首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ARF tumor suppressor protein stabilizes p53 by antagonizing its negative regulator, Mdm2 (Hdm2 in humans). Both mouse p19(ARF) and human p14(ARF) bind to the central region of Mdm2 (residues 210 to 304), a segment that does not overlap with its N-terminal p53-binding domain, nuclear import or export signals, or C-terminal RING domain required for Mdm2 E3 ubiquitin ligase activity. The N-terminal 37 amino acids of mouse p19(ARF) are necessary and sufficient for binding to Mdm2, localization of Mdm2 to nucleoli, and p53-dependent cell cycle arrest. Although a nucleolar localization signal (NrLS) maps within a different segment (residues 82 to 101) of the human p14(ARF) protein, binding to Mdm2 and nucleolar import of ARF-Mdm2 complexes are both required for cell cycle arrest induced by either the mouse or human ARF proteins. Because many codons of mouse ARF mRNA are not recognized by the most abundant bacterial tRNAs, we synthesized ARF minigenes containing preferred bacterial codons. Using bacterially produced ARF polypeptides and chemically synthesized peptides conjugated to Sepharose, residues 1 to 14 and 26 to 37 of mouse p19(ARF) were found to interact independently and cooperatively with Mdm2, while residues 15 to 25 were dispensable for binding. Paradoxically, residues 26 to 37 of mouse p19(ARF) are also essential for ARF nucleolar localization in the absence of Mdm2. However, the mobilization of the p19(ARF)-Mdm2 complex into nucleoli also requires a cryptic NrLS within the Mdm2 C-terminal RING domain. The Mdm2 NrLS is unmasked upon ARF binding, and its deletion prevents import of the ARF-Mdm2 complex into nucleoli. Collectively, the results suggest that ARF binding to Mdm2 induces a conformational change that facilitates nucleolar import of the ARF-Mdm2 complex and p53-dependent cell cycle arrest. Hence, the ARF-Mdm2 interaction can be viewed as bidirectional, with each protein being capable of regulating the subnuclear localization of the other.  相似文献   

2.
Nucleophosmin (B23) targets ARF to nucleoli and inhibits its function   总被引:15,自引:0,他引:15       下载免费PDF全文
The ARF tumor suppressor is a nucleolar protein that activates p53-dependent checkpoints by binding Mdm2, a p53 antagonist. Despite persuasive evidence that ARF can bind and inactivate Mdm2 in the nucleoplasm, the prevailing view is that ARF exerts its growth-inhibitory activities from within the nucleolus. We suggest ARF primarily functions outside the nucleolus and provide evidence that it is sequestered and held inactive in that compartment by a nucleolar phosphoprotein, nucleophosmin (NPM). Most cellular ARF is bound to NPM regardless of whether cells are proliferating or growth arrested, indicating that ARF-NPM association does not correlate with growth suppression. Notably, ARF binds NPM through the same domains that mediate nucleolar localization and Mdm2 binding, suggesting that NPM could control ARF localization and compete with Mdm2 for ARF association. Indeed, NPM knockdown markedly enhanced ARF-Mdm2 association and diminished ARF nucleolar localization. Those events correlated with greater ARF-mediated growth suppression and p53 activation. Conversely, NPM overexpression antagonized ARF function while increasing its nucleolar localization. These data suggest that NPM inhibits ARF's p53-dependent activity by targeting it to nucleoli and impairing ARF-Mdm2 association.  相似文献   

3.
Nucleolar Arf tumor suppressor inhibits ribosomal RNA processing   总被引:9,自引:0,他引:9  
The p19(Arf) tumor suppressor, a nucleolar protein, binds to Mdm2 to induce p53-dependent cell cycle arrest. Arf also prevents the proliferation of cells lacking Mdm2 and p53, albeit less efficiently. We show that p19(Arf) inhibits production of ribosomal RNA, retarding processing of 47/45S and 32S precursors. These effects correlate with but do not strictly depend upon inhibition of rRNA biosynthesis or cell cycle arrest, are not mimicked by p53, and require neither p53 nor Mdm2. Arf mutants lacking conserved amino acid residues 2-14 do not block rRNA synthesis and processing or inhibit cell proliferation. Evolution may have linked a primordial nucleolar Arf function to Mdm2 and p53, creating a more efficient checkpoint-signaling pathway for coordinating ribosomal biogenesis and cell cycle progression.  相似文献   

