首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Pyruvate kinases (PK, EC 2.7.1.40) from three hyperthermophilic archaea (Archaeoglobus fulgidus strain 7324, Aeropyrum pernix, and Pyrobaculum aerophilum) and from the hyperthermophilic bacterium Thermotoga maritima were compared with respect to their thermophilic, kinetic, and regulatory properties. PKs from the archaea are 200-kDa homotetramers composed of 50-kDa subunits. The enzymes required divalent cations, Mg2+ and Mn2+ being most effective, but were independent of K+. Temperature optima for activity were 85 degrees C (A. fulgidus) and above 98 degrees C (A. pernix and P. aerophilum). The PKs were highly thermostable up to 110 degrees C (A. pernix) and showed melting temperatures for thermal unfolding at 93 degrees C (A. fulgidus) or above 98 degrees C (A. pernix and P. aerophilum). All archaeal PKs exhibited sigmoidal saturation kinetics with phosphoenolpyruvate (PEP) and ADP indicating positive homotropic cooperative response with both substrates. Classic heterotropic allosteric regulators of PKs from eukarya and bacteria, e.g. fructose 1,6-bisphosphate or AMP, did not affect PK activity of hyperthermophilic archaea, suggesting the absence of heterotropic allosteric regulation. PK from the bacterium T. maritima is also a homotetramer of 50-kDa subunits. The enzyme was independent of K+ ions, had a temperature optimum of 80 degrees C, was highly thermostable up to 90 degrees C, and had a melting temperature above 98 degrees C. The enzyme showed cooperative response to PEP and ADP. In contrast to its archaeal counterparts, the T. maritima enzyme exhibited the classic allosteric response to the activator AMP and to the inhibitor ATP. Sequences of hyperthermophilic PKs showed significant similarity to characterized PKs from bacteria and eukarya. Phylogenetic analysis of PK sequences of all three domains indicates a distinct archaeal cluster that includes the PK from the hyperthermophilic bacterium T. maritima.  相似文献   

3.
The araA gene encoding L-arabinose isomerase (AI) from the hyperthermophilic bacterium Thermotoga maritima was cloned and overexpressed in Escherichia coli as a fusion protein containing a C-terminal hexahistidine sequence. This gene encodes a 497-amino-acid protein with a calculated molecular weight of 56,658. The recombinant enzyme was purified to homogeneity by heat precipitation followed by Ni(2+) affinity chromatography. The native enzyme was estimated by gel filtration chromatography to be a homotetramer with a molecular mass of 232 kDa. The purified recombinant enzyme had an isoelectric point of 5.7 and exhibited maximal activity at 90 degrees C and pH 7.5 under the assay conditions used. Its apparent K(m) values for L-arabinose and D-galactose were 31 and 60 mM, respectively; the apparent V(max) values (at 90 degrees C) were 41.3 U/mg (L-arabinose) and 8.9 U/mg (D-galactose), and the catalytic efficiencies (k(cat)/K(m)) of the enzyme were 74.8 mM(-1).min(-1) (L-arabinose) and 8.5 mM(-1).min(-1) (D-galactose). Although the T. maritima AI exhibited high levels of amino acid sequence similarity (>70%) to other heat-labile mesophilic AIs, it had greater thermostability and higher catalytic efficiency than its mesophilic counterparts at elevated temperatures. In addition, it was more thermostable in the presence of Mn(2+) and/or Co(2+) than in the absence of these ions. The enzyme carried out the isomerization of D-galactose to D-tagatose with a conversion yield of 56% for 6 h at 80 degrees C.  相似文献   

4.
The kinetic properties of purified sheep hepatic pyruvate kinase change upon storage. Assayed at 0.5 mM fructose-1,6-diphosphate and 2 mM ADP, saturation of fresh enzyme with phosphoenolpyruvate is hyperbolic, with KPEP = 0.1 mM (pH 7.5, and 30 degrees C). Under similar conditions enzyme stored at -20 degrees C for 1 week or more yields a nonlinear Lineweaver-Burk plot for PEP. The data may be accounted for by the appearance of two enzymic forms with identical turnover numbers, but different KPEP (0.035 +/- 0.005 and 12.4 +/- 0.6 mM). Storage also increases the concentration of fructose-1,6-diphosphate required for maximal activation from nanomolar to millimolar levels. Assayed at 2 mM ADP and 2 mM PEP, the apparent KFDP is 10 mM. Preincubation of stored enzyme with PEP in the presence of mercaptoethanol leads to significant reversion to original kinetic properties. Available data suggest that the storage-dependent change in kinetic behavior rises from changes in subunit conformation and not from dissociation into subunits.  相似文献   

