首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The generation of proteolyzed prothrombin species by preassembled prothrombinase in phospholipid-coated glass capillaries was studied at physiologic shear rates (100–1000 s−1). The concentration of active thrombin species (α-thrombin and meizothrombin) reaches a steady state, which varies inversely with shear rate. When corrected for shear rate, steady-state levels of active thrombin species exhibit no variation and a Michaelis-Menten analysis reveals that chemistry of this reaction is invariant between open and closed systems; collectively, these data imply that variations with shear rate arise from dilutional effects. Significantly, the major products observed include nonreactive species arising from the loss of prothrombin's phospholipid binding domain (des F1 species). A numerical model developed to investigate the spatial and temporal distribution of active thrombin species within the capillary reasonably approximates the observed output of total thrombin species at different shears; it also predicts concentrations of active thrombin species in the wall region sufficient to account for observed levels of des FI species. The predominant feedback formation of nonreactive species and high levels of the primarily anticoagulant intermediate meizothrombin (∼40% of total active thrombin species) may provide a mechanism to prevent thrombus propagation downstream of a site of thrombosis or hemorrhage.  相似文献   

2.
Understanding how human organs respond to ionizing radiation (IR) at a systems biology level and identifying biomarkers for IR exposure at low doses can help provide a scientific basis for establishing radiation protection standards. Little is known regarding the physiological responses to low dose IR at the metabolite level, which represents the end-point of biochemical processes inside cells. Using a full thickness human skin tissue model and GC-MS-based metabolomic analysis, we examined the metabolic perturbations at three time points (3, 24 and 48 h) after exposure to 3, 10 and 200 cGy of X-rays. PLS-DA score plots revealed dose- and time-dependent clustering between sham and irradiated groups. Importantly, delayed metabolic responses were observed at low dose IR. When compared with the high dose at 200 cGy, a comparable number of significantly changed metabolites were detected 48 h after exposure to low doses (3 and 10 cGy) of irradiation. Biochemical pathway analysis showed perturbations to DNA/RNA damage and repair, lipid and energy metabolisms, even at low doses of IR.  相似文献   

3.
Fibroblast growth factor-2 (FGF2) is produced and released by endothelial cells and binds to heparan sulfate proteoglycans in the endothelial basement membrane (BM), an important FGF2 storage reservoir. Experimental and computational models of FGF2 binding kinetics to both cells and BM under static conditions are well established in the literature but remain largely unexplored under flow. We now examine BM-FGF2 binding kinetics in fluid flow conditions. We hypothesized that FGF2 binding to the endothelial BM would decrease as fluid shear stress increased. To investigate this, BM-FGF2 equilibrium, associative, and dissociative bindings were measured at various shear stresses. Surprisingly, FGF2 binding increased up to a physiological arterial shear stress of 25 dynes/cm2, after which it decreased to a level similar to the 1 dyne/cm2 condition. Both BM-FGF2 dissociation and BM binding site availability increased with flow, while association remained constant. This suggests that force-dependent FGF2 equilibrium binding varies with shear stress due to a combination of an increase in binding site availability and FGF2 dissociation with flow. This improved understanding of BM-FGF2 binding with flow enriches current knowledge of FGF2 binding kinetics under physiologic conditions, which may contribute to improved growth factor therapy development.  相似文献   

4.
5.
The arrangement of the human telomeric quadruplex in physiologically relevant conditions has not yet been unambiguously determined. Our spectroscopic results suggest that the core quadruplex sequence G3(TTAG3)3 forms an antiparallel quadruplex of the same basket type in solution containing either K+ or Na+ ions. Analogous sequences extended by flanking nucleotides form a mixture of the antiparallel and hybrid (3 + 1) quadruplexes in K+-containing solutions. We, however, show that long telomeric DNA behaves in the same way as the basic G3(TTAG3)3 motif. Both G3(TTAG3)3 and long telomeric DNA are also able to adopt the (3 + 1) quadruplex structure: Molecular crowding conditions, simulated here by ethanol, induced a slow transition of the K+-stabilized quadruplex into the hybrid quadruplex structure and then into a parallel quadruplex arrangement at increased temperatures. Most importantly, we demonstrate that the same transitions can be induced even in aqueous, K+-containing solution by increasing the DNA concentration. This is why distinct quadruplex structures were detected for AG3(TTAG3)3 by X-ray, nuclear magnetic resonance and circular dichrosim spectroscopy: Depending on DNA concentration, the human telomeric DNA can adopt the antiparallel quadruplex, the (3 + 1) structure, or the parallel quadruplex in physiologically relevant concentrations of K+ ions.  相似文献   