4.
The ARF tumor suppressor is widely regarded as an upstream activator of p53-dependent growth arrest and apoptosis. However, recent findings indicate that ARF can also regulate the cell cycle in the absence of p53. In search of p53-independent ARF targets, we isolated nucleophosmin (NPM/B23), a protein we show is required for proliferation, as a novel ARF binding protein. In response to hyperproliferative signals, ARF is upregulated, resulting in the nucleolar retention of NPM and concomitant cell cycle arrest. The Mdm2 oncogene outcompetes NPM/B23 for ARF binding, and introduction of Mdm2 reverses ARF's p53-independent properties: in vitro, NPM is released from ARF-containing protein complexes, and in vivo S phase progression ensues. ARF induction by oncogenes or replicative senescence does not alter NPM/B23 protein levels but rather prevents its nucleocytoplasmic shuttling without inhibiting rRNA processing. By actively sequestering NPM in the nucleolus, ARF utilizes an additional mechanism of tumor suppression, one that is readily antagonized by Mdm2.  相似文献   

5.
The RING domain of Mdm2 contains a conserved Walker A or P loop motif that is a characteristic of nucleotide binding proteins. We found that Mdm2 binds adenine-containing nucleotides preferentially and that nucleotide binding leads to a conformational change in the Mdm2 C terminus. Although nucleotide binding is not required for Mdm2 E3 ubiquitin ligase activity, we show that nucleotide binding-defective P loop mutants are impaired in p14(ARF)-independent nucleolar localization both in vivo and in vitro. Consistent with this, ATP-bound Mdm2 is preferentially localized to the nucleolus. Indeed, we identify a unique amino acid substitution in the P loop motif (K454A) that uncouples nucleolar localization and E3 ubiquitin ligase activity of Mdm2 and leads to upregulation of the E3 activity both in human cells and in Caenorhabditis elegans. We propose that nucleotide binding-facilitated nucleolar localization of Mdm2 is an evolutionarily conserved regulator of Mdm2 activity.  相似文献   

6.
7.
Cyclin G1 is a p53-responsive gene that is induced in alternative reading frame (ARF)-arrested cells, yet its role in growth control is unclear. We tested its effects on growth and involvement in the ARF-Mdm2-p53 tumor suppressor pathway. We show that cyclin G1 interacts with ARF, Mdm2, and p53 in vitro and in vivo. At high levels, cyclin G1 induces a G(1)-phase arrest in mammalian cells that coincides with p53 activation. Conversely, lower levels of cyclin G1 lack intrinsic growth inhibitory effects yet potentiate ARF-mediated growth arrest. Notably, cyclin G1 is down-regulated by Mdm2 through proteasome-mediated degradation. These data suggest that cyclin G1 is a positive feedback regulator of p53 whose expression is restrained by Mdm2. Interestingly, growth inhibition by cyclin G1 does not require p53 but instead exhibits partial retinoblastoma protein (pRb) dependence. These findings reveal that cyclin G1 has growth inhibitory activity that is mechanistically linked to ARF-p53 and pRb tumor suppressor pathways.  相似文献   

8.
P14ARF promotes accumulation of SUMO-1 conjugated (H)Mdm2   总被引:7,自引:0,他引:7  
p14ARF tumour suppressor stabilises and activates p53 by directly interacting with (H)Mdm2 [(human) murine double minute 2 homologue] and inhibiting its E3 ubiquitin ligase activity. Here we demonstrate that p14ARF promotes accumulation of (H)Mdm2 conjugated to the small ubiquitin-like protein SUMO-1. Mutational analysis demonstrated that the N-terminus of Mdm2 is a target for p14ARF-mediated SUMO conjugation. SUMO modification requires residues 2-14 in p14ARF that interact with (H)Mdm2 and residues 82-101 in exon 2 involved in nucleolar localisation of p14ARF. These data suggest a novel role for p14ARF as a regulator of activity of (H)Mdm2, which could be related to its tumour suppressing activities.  相似文献   