5.
Phosphofructokinase (PFKase) was purified from an extreme thermophile. Thermus thermophilus. Allosteric natures of T. thermophilus PFKase is similar to those of Bacillus stearothermophilus PFKase, that is, hyperbolic plots of the activity versus concentration of fructose 6-phosphate (F6P) were changed into a sigmoidal shape by the addition of phosphoenolpyruvate (PEP), while further addition of ADP caused it to revert to a hyperbolic shape. The native T. thermophilus PFKase has an Mr of 148,000 consisting of four 36,500 subunits. However, it exists as a two-subunit form of Mr 74,000 in the presence of PEP. The two-subunit form was catalytically inactive. The four-subunit enzyme was regenerated by addition of either F6P or Mg.ADP, or by removal of PEP from the solution. This reversible dissociation was observed within a wide range of pH (6.5 to 8.4) and temperature (4 degrees C to 65 degrees C). Thus, unlike PFKase from other sources, the allosteric kinetics of T. thermophilus PFKase can be explained well, at least qualitatively, by the dynamic equilibrium between the active four-subunit form and inactive two-subunit form that is modulated by PEP, F6P and Mg.ADP. Parallel suppression of the PEP-induced conversion in molecular form and kinetics by high concentrations of sulfate and phosphate supports the above explanation. Also, the observation that the degree of PEP inhibition was dependent on the protein concentration of the PFKase in the assay solution is consistent with the presence of this equilibrium.  相似文献   

6.
Porins of Pseudomonas fluorescens MFO as fibronectin-binding proteins   总被引:1,自引:0,他引:1  
Gene araA encoding an L-arabinose isomerase (AraA) from the hyperthermophile, Thermotoga neapolitana 5068 was cloned, sequenced, and expressed in Escherichia coli. The gene encoded a polypeptide of 496 residues with a calculated molecular mass of 56677 Da. The deduced amino acid sequence has 94.8% identical amino acids compared with the residues in a putative L-arabinose isomerase of Thermotoga maritima. The recombinant enzyme expressed in E. coli was purified to homogeneity by heat treatment, ion exchange chromatography and gel filtration. The thermophilic enzyme had a maximum activity of L-arabinose isomerization and D-galactose isomerization at 85 degrees C, and required divalent cations such as Co(2+) and Mn(2+) for its activity and thermostability. The apparent K(m) values of the enzyme for L-arabinose and D-galactose were 116 mM (v(max), 119 micromol min(-1) mg(-1)) and 250 mM (v(max), 14.3 micromol min(-1) mg(-1)), respectively, that were determined in the presence of both 1 mM Co(2+) and 1 mM Mn(2+). A 68% conversion of D-galactose to D-tagatose was obtained using the recombinant enzyme at the isomerization temperature of 80 degrees C.  相似文献   

7.
The gene (open reading frame (ORF) Tm1469, glk) encoding ATP-dependent ROK (repressors, ORFs, sugar kinases) glucokinase (ATP-GLK, EC 2.7.1.2) of the hyperthermophilic bacterium Thermotoga maritima was cloned and functionally expressed in Escherichia coli. The purified recombinant enzyme is a homodimer with an apparent molecular mass of 80 kDa composed of 36-kDa subunits. Rate dependence (at 80 degrees C) on glucose and ATP followed Michaelis-Menten kinetics with apparent Km values of 1.0 and 0.36 mM, respectively; apparent Vmax values were about 370 U mg(-1). The enzyme was highly specific for glucose as phosphoryl acceptor. Besides glucose only 2-deoxyglucose was phosphorylated to some extent, whereas mannose and fructose were not used. With a temperature optimum of 93 degrees C the enzyme is the most thermoactive bacterial ATP-GLK described.  相似文献   

