首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Khurana S  George SP 《FEBS letters》2008,582(14):2128-2139
Villin is a tissue-specific actin modifying protein that is associated with actin filaments in the microvilli and terminal web of epithelial cells. It belongs to a large family of actin-binding proteins which includes actin-capping, -nucleating and/or -severing proteins such as gelsolin, severin, fragmin, adseverin/scinderin and actin crosslinking proteins such as dematin and supervillin. Studies done in epithelial cell lines and villin knock-out mice have demonstrated the function of villin in regulating actin dynamics, cell morphology, epithelial-to-mesenchymal transition, cell migration and cell survival. In addition, the ligand-binding properties of villin (F-actin, G-actin, calcium, phospholipids and phospholipase C-gamma1) are mechanistically important for the crosstalk between signaling pathways and actin reorganization in epithelial cells.  相似文献   

2.
3.
Actin and actin-binding proteins in yeast   总被引:12,自引:0,他引:12  
  相似文献   

4.
5.
Actin and actin-binding proteins in higher plants   总被引:18,自引:0,他引:18  
Summary The actin cytoskeleton is a complex and dynamic structure that participates in diverse cellular events which contribute to plant morphogenesis and development. Plant actins and associated actin-binding proteins are encoded by large, differentially expressed gene families. The complexity of these gene families is thought to have been conserved to maintain a pool of protein isovariants with unique properties, thus providing a mechanistic basis for the observed diversity of plant actin functions. Plants contain actin-binding proteins which regulate the supramolecular organization and function of the actin cytoskeleton, including monomer-binding proteins (profilin), severing and dynamizing proteins (ADF/cofilin), and side-binding proteins (fimbrin, 135-ABP/villin, 115-ABP). Although significant progress in documenting the biochemical activities of many of these classes of proteins has been made, the precise roles of actin-binding proteins in vivo awaits clarification by detailed mutational analyses.Dedicated to Professor Brian E. S. Gunning on the occasion of his 65th birthday  相似文献   

6.
Structural principles of actin-binding proteins   总被引:7,自引:0,他引:7  
  相似文献   

7.
Domain structure and organisation in extracellular matrix proteins.   总被引:8,自引:0,他引:8  
Extracellular matrix (ECM) proteins are large modular molecules built up from a limited set of modules, or domains. The basic folds of many domains have now been determined by crystallography or NMR spectroscopy. Recent structures of domain pairs and larger tandem arrays, as well as of oligomerisation domains, have begun to reveal the principles underlying the higher order architecture of ECM proteins. Structural information, coupled with site-directed mutagenesis, has been instrumental in showing how adjacent domains can co-operate in ligand binding. Very recently, the first heterotypic ECM protein complexes have become available. Here, we review the advances of the last 5 years in understanding ECM protein structure, with special emphasis on those structures that have given insight into the biological functions of ECM proteins.  相似文献   

8.
Two cDNAs encoding Myb-related proteins have been cloned from Xenopus laevis and they have been termed Xmyb1 and Xmyb2. The Xmyb1 cDNA clone codes for an open reading frame of 733 amino acids and exhibits a high degree of similarity over the entire predicted protein sequence with the human B-Myb protein. Xmyb2 is a partial cDNA clone encoding three copies of amino-terminal tandem repeat elements typical for the Myb DNA-binding domain. The predicted protein sequence is most closely related to the human A-Myb gene product. In vitro translation of two deletion mutants of Xmyb1, truncated in the 3'-portion of the open reading frame, results in protein products which cross-react with polyvalent as well as monoclonal antibodies directed against the human c-Myb protein. The same two XMyb1 proteins, which both contain the complete set of aminoterminal repeats, specifically bind to the c-Myb-specific DNA binding sequence as evidenced by electrophoretic mobility shift analysis in vitro. RNA expression profiles of Xmyb1 and -2 are very different from each other; Xmyb1 is present throughout oogenesis and early Xenopus embryogenesis; in adult tissue it is primarily detected in blood. In contrast, Xmyb2 is expressed at only very low levels during oogenesis, not detectable in embryonic RNA preparations, and in adult tissue it is predominantly expressed in testis, with only a very low level seen in blood.  相似文献   

9.
10.
Phytochelatin synthase (PCS) is a major determinant of heavy metal tolerance in plants and other organisms. No structural information on this enzyme is as yet available. It is generally believed, however, that the active site region is located in the more conserved N-terminal portion of PCS, whereas various, as yet unidentified (but supposedly less critical) roles have been proposed for the C-terminal region. To gain insight into the structural/functional organization of PCS, we have conducted a limited proteolysis analysis of the enzyme from Arabidopsis (AtPCS1), followed by functional characterization of the resulting polypeptide fragments. Two N-terminal fragments ending at positions 372 (PCS_Nt1) and 283 (PCS_Nt2) were produced sequentially upon V8 protease digestion, without any detectable accumulation of the corresponding C-terminal fragments. As revealed by the results of in vivo and in vitro functional assays, the core PCS_Nt2 fragment is biosynthetically active in the presence of cadmium ions and supports phytochelatin formation at a rate that is only approximately 5-fold lower than that of full-length AtPCS1. The loss of the C-terminal region, however, substantially decreases the thermal stability of the enzyme and impairs phytochelatin formation in the presence of certain heavy metals (e.g. mercury and zinc, but not cadmium or copper). The latter phenotype was shared by PCS_Nt2 and by its precursor fragment PCS_Nt1, which, on the other hand, was almost as stable and biosynthetically active (in the presence of cadmium) as the full-length enzyme. AtPCS1 thus appears to be composed of a protease-resistant (and hence presumably highly structured) N-terminal domain, flanked by an intrinsically unstable C-terminal region. The most upstream part of such a region (positions 284-372) is important for enzyme stabilization, whereas its most terminal part (positions 373-485) appears to be required to determine enzyme responsiveness to a broader range of heavy metals.  相似文献   