6.
7.
An estimated 65% of infective diseases are associated with the presence of bacterial biofilms. Biofilm-issued planktonic cells promote blood-borne, secondary sites of infection by the inoculation of the infected sites with bacteria from the intravascular space. To investigate the potential role of early detachment events in initiating secondary infections, we studied the phenotypic attributes of Staphylococcus aureus planktonic cells eroding from biofilms with respect to expression of the collagen adhesin, CNA. The collagen-binding abilities of S. aureus have been correlated to the development of osteomyelitis and septic arthritis. In this study, we focused on the impact of CNA expression on S. aureus adhesion to immobilized collagen in vitro under physiologically relevant shear forces. In contrast to the growth phase-dependent adhesion properties characteristic of S. aureus cells grown in suspension, eroding planktonic cells expressed invariant and lower effective adhesion rates regardless of the age of the biofilm from which they originated. These results correlated directly with the surface expression level of CNA. However, subsequent analysis revealed no qualitative differences between biofilms initiated with suspension cells and secondary biofilms initiated with biofilm-shed planktonic cells. Taken together, our findings suggest that, despite their low levels of CNA expression, S. aureus planktonic cells shed from biofilms retain the capacity for metastatic spread and the initiation of secondary infection. These findings demonstrate the need for a better understanding of the phenotypic properties of eroding planktonic cells, which could lead to new therapeutic strategies to target secondary infections.  相似文献   

8.
This study presents an in vitro experimental method to determine shear properties of the epidermis. Shear tests were performed with a parallel plate rheometer on samples of stratum corneum and the viable epidermis. The method was validated on very thin silicon sheets. Preliminary test were performed to determine the linear viscoelastic range, the effect of normal loading on the sample and the time to reach equilibrium after changes of temperature and relative humidity. The study shows that reproducible results can be obtained for the shear properties of epidermis in an in vitro set up. The dynamic shear modulus for stratum corneum ranges from about 4-12 kPa, decreasing with increasing relative humidity. The values are considerably lower than the shear modulus value based on tensile Young's moduli in the literature, indicating a considerable anisotropic material behavior. Results for the epidermis were of the same order of magnitude, but were less consistent possibly due to a less well-defined tissue composition.  相似文献   

9.
Receptor ligand-induced turnover of plasma membrane phosphatidylinositol (PI) has been implicated as part of a membrane receptor signal transduction system in a number of mammalian cell types. Signaling through B-lymphocyte surface immunoglobulin (sIg2) has been explored polyclonally through the use of anti-Ig reagents, with the assumption that anti-Ig mimics the process of antigen binding to the antigen-specific cell. We have utilized a method of obtaining trinitrophenyl (TNP)-specific populations of B lymphocytes in order to determine if antigen binding to these antigen-specific cells initiates PI turnover. This method has allowed us to explore the membrane phospholipid events following antigen binding directly, rather than with inference from the anti-Ig system. We have found that both thymus-dependent and thymus-independent antigens (with the exception of TNP-lipopolysaccharide) produced an increase in PI turnover comparable to that generated by anti-IgM stimulation. The lack of increased PI turnover following TNP-LPS stimulation may be attributable to the action of LPS on the biochemical events of the PI cycle. In a B-cell subpopulation depleted of antigen-specific cells, only anti-IgM produced a PI effect. These results represent the first demonstration of PI turnover as an early activation event in a physiologically relevant lymphocyte system.  相似文献   

10.
In the early stage of human evolution, as the hominids began to inhabit the savanna mosaic in Africa some three or four million years ago, a functional complex of skin features contributed to their effective exploitation of resources and survival in the new environment. Thermal radiation from the sun combined with internally generated heat from muscular effort posed problems of thermoregulation. As a mechanism for dissipating body heat and maintaining brain temperature, eccrine sweat glands throughout the body surface combined with reduction in body hair enhanced the evaporative cooling effects of sweating. As body hair diminished, deeply pigmented skin was selected for as a protection against harmful ultraviolet radiation. When human populations left the equatorial regions of Africa, the adaptive significance of deeply pigmented skin may have shifted in response to other factors, such as latitude, diet and cultural pratices. We view the structure and function of human skin within a comparative and evolutionary framework that focuses on the environment in which the hominids evolved.  相似文献   