8.
Xue Y  Shao W 《Biotechnology letters》2004,26(19):1511-1515
A thermostable beta-xylosidase from a hyperthermophilic bacterium, Thermotoga maritima, was over-expressed in Escherichia coli using the T7 polymerase expression system. The expressed beta-xylosidase was purified in two steps, heat treatment and immobilized metal affinity chromatography, and gave a single band on SDS-PAGE. The maximum activity on p-nitrophenyl beta-D-xylopyranoside was at 90 degrees C and pH 6.1. The purified enzyme had a half-life of over 22-min at 95 degrees C, and retained over 57% of its activity after holding a pH ranging from 5.4 to 8.5 for 1 h at 80 degrees C. Among all tested substrates, the purified enzyme had specific activities of 275, 50 and 29 U mg(-1) on pNPX, pNPAF, and pNPG, respectively. The apparent Michaelis constant of the beta-xylosidase was 0.13 mM for p NPX with a V (max) of 280 U mg(-1). When the purified beta-xylosidase was added to xylanase, corncob xylan was hydrolized completely to xylose.  相似文献   

9.
Mannitol dehydrogenase (MDH) was purified and characterised from Lactobacillus sanfranciscensis. Two peptide fragments of MDH were N-terminally sequenced for the first time in the genus Lactobacillus. The purified enzyme had an apparent molecular mass of 44 kDa and catalysed both the reduction of fructose to mannitol and the oxidation of mannitol to fructose. The K(m) value for the reduction reaction was 24 mM fructose and that for the oxidation 78 mM mannitol. The optimum temperature was 35 degrees C, the pH optima for the reduction or oxidation were 5.8 and 8, respectively.  相似文献   

10.
Pyrococcus furiosus uses a modified Embden-Meyerhof pathway involving two ADP-dependent kinases. Using the N-terminal amino acid sequence of the previously purified ADP-dependent glucokinase, the corresponding gene as well as a related open reading frame were detected in the genome of P. furiosus. Both genes were successfully cloned and expressed in Escherichia coli, yielding highly thermoactive ADP-dependent glucokinase and phosphofructokinase. The deduced amino acid sequences of both kinases were 21.1% identical but did not reveal significant homology with those of other known sugar kinases. The ADP-dependent phosphofructokinase was purified and characterized. The oxygen-stable protein had a native molecular mass of approximately 180 kDa and was composed of four identical 52-kDa subunits. It had a specific activity of 88 units/mg at 50 degrees C and a pH optimum of 6.5. As phosphoryl group donor, ADP could be replaced by GDP, ATP, and GTP to a limited extent. The K(m) values for fructose 6-phosphate and ADP were 2.3 and 0.11 mM, respectively. The phosphofructokinase did not catalyze the reverse reaction, nor was it regulated by any of the known allosteric modulators of ATP-dependent phosphofructokinases. ATP and AMP were identified as competitive inhibitors of the phosphofructokinase, raising the K(m) for ADP to 0.34 and 0.41 mM, respectively.  相似文献   

11.
Pyruvate kinase (ATP: pyruvate phosphotransferase (EC 2.7.1.40) was partially purified from both autotrophically and heterotrophycally grown Paracoccus denitrificans. The organism grown under heterotrophic conditions contains four times more pyruvate kinase than under autotrophic conditions. The enzyme isolated from both sources exhibited sigmoidal kinetics for both phosphoenolpyruvate (PEP) and ADP. The apparent M m for ADP and PEP in the autotrophic enzyme were 0.63 mM ADP and 0.25 mM PEP. The effect of several low molecular weight metabolites on the pyruvate kinase activity was investigated. Ribose-5-phosphate, glucose-6-phosphate and AMP stimulated the reaction at low ADP levels; this stimulation was brought about by an alteration in the apparent K m for ADP. The pyruvate kinases differ in their response to adenine nucleotides, but both preparations seem to be under adenylate control. The results are discussed in relation to the role of pyruvate kinase as a regulatory enzyme in P. denitrificans grown under both autotrophic and heterotrophic conditions.Non-Common Abbreviations PEP phosphoenolpyruvate - R-5-P ribose-5-phosphate - G-6-P glucose-6-phosphate - F-6-P fructose-6-phosphate - 3-PGA 3-phosphoglycerate  相似文献   

12.
ADP-glucose pyrophosphorylase (ADPGlc PPase, EC 2.7.7.27) from Rhodobacter sphaeroides 2.4.1 has been purified to near homogeneity. The enzyme reacted in Western blots to polyclonal antibodies raised against other bacterial ADPGlc PPases. The purified enzyme was found to be activated by fructose 6-phosphate, fructose 1,6-bisphosphate, and pyruvate and inhibited by phosphate, phosphoenolpyruvate, ADP, and pyridoxal phosphate. Kinetic studies indicate that AMP, while having little effect on kinetic parameters at pH 8 in the absence of effectors, is a specific ligand for an allosteric site(s). Treatment of the purified enzyme with the arginyl reagents 2,3-butanedione and phenylglyoxal resulted in desensitization of the enzyme to both activation and inhibition by metabolites. Phosphate, fructose 6-phosphate, and AMP were found to protect the enzyme against allosteric desensitization supportive of these metabolites interacting at common site(s) or with a common enzyme form. As a first step in cloning the gene coding for this enzyme, a polymerase chain reaction fragment was generated from genomic DNA using primers based on amino terminal sequencing data and a highly conserved region in known ADPGlc PPases. The sequence of this fragment and position of amino terminal arginines in comparison to other known ADPGlc PPases is discussed in relation to the kinetic and chemical modification data.  相似文献   

