G Ballabio A Ceccherini I 《American journal of human genetics》1999,64(4):1216-1221
16.
Cavelier L Erikson I Tammi M Jalonen P Lindholm E Jazin E Smith P Luthman H Gyllensten U 《Hereditas》2001,135(1):65-70
Mutations in the mitochondrial tRNA(leu) (UUR) gene have been associated with diabetes mellitus and deafness. We screened for the presence of mtDNA mutations in the tRNA(leu) (UUR) gene and adjacent ND1 sequences in 12 diabetes mellitus pedigrees with a possible maternal inheritance of the disease. One patient carried a G to A substitution at nt 3243 (tRNA(leu) (UUR) gene) in heteroplasmic state. In a second pedigree a patient had an A to G substitution at nt 3397 in the ND1 gene. All maternal relatives of the proband had the 3397 substitution in homoplasmic state. This substitution was not present in 246 nonsymptomatic Caucasian controls. The 3397 substitution changes a highly conserved methionine to a valine at aa 31 and has previously been found in Alzheimer's (AD) and Parkinson's (PD) disease patients. Substitutions in the mitochondrial ND1 gene at aa 30 and 31 have associated with a number of different diseases (e.g. AD/PD, MELAS, cardiomyopathy and diabetes mellitus, LHON, Wolfram-syndrome and maternal inherited diabetes) suggesting that changes at these two codons may be associated with very diverse pathogenic processes. In a further attempt to search for mtDNA mutations outside the tRNAleu gene associated with diabetes, the whole mtDNA genome sequence was determined for two patients with maternally inherited diabetes and deafness. Except for substitutions previously reported as polymorphisms, none of the two patients showed any non-synonymous substitutions either in homoplasmic or heteroplasmic state. These results imply that the maternal inherited diabetes and deafness in these patients must result from alterations of nuclear genes and/or environmental factors. 相似文献
17.
Fugier C Klein AF Hammer C Vassilopoulos S Ivarsson Y Toussaint A Tosch V Vignaud A Ferry A Messaddeq N Kokunai Y Tsuburaya R de la Grange P Dembele D Francois V Precigout G Boulade-Ladame C Hummel MC Lopez de Munain A Sergeant N Laquerrière A Thibault C Deryckere F Auboeuf D Garcia L Zimmermann P Udd B Schoser B Takahashi MP Nishino I Bassez G Laporte J Furling D Charlet-Berguerand N 《Nature medicine》2011,17(6):720-725
Myotonic dystrophy is the most common muscular dystrophy in adults and the first recognized example of an RNA-mediated disease. Congenital myotonic dystrophy (CDM1) and myotonic dystrophy of type 1 (DM1) or of type 2 (DM2) are caused by the expression of mutant RNAs containing expanded CUG or CCUG repeats, respectively. These mutant RNAs sequester the splicing regulator Muscleblind-like-1 (MBNL1), resulting in specific misregulation of the alternative splicing of other pre-mRNAs. We found that alternative splicing of the bridging integrator-1 (BIN1) pre-mRNA is altered in skeletal muscle samples of people with CDM1, DM1 and DM2. BIN1 is involved in tubular invaginations of membranes and is required for the biogenesis of muscle T tubules, which are specialized skeletal muscle membrane structures essential for excitation-contraction coupling. Mutations in the BIN1 gene cause centronuclear myopathy, which shares some histopathological features with myotonic dystrophy. We found that MBNL1 binds the BIN1 pre-mRNA and regulates its alternative splicing. BIN1 missplicing results in expression of an inactive form of BIN1 lacking phosphatidylinositol 5-phosphate-binding and membrane-tubulating activities. Consistent with a defect of BIN1, muscle T tubules are altered in people with myotonic dystrophy, and membrane structures are restored upon expression of the normal splicing form of BIN1 in muscle cells of such individuals. Finally, reproducing BIN1 splicing alteration in mice is sufficient to promote T tubule alterations and muscle weakness, a predominant feature of myotonic dystrophy. 相似文献
18.
Human alpha1 and hyperekplexia mutant alpha1(R271L) glycine receptors (GlyRs) were transiently expressed in human embryonic kidney 293 cells for [3H]strychnine binding. Binding parameters were determined using a ternary allosteric model. The hyperekplexia mutation increased the positive cooperativity of 0.3 mM propofol and glycine binding by about six times: the cooperativity factor beta was 0.26 for alpha1 GlyRs and 0.04 for alpha1(R271L) GlyRs. Thus, propofol restored the potency of glycine impaired by the mutation. Five nortropeines, i.e. substituted benzoates of nortropine and a new compound, nortropisetron were prepared and also examined on [3H]strychnine binding. They showed nanomolar displacing potencies amplified by the hyperekplexia mutation. The affinity of nor-O-zatosetron (2.6 nM) is one of the highest reported for GlyRs. This binding test offers an in vitro method to evaluate agents against neurological disorders associated with inherited mutations of GlyRs. 相似文献
19.
20.
Vorwerk P Christoffersen CT Müller J Vestergaard H Pedersen O De Meyts P 《Hormone research》1999,52(5):211-220
The insulin receptor (IR) in two brothers with a rare syndrome of congenital muscle fiber type disproportion myopathy (CFTDM) associated with diabetes and severe insulin resistance was studied. By direct sequencing of Epstein-Barr virus-transformed lymphocytes both patients were found to be compound heterozygotes for mutations in the IR gene. The maternal allele was alternatively spliced in exon 17 due to a point mutation in the -1 donor splice site of the exon. The abnormal skipping of exon 17 shifts the amino acid reading frame and leads to a truncated IR, missing the entire tyrosine kinase domain. In the correct spliced variant, the point mutation is silent and results in a normally translated IR. The paternal allele carries a missense mutation in the tyrosine kinase domain. All three cDNA variants were present in the lymphocytes of the patients. Purified IR from 293 cells overexpressing either of the two mutated receptors lacked basal or stimulated IR beta-subunit autophosphorylation. A third brother who inherited both normal alleles has an normal muscle phenotype and insulin sensitivity, suggesting a direct linkage of these IR mutations with the CFTDM phenotype. 相似文献