9.
We have demonstrated previously that the oncoprotein Mdm2 has a ubiquitin ligase activity for the tumor suppressor p53 protein. In the present study, we characterize this ubiquitin ligase activity of Mdm2. We first demonstrate the ubiquitination of several p53 point mutants and deletion mutants by Mdm2. The point mutants, which cannot bind to Mdm2, are not ubiquitinated by Mdm2. The ubiquitination of the C-terminal deletion mutants, which contain so-called Mdm2-binding sites, is markedly decreased, compared with that of wild-type p53. The binding of Mdm2 to p53 is essential for ubiquitination, but p53's tertiary structure and/or C-terminal region may also be important for this reaction. DNA-dependent protein kinase is known to phosphorylate p53 on Mdm2-binding sites, where DNA damage induces phosphorylation, and p53 phosphorylated by this kinase is not a good substrate for Mdm2. This suggests that DNA damage-induced phosphorylation stabilizes p53 by inhibiting its ubiquitination by Mdm2. We further investigated whether the tumor suppressor p19(ARF) affects the ubiquitin ligase activity of Mdm2 for p53. The activity of p19(ARF)-bound Mdm2 was found to be lower than that of free Mdm2, suggesting that p19(ARF) promotes the stabilization of p53 by inactivating Mdm2.  相似文献   

10.
MdmX binding to ARF affects Mdm2 protein stability and p53 transactivation   总被引:4,自引:0,他引:4  
Regulation of p53 involves a complex network of protein interactions. The primary regulator of p53 protein stability is the Mdm2 protein. ARF and MdmX are two proteins that have recently been shown to inhibit Mdm2-mediated degradation of p53 via distinct associations with Mdm2. We demonstrate here that ARF is capable of interacting with MdmX and in a manner similar to its association with Mdm2, sequestering MdmX within the nucleolus. The sequestration of MdmX by ARF results in an increase in p53 transactivation. In addition, the redistribution of MdmX by ARF requires that a nucleolar localization signal be present on MdmX. Although expression of either MdmX or ARF leads to Mdm2 stabilization, coexpression of both MdmX and ARF results in a decrease in Mdm2 protein levels. Similarly, increasing ARF protein levels in the presence of constant MdmX and Mdm2 leads to a dose-dependent decrease in Mdm2 levels. Under these conditions, ARF can synergistically reverse the ability of Mdm2 and MdmX to inhibit p53-dependent transactivation. Finally, the association and redistribution of MdmX by ARF has no effect on the protein stability of either ARF or MdmX. Taken together, these results demonstrate that the interaction between MdmX and ARF represents a novel pathway for regulating Mdm2 protein levels. Additionally, both MdmX and Mdm2, either individually or together, are capable of antagonizing the effects of the ARF tumor suppressor on p53 activity.  相似文献   

11.
p53-independent apoptosis is induced by the p19ARF tumor suppressor   总被引:6,自引:0,他引:6  
p19(ARF) is a potent tumor suppressor. By inactivating Mdm2, p19(ARF) upregulates p53 activities to induce cell cycle arrest and sensitize cells to apoptosis in the presence of collateral signals. It has also been demonstrated that cell cycle arrest is induced by overexpressed p19(ARF) in p53-deficient mouse embryonic fibroblasts, only in the absence of the Mdm2 gene. Here, we show that apoptosis can be induced without additional apoptosis signals by expression of p19(ARF) using an adenovirus-mediated expression system in p53-intact cell lines as well as p53-deficient cell lines. Also, in primary mouse embryonic fibroblasts (MEFs) lacking p53/ARF, p53-independent apoptosis is induced irrespective of Mdm2 status by expression of p19(ARF). In agreement, p19(ARF)-mediated apoptosis in U2OS cells, but not in Saos2 cells, was attenuated by coexpression of Mdm2. We thus conclude that there is a p53-independent pathway for p19(ARF)-induced apoptosis that is insensitive to inhibition by Mdm2.  相似文献   