13.
Phosphoenolpyruvate (PEP) carboxylases (PC) were purified from a wild strain and an aspartate-producing mutant of Brevibacterium flavum to electrophoretic homogeneity. The molecular weights of the enzymes were determined to be 4.1 X 10(5) by the gel-filtration technique. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the enzyme gave only one protein band with a molecular weight of 1.07 X 10(5). The enzyme was labile and stabilized by substrate PEP, activators, metallic cofactors, an allosteric inhibitor and ammonium sulfate. The mechanism for the PC reaction was rapid equilibrium random Bi Bi with a dead end complex, enzyme-bicarbonate-Pi. The KmS for PEP and bicarbonate were 2.5 and 0.63 mM, respectively, and the apparent KmS were not affected by the secondary substrate concentrations. Dissociation constants for Pi of enzyme-Pi and the dead end complex were 5.0 and 16 mM, respectively. Aspartate inhibition was completely competitive with both the substrates, PEP and bicarbonate, with an inhibitor constant of 0.044 mM. An activator, acetyl-CoA, did not alter the apparent Km for bicarbonate but decreased that for PEP. The activator constants for the enzyme-PEP complex and free enzyme were 6.3 and 40 microM, respectively. Double reciprocal plots of reaction rate against PEP concentration were not linear at lower PEP concentrations. Hill coefficients for PEP were 1.6 in the absence of any effectors, 1.0 in the presence of acetyl-CoA, and 2.3 in the presence of aspartate. As to the mutant enzyme, only the inhibitor constant for aspartate was increased, being 0.18 mM, but other constants, coefficients, as described above, and specific activity were almost the same as those of the wild-type enzyme.  相似文献   

14.
Human erythrocyte phosphofructokinase was purified 150 fold by DEAE cellulose adsorption and ammonium sulfate precipitation.At pH 7,5 the enzyme exhibits allosteric kinetics with respect to ATP, fructose 6 phosphate, and Mg2+.ATP at high concentration acted as an inhibitor and ADP, 5′AMP, 3′,5′, AMP, acted as activators. Both effectors seemed to decrease the homotropic interactions beetween the fructose 6 phosphate molecules.The activators increased the affinity of phosphofructokinase for the substrate (F6P), the inhibitor decreased it.These ligands had no effect on the maximum velocity of the reaction except in the case of ADP.Interactions between the substrates and the effector ligands on the enzyme were considered in terms of the Monod - Changeux - Wyman model for allosteric proteins.With GTP and ITP, no inhibition was observed. At saturing concentration of GTP, ATP still inhibited phosphofructokinase.Both 3′5′ AMP and fructose 6 phosphate increased the concentration of ATP required to produce an inhibition of 50 %.Citrate, like ATP, inhibited phosphofructokinase by binding most likely at the same allosteric site. Erythrocyte phosphofructokinase is inhibited by 2–3 DPG.The study of the relation log V max = f (pH) suggested, that the active center contains at least one imidazole and one sulfhydryl group.  相似文献   

15.
1. Pyruvate kinase type M1 was purified from bovine brain about 241-fold with 38% yield. 2. Specific activity of the enzyme was above 217 U/mg of protein (25 degrees C), relative mol. wt of the subunit--57,000 (+/- 2000) and pH optimum--6.8-7.2. 3. The enzyme shoved hyperbolic kinetics with Km value for PEP of 0.04 mM and for ADP of 0.3 mM. 4. Inorganic phosphate and ATP at concentrations below 4 mM showed activating effect, 1-phenylalanine and ATP above 6 mM--an inhibiting effect on the enzyme. 5. Inhibition by 1-phenylalanine was prevented by fructose-1,6-bisphosphate.  相似文献   