11.
Park JY  Yoo SJ  Patel L  Lee SH  Lee SH 《Biorheology》2010,47(3-4):165-178
Slow interstitial flow can lead to large changes in cell morphology. Since conventional biological assays are adapted to two-dimensional culture protocols, there is a need to develop a microfluidic system that can generate physiological levels of interstitial flow. Here we developed a system that uses a passive osmotic pumping mechanism to generate sustained and steady interstitial flows for two-dimensional cultures. Two different cell types, fibroblasts and mesenchymal stem cells, were selected because they are generally exposed to interstitial flow. To quantify the cellular response to interstitial shear flow in terms of proliferation and alignment, 4 rates of flow were applied. We found that the proliferation rate of fibroblasts varied linearly with wall shear stress. In addition, alignment of fibroblast cells depended linearly on the magnitude of the shear stress, whereas mesenchymal stem cells were aligned regardless of the magnitude of shear stress. This suggested that mesenchymal stem cells are very sensitive to shear stresses, even at levels generated by interstitial flow. The results presented here emphasize the need to consider the mechanosensitivity and the natural role of different cell types when evaluating their responses to fluid flow.  相似文献   

12.
The cornea is a highly specialized transparent tissue which covers the front of the eye. It is a tough tissue responsible for refracting the light and protecting the sensitive internal contents of the eye. The biomechanical properties of the cornea are primarily derived from its extracellular matrix, the stroma. The majority of previous studies have used strip tensile and pressure inflation testing methods to determine material parameters of the corneal stroma. Since these techniques do not allow measurements of the shear properties, there is little information available on transverse shear modulus of the cornea. The primary objectives of the present study were to determine the viscoelastic behavior of the corneal stroma in shear and to investigate the effects of the compressive strain. A thorough knowledge of the shear properties is required for developing better material models for corneal biomechanics. In the present study, torsional shear experiments were conducted at different levels of compressive strain (0–30%) on porcine corneal buttons. First, the range of linear viscoelasticity was determined from strain sweep experiments. Then, frequency sweep experiments with a shear strain amplitude of 0.2% (which was within the region of linear viscoelasticity) were performed. The corneal stroma exhibited viscoelastic properties in shear. The shear storage modulus, G′, and shear loss modulus, G″, were reported as a function of tissue compression. It was found that although both of these parameters were dependent on frequency, shear strain amplitude, and compressive strain, the average shear storage and loss moduli varied from 2 to 8 kPa, and 0.3 to 1.2 kPa, respectively. Therefore, it can be concluded that the transverse shear modulus is of the same order of magnitude as the out-of-plane Young's modulus and is about three orders of magnitude lower than the in-plane Young's modulus.  相似文献   

13.
Human retinol dehydrogenase 10 (RDH10) was implicated in the oxidation of all-trans-retinol for biosynthesis of all-trans-retinoic acid, however, initial assays suggested that RDH10 prefers NADP(+) as a cofactor, undermining its role as an oxidative enzyme. Here, we present evidence that RDH10 is, in fact, a strictly NAD(+)-dependent enzyme with multisubstrate specificity that recognizes cis-retinols as well as all-trans-retinol as substrates. RDH10 has a relatively high apparent K(m) value for NAD(+) (~100 microm) but the lowest apparent K(m) value for all-trans-retinol (~0.035 microm) among all NAD(+)-dependent retinoid oxidoreductases. Due to its high affinity for all-trans-retinol, RDH10 exhibits a greater rate of retinol oxidation in the presence of cellular retinol-binding protein type I (CRBPI) than human microsomal RoDH4, but like RoDH4, RDH10 does not recognize retinol bound to CRBPI as a substrate. Consistent with its preference for NAD(+), RDH10 functions exclusively in the oxidative direction in the cells, increasing the levels of retinaldehyde and retinoic acid. Targeted small interfering RNA-mediated silencing of endogenous RDH10 or RoDH4 expression in human cells results in a significant decrease in retinoic acid production from retinol, identifying both human enzymes as physiologically relevant retinol dehydrogenases. The dual cis/trans substrate specificity suggests a dual physiological role for RDH10: in the biosynthesis of 11-cis-retinaldehyde for vision as well as the biosynthesis of all-trans-retinoic acid for differentiation and development.  相似文献   