12.
13.
ARF-BP1/Mule is a critical mediator of the ARF tumor suppressor   总被引:15,自引:0,他引:15  
Chen D  Kon N  Li M  Zhang W  Qin J  Gu W 《Cell》2005,121(7):1071-1083
Although the importance of the ARF tumor suppressor in p53 regulation is well established, numerous studies indicate that ARF also suppresses cell growth in a p53/Mdm2-independent manner. To understand the mechanism of ARF-mediated tumor suppression, we identified a ubiquitin ligase, ARF-BP1, as a key factor associated with ARF in vivo. ARF-BP1 harbors a signature HECT motif, and its ubiquitin ligase activity is inhibited by ARF. Notably, inactivation of ARF-BP1, but not Mdm2, suppresses the growth of p53 null cells in a manner reminiscent of ARF induction. Surprisingly, in p53 wild-type cells, ARF-BP1 directly binds and ubiquitinates p53, and inactivation of endogenous ARF-BP1 is crucial for ARF-mediated p53 stabilization. Thus, our study modifies the current view of ARF-mediated p53 activation and reveals that ARF-BP1 is a critical mediator of both the p53-independent and p53-dependent tumor suppressor functions of ARF. As such, ARF-BP1 may serve as a potential target for therapeutic intervention in tumors regardless of p53 status.  相似文献   

14.
The p53-mediated pathway cell cycle arrest and apoptosis is central to cancer and an important point of focus for therapeutics development. The p14ARF ("ARF") tumor suppressor induces the p53 pathway in response to oncogene activation or DNA damage. However, ARF is predominantly nucleolar in localization and engages in several interactions with nucleolar proteins, whereas p53 is nucleoplasmic. This raises the question as to how ARF initiates its involvement in the p53 pathway. We have found that UV irradiation of cells disrupts the interaction of ARF with two of its nucleolar binding partners, B23(NPM, nucleophosmin, NO38, numatrin) and topoisomerase I, and promotes an immediate and transient subnuclear redistribution of ARF to the nucleoplasm, where it can engage the p53 pathway (Lee et al, Cancer Research 65:9834-42; 2005). The results support a model in which the nucleolus serves as a p53 upstream sensor of cellular stress, and add to a growing body of evidence that nucleolar sequestration of ARF prevents activation of p53. The results also have therapeutic implications for therapies based on exploiting p53 and other cellular stress response pathways to suppress cancer.  相似文献   

15.
The human INK4a gene locus encodes two structurally unrelated tumor suppressor proteins, p16(INK4a) and p14(ARF). Although primarily proposed to require a functional p53.Mdm-2 signaling axis, recently p14(ARF) has been implicated in p53-independent cell cycle regulation. Here we show that p14(ARF) preferentially induces a G(2) arrest in tumor cells lacking functional p53 and/or p21. Expression of p14(ARF) impaired mitotic entry and enforced a primarily cytoplasmic localization of p34(cdc2) that was associated with a decrease in p34(cdc2) kinase activity and reduced p34(cdc2) protein expression. A direct physical interaction between p14(ARF) and p34(cdc2) was, nevertheless, ruled out by lack of co-immunoprecipitation. The p14(ARF)-induced depletion of p34(cdc2) was associated with impaired cdc25C phosphatase expression and a prominent shift to inhibitory Tyr-15-phosphorylation in G(2)-arrested cells lacking either p53, p21, or both. Finally, reconstitution of p34(cdc2) using a constitutively active, phosphorylation-deficient p34(cdc2AF) mutant alleviated this p14(ARF)-induced G(2) arrest, thereby allowing cell cycle progression. Taken together, these data indicate that p14(ARF) arrests cells lacking functional p53/p21 in the G(2) phase of the cell cycle by targeting p34(cdc2) kinase. This may represent an important fail-safe mechanism by which p14(ARF) protects p53/p21-deficient cells from unrestrained proliferation.  相似文献   