16.
A cDNA clone encoding pyruvate kinase (PK) was isolated from a skeletal muscle cDNA library of globefish (Fugu rubripes), which is a kind of lower vertebrate. The full-length cDNA of globefish skeletal muscle pyruvate kinase (FM-PK) is approximately 2 kb and encodes a protein comprising 530 amino acids. The FM-PK gene is spanning approximately 4.8 kb and consists of 11 exons. FM-PK mRNA was detected in muscle and heart using Northern blots. The recombinant FM-PK (rFM-PK) was expressed in a baculovirus-insect cell system and purified using ion-exchange chromatography. The purified rFM-PK was shown to exist a 230 kDa homotetramer composed of 57 kDa subunits. Gel filtration showed 230000 as the tetramer of the subunit. The apparent K(m) (or S(0.5)) and the Hill coefficient for phosphoenolpyruvate (PEP) and ADP are 0.14 mM, 1.3 and 0.30 mM 0.98 at pH 7.4, respectively, when the enzyme is saturated with the second substrate. The rFM-PK is strongly activated by fructose-1,6-bisphosphate, the apparent K(m) for PEP changes to 0.059 mM and the Hill coefficient to 1.1. ATP, which is the product of the enzyme reaction, inhibits activity. This is the first report to show the full-length cDNA and amino acid sequence of PK for a species of fish.  相似文献   

17.
The kinetic properties of cytosolic pyruvate kinase (PKc) from germinating castor oil seeds (COS) have been investigated. From experiments in which the free Mg2+ concentration was varied at constant levels of either the complexed or free forms of the substrates it was determined that the true substrates are the free forms of both phosphoenolpyruvate (PEP) and ADP. This conclusion is corroborated by the quenching of intrinsic PKC tryptophan fluorescence by free PEP and ADP. Mg2+ is bound as the free bivalent cation but is likely released as MgATP. The fluorescence data, substrate interaction kinetics, and pattern of inhibition by products and substrate analogues (adenosine 5'-O-(2-thiodiphosphate) for ADP and phenyl phosphate for PEP) are compatible with a sequential, compulsory-ordered, Tri-Bi type kinetic reaction mechanism. PEP is the leading substrate, and pyruvate the last product to abandon the enzyme. The dissociation constant and limiting Km for free PEP (8.2 to 22 and 38 microM, respectively) and the limiting Km for free ADP (2.9 microM) are considerably lower than those reported for the non-plant enzyme. The results indicate that COS PKc exists naturally in an activated state, similar to the fructose 1,6-bisphosphate-activated yeast enzyme. This deduction is consistent with a previous study (F.E. Podestá and W.C. Plaxton (1991) Biochem. J. 279, 495-501) that failed to identify any allosteric activators for the COS PKc, but which proposed a regulatory mechanism based upon ATP levels and pH-dependent alterations in the enzyme's response to various metabolite inhibitors. As plant phosphofructokinases display potent inhibition by PEP, the overall rate of glycolytic flux from hexose 6-phosphate to pyruvate in the plant cytosol will ultimately depend upon variations in PEP levels brought about by the regulation of PKc.  相似文献   

18.
Mannitol 2-dehydrogenase (MDH) catalyzes the pyridine nucleotide dependent reduction of fructose to mannitol. Lactobacillus intermedius (NRRL B-3693), a heterofermentative lactic acid bacterium (LAB), was found to be an excellent producer of mannitol. The MDH from this bacterium was purified from the cell extract to homogeneity by DEAE Bio-Gel column chromatography, gel filtration on Bio-Gel A-0.5m gel, octyl-Sepharose hydrophobic interaction chromatography, and Bio-Gel Hydroxyapatite HTP column chromatography. The purified enzyme (specific activity, 331 U/mg protein) was a heterotetrameric protein with a native molecular weight (MW) of about 170 000 and subunit MWs of 43 000 and 34 500. The isoelectric point of the enzyme was at pH 4.7. Both subunits had the same N-terminal amino acid sequence. The optimum temperature for the reductive action of the purified MDH was at 35 degrees C with 44% activity at 50 degrees C and only 15% activity at 60 degrees C. The enzyme was optimally active at pH 5.5 with 50% activity at pH 6.5 and only 35% activity at pH 5.0 for reduction of fructose. The optimum pH for the oxidation of mannitol to fructose was 7.0. The purified enzyme was quite stable at pH 4.5-8.0 and temperature up to 35 degrees C. The K(m) and V(max) values of the enzyme for the reduction of fructose to mannitol were 20 mM and 396 micromol/min/mg protein, respectively. It did not have any reductive activity on glucose, xylose, and arabinose. The activity of the enzyme on fructose was 4.27 times greater with NADPH than NADH as cofactor. This is the first highly NADPH-dependent MDH (EC 1.1.1.138) from a LAB. Comparative properties of the enzyme with other microbial MDHs are presented.  相似文献   