14.
Natural Abs represent the indigenous immune repertoire and are thus present at birth and persist throughout life. Previously, human autoantibodies to the alpha domain of the high-affinity IgE receptor (FcepsilonRIalpha) have been isolated from Ab libraries derived from normal donors and patients with chronic urticaria. To investigate whether these anti-FcepsilonRIalpha Abs are present in the germline repertoire, we constructed a phage Fab display library from human cord blood, which represents the naive immune repertoire before exposure to exogenous Ags. All isolated clones specific to the FcepsilonRIalpha had the same sequence. This single IgM Ab, named CBMalpha8, was strictly in germline configuration and had high affinity and functional in vitro anaphylactogenic activity. Inhibition experiments indicated an overlapping epitope on the FcepsilonRIalpha recognized by both CBMalpha8 and the previously isolated anti-FcepsilonRIalpha Abs from autoimmune and healthy donors. This common epitope on FcepsilonRIalpha coincides with the binding site for IgE. Affinity measurements demonstrated the presence of Abs showing CBMalpha8-like specificity, but with a significantly lower affinity in i.v. Ig, a therapeutic multidonor IgG preparation. We propose a hypothesis of escape mutants, whereby the resulting lower affinity IgG anti-FcepsilonRIalpha Abs are rendered less likely to compete with IgE for binding to FcepsilonRIalpha.  相似文献   

15.
16.
17.
Plant roots generate electrical fields in the rhizosphere as a consequence of their ion transport activities. We show here that zoospores of the plant pathogen Phytophthora palmivora exhibit anodal electrotaxis in electrical fields ≥0.5 V m−1 comparable in size to the physiological fields around roots. An experimental protocol for applying weak electrical fields and quantifying electrotaxis is described. In this system, zoospore suspensions are isolated from the electrodes and their products using agarose bridges. Therefore, electrotaxis was not due to movement or trapping of zoospores in chemical, oxygen, pH or inhibitor gradients established by electrolysis. The electrophoretic and electroosmotic mobilities of encysted zoospores were measured. These forces did not influence the distribution of zoospores in electrotactic experiments at physiological field strengths. The electrotactic response saturated at fields above 10 V m−1 was inhibited in media of osmotic strength below 400 Osmol m−3, was maximal at pH 7.5 and increased at high zoospore densities. These data suggest that electrotaxis may be a useful adjunct to chemotaxis in root targeting by zoospores.  相似文献   

18.
Arabidopsis thaliana is frequently grown on semisolid medium in Petri dishes, for various experiments that usually consist of two stages on two distinct growth media. Seedlings are germinated under favorable conditions followed by their transfer to another medium containing the given treatment(s). This often causes secondary effects on seedlings due to root shock, or direct and unavoidable contact of the shoot with the second medium. We have developed a simple and efficient method for the transfer of seedlings grown on semisolid medium with minimal damage. In this double-agar-layer method, seeds are germinated on a thin growth-medium-containing agar layer. Subsequently, medium blocks containing the embedded seedlings are excised and placed on the second semisolid medium supplemented with the treatment agent. Differential agar concentrations allow easy penetration of the roots into the second medium, but do not allow the shoots to come into contact with it. This unique method offers several advantages over others that are in common use, in which the seedlings are individually transferred to the second medium or alternatively grown on transfer-carrier matrices, such as filter paper, mesh and cellophane. In the presented method, the entire root system faces the growth medium, the shoots are surrounded by air at all growth stages and transfer of the seedlings is much easier. In addition, a large number of seedlings can be transferred in a single step, without stressing the plants or damaging the delicate root system. This method can also be applied to other plant species grown on semisolid media.  相似文献   

19.
20.
Previous studies raised the possibility that nitric oxide synthase is present in heart mitochondria (mtNOS) and the existence of such an enzyme became generally accepted. However, original experimental evidence is rather scarce and positive identification of the enzyme is lacking. We aimed to detect an NOS protein in human and mouse heart mitochondria and to measure the level of NO released from the organelles. Western blotting with 7 different anti-NOS antibodies failed to detect a NOS-like protein in mitochondria. Immunoprecipitation or substrate-affinity purification of the samples concentrated NOS in control preparations but not in mitochondria. Release of NO from live respiring human mitochondria was below 2 ppb after 45 min of incubation. In a bioassay system, mitochondrial suspension failed to cause vasodilation of human mammary artery segments. These results indicate that mitochondria do not produce physiologically relevant quantities of NO in the heart and are unlikely to have any physiological importance as NO donors, nor do they contain a recognizable mtNOS enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号