16.
The ARF (p19ARF for the mouse ARF consisting of 169 amino acids and p14ARF for the human ARF consisting of 132 amino acids) genes upregulate p53 activities to induce cell cycle arrest and sensitize cells to apoptosis by inhibiting Mdm2 activity. p53-independent apoptosis also is induced by ectopic expression of p19ARF. We constructed various deletion mutants of p19ARF with a cre/loxP-regulated adenoviral vector to determine the regions of p19ARF which are responsible for p53-independent apoptosis. Ectopic expression of the C-terminal region (named C40) of p19ARF whose primary sequence is unique to the rodent ARF induced prominent apoptosis in p53-deficient mouse embryo fibroblasts. Relatively low-grade but significant apoptosis also was induced in p53-deficient mouse embryo fibroblasts by ectopic expression of p19ARF1-129, a p19ARF deletion mutant deficient in the C40 region. In contrast, ectopic expression of the wild-type p14ARF did not induce significant apoptosis in human cells. Taken together, we concluded that p53-independent apoptosis was mediated through multiple regions of the mouse ARF including C40, and the ability of the ARF gene to mediate p53-independent apoptosis has been not well conserved during mammalian evolution.  相似文献   

17.
The tumor suppressor ARF induces a p53-dependent and -independent cell cycle arrest. Unlike the nucleoplasmic MDM2 and p53, ARF localizes in the nucleolus. The role of ARF in the nucleolus, the molecular target, and the mechanism of its p53-independent function remains unclear. Here we show that ARF interacts with B23, a multifunctional nucleolar protein involved in ribosome biogenesis, and promotes its polyubiquitination and degradation. Overexpression of B23 induces a cell cycle arrest in normal fibroblasts, whereas in cells lacking p53 it promotes S phase entry. Conversely, knocking down B23 inhibits the processing of preribosomal RNA and induces cell death. Further, oncogenic Ras induces B23 only in ARF null cells, but not in cells that retain wild-type ARF. Together, our results reveal a molecular mechanism of ARF in regulating ribosome biogenesis and cell proliferation via inhibiting B23, and suggest a nucleolar role of ARF in surveillance of oncogenic insults.  相似文献   

18.
FAK is known as an integrin- and growth factor-associated tyrosine kinase promoting cell motility. Here we show that, during mouse development, FAK inactivation results in p53- and p21-dependent mesodermal cell growth arrest. Reconstitution of primary FAK-/-p21-/- fibroblasts revealed that FAK, in a kinase-independent manner, facilitates p53 turnover via enhanced Mdm2-dependent p53 ubiquitination. p53 inactivation by FAK required FAK FERM F1 lobe binding to p53, FERM F2 lobe-mediated nuclear localization, and FERM F3 lobe for connections to Mdm2 and proteasomal degradation. Staurosporine or loss of cell adhesion enhanced FERM-dependent FAK nuclear accumulation. In primary human cells, FAK knockdown raised p53-p21 levels and slowed cell proliferation but did not cause apoptosis. Notably, FAK knockdown plus cisplatin triggered p53-dependent cell apoptosis, which was rescued by either full-length FAK or FAK FERM re-expression. These studies define a scaffolding role for nuclear FAK in facilitating cell survival through enhanced p53 degradation under conditions of cellular stress.  相似文献   

19.
20.
It has previously been shown that anthranilamide-pyrazolo[1,5-a]pyrimidine conjugates activate p53 and cause apoptosis in cervical cancer cells such as HeLa and SiHa. Here we establish the role of these conjugates in activating p53 pathway by phosphorylation at Ser15, 20 and 46 residues and downregulate key oncogenic proteins such as MYCN and Mdm2 in IMR-32 neuroblastoma cells. Compounds decreased the proliferation rate of neuroblastoma cells such as IMR-32, Neuro-2a, SK-N-SH. Compound treatment resulted in G2/M cell cycle arrest. The expression of p53 dependent genes such as p21, Bax, caspases was increased with concomitant decrease of the survival proteins as well as anti-apoptotic proteins such as Akt1, E2F1 and Bcl2. In addition the expression of important microRNAs such as miR-34a, c, miR-200b, miR-107, miR-542-5p and miR-605 were significantly increased that eventually lead to the activation of apoptotic pathway. Our data revealed that conjugates of this nature cause cell cycle arrest and apoptosis in IMR-32 cells [MYCN (+) with intact wild-type p53] by activating p53 signalling and provides a lead for the development of anti-cancer therapeutics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号