19.
Two novel procedures have been used to regulate, in vivo, the formation of phosphoenolpyruvate (PEP) from glycolysis in Streptococcus lactis ML3. In the first procedure, glucose metabolism was specifically inhibited by p-chloromercuribenzoate. Autoradiographic and enzymatic analyses showed that the cells contained glucose 6-phosphate, fructose 6-phosphate, fructose-1,6-diphosphate, and triose phosphates.Dithiothreitol reversed the p-chloromercuribenzoate inhibition, and these intermediates were rapidly and quantitatively transformed into 3- and 2-phosphoglycerates plus PEP. The three intermediates were not further metabolized and constituted the intracellular PEP potential. The second procedure simply involved starvation of the organisms. The starved cells were devoid of glucose 6-phosphate, fructose 6-phosphate, fructose- 1,6-diphosphate, and triose phosphates but contained high levels of 3- and 2-phosphoglycerates and PEP (ca. 40 mM in total). The capacity to regulate PEP formation in vivo permitted the characterization of glucose and lactose phosphotransferase systems in physiologically intact cells. Evidence has been obtained for "feed forward" activation of pyruvate kinase in vivo by phosphorylated intermediates formed before the glyceraldehyde-3-phosphate dehydrogenase reaction in the glycolytic sequence. The data suggest that pyruvate kinase (an allosteric enzyme) plays a key role in the regulation of glycolysis and phosphotransferase system functions in S. lactis ML3.  相似文献   

20.
Phosphate acetyltransferase (PTA) and acetate kinase (AK) of the hyperthermophilic eubacterium Thermotoga maritima have been purified 1,500- and 250-fold, respectively, to apparent homogeneity. PTA had an apparent molecular mass of 170 kDa and was composed of one subunit with a molecular mass of 34 kDa, suggesting a homotetramer (alpha4) structure. The N-terminal amino acid sequence showed significant identity to that of phosphate butyryltransferases from Clostridium acetobutylicum rather than to those of known phosphate acetyltransferases. The kinetic constants of the reversible enzyme reaction (acetyl-CoA + Pi -->/<-- acetyl phosphate + CoA) were determined at the pH optimum of pH 6.5. The apparent Km values for acetyl-CoA, Pi, acetyl phosphate, and coenzyme A (CoA) were 23, 110, 24, and 30 microM, respectively; the apparent Vmax values (at 55 degrees C) were 260 U/mg (acetyl phosphate formation) and 570 U/mg (acetyl-CoA formation). In addition to acetyl-CoA (100%), the enzyme accepted propionyl-CoA (60%) and butyryl-CoA (30%). The enzyme had a temperature optimum at 90 degrees C and was not inactivated by heat upon incubation at 80 degrees C for more than 2 h. AK had an apparent molecular mass of 90 kDa and consisted of one 44-kDa subunit, indicating a homodimer (alpha2) structure. The N-terminal amino acid sequence showed significant similarity to those of all known acetate kinases from eubacteria as well that of the archaeon Methanosarcina thermophila. The kinetic constants of the reversible enzyme reaction (acetyl phosphate + ADP -->/<-- acetate + ATP) were determined at the pH optimum of pH 7.0. The apparent Km values for acetyl phosphate, ADP, acetate, and ATP were 0.44, 3, 40, and 0.7 mM, respectively; the apparent Vmax values (at 50 degrees C) were 2,600 U/mg (acetate formation) and 1,800 U/mg (acetyl phosphate formation). AK phosphorylated propionate (54%) in addition to acetate (100%) and used GTP (100%), ITP (163%), UTP (56%), and CTP (21%) as phosphoryl donors in addition to ATP (100%). Divalent cations were required for activity, with Mn2+ and Mg2+ being most effective. The enzyme had a temperature optimum at 90 degrees C and was stabilized against heat inactivation by salts. In the presence of (NH4)2SO4 (1 M), which was most effective, the enzyme did not lose activity upon incubation at 100 degrees C for 3 h. The temperature optimum at 90 degrees C and the high thermostability of both PTA and AK are in accordance with their physiological function under hyperthermophilic conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号