11.
12.
Background information. Although actin is a relevant component of the plant nucleus, only three nuclear ABPs (actin‐binding proteins) have been identified in plants to date: cofilin, profilin and nuclear myosin I. Although plants lack orthologues of the main structural nuclear ABPs in animals, such as lamins, lamin‐associated proteins and nesprins, their genome does contain sequences with spectrin repeats and N‐terminal calponin homology domains for actin binding that might be distant relatives of spectrin. We investigated here whether spectrin‐like proteins could act as structural nuclear ABPs in plants. Results. We have investigated the presence of spectrins in Allium cepa meristematic nuclei by Western blotting, confocal and electron microscopy, using antibodies against α‐ and β‐spectrin chains that cross‐react in plant nuclei. Their role as nuclear ABPs was analysed by co‐immunoprecipitation and IF (immunofluorescence) co‐localization and their association with the nuclear matrix was investigated by sequential extraction of nuclei with non‐ionic detergent, and in low‐ and high‐salt buffers after nuclease digestion. Our results demonstrate the existence of several spectrin‐like proteins in the nucleus of onion cells that have different intranuclear distributions in asynchronous meristematic populations and associate with the nuclear matrix. These nuclear proteins co‐immunoprecipitate and co‐localize with actin. Conclusions. These results reveal that the plant nucleus contains spectrin‐like proteins that are structural nuclear components and function as ABPs. Their intranuclear distribution suggests that plant nuclear spectrin‐like proteins could be involved in multiple nuclear functions.  相似文献   

13.
14.
The sequences of a large number of actin-binding proteins have been compared. These findings, together with the results of protein-chemical analysis, peptide synthesis and site-directed and deletion mutagenesis, have led to the assignment of actin-binding sites. Within these segments, small actin-binding motifs have been delineated. Most actin-binding proteins interact with actin subdomain-1 but our analyses reveal neither primary nor secondary structure homology among these proteins, suggesting that actin binding does not follow simple structural principles.  相似文献   

15.
Drebrin is an actin-binding protein which is expressed at highly levels in neurons. When introduced into fibroblasts, it has been known to bind to F-actin and to cause remodeling of F-actin. Here, we performed a domain analysis of the actin-binding and actin-remodeling activities of drebrin. Various fragments of drebrin cDNA were fused with green fluorescent protein cDNA and introduced into Chinese hamster ovary cells. Association of the fusion protein with F-actin and remodeling of the F-actin were examined. We found that the central 85-amino-acid sequence (residues 233-317) was sufficient for the binding to and remodeling of F-actin. The binding activity of this fragment was relatively low compared with that of full-length drebrin, but all the types of abnormalities of F-actin that are observed with full-length drebrin were also observed with this fragment. When this sequence was further fragmented, the actin-binding activity was greatly reduced and the actin-remodeling activity disappeared. The actin-binding activity of the central region of drebrin was confirmed by a cosedimentation assay of chymotryptic fragments of drebrin with purified actin. These data indicate that the actin-binding domain and actin-remodeling domain are identical and that this domain is located at the central region of drebrin.  相似文献   

16.
17.
Yeast actin-binding proteins: evidence for a role in morphogenesis   总被引:20,自引:8,他引:12       下载免费PDF全文
《The Journal of cell biology》1988,107(6):2551-2561
Three yeast actin-binding proteins were identified using yeast actin filaments as an affinity matrix. One protein appears to be a yeast myosin heavy chain; it is dissociated from actin filaments by ATP, it is similar in size (200 kD) to other myosins, and antibodies directed against Dictyostelium myosin heavy chain bind to it. Immunofluorescence experiments show that a second actin-binding protein (67 kD) colocalizes in vivo with both cytoplasmic actin cables and cortical actin patches, the only identifiable actin structures in yeast. The cortical actin patches are concentrated at growing surfaces of the yeast cell where they might play a role in membrane and cell wall insertion, and the third actin-binding protein (85 kD) is only detected in association with these structures. This 85-kD protein is therefore a candidate for a determinant of growth sites. The in vivo role of this protein was tested by overproduction; this overproduction causes a reorganization of the actin cytoskeleton which in turn dramatically affects the budding pattern and spatial growth organization of the yeast cell.  相似文献   

18.
Iba2 is a homolog of ionized calcium-binding adapter molecule 1 (Iba1), a 17-kDa protein that binds and cross-links filamentous actin (F-actin) and localizes to membrane ruffles and phagocytic cups. Here, we present the crystal structure of human Iba2 and its homodimerization properties, F-actin cross-linking activity, cellular localization and recruitment upon bacterial invasion in comparison with Iba1. The Iba2 structure comprises two central EF-hand motifs lacking bound Ca2+. Iba2 crystallized as a homodimer stabilized by a disulfide bridge and zinc ions. Analytical ultracentrifugation revealed a different mode of dimerization under reducing conditions that was independent of Ca2+. Furthermore, no binding of Ca2+ up to 0.1 mM was detected by equilibrium dialysis. Correspondingly, Iba EF-hand motifs lack residues essential for strong Ca2+ coordination. Sedimentation experiments and microscopy detected pronounced, indistinguishable F-actin binding and cross-linking activity of Iba1 and Iba2 with induction of F-actin bundles. Fluorescent Iba fusion proteins were expressed in HeLa cells and co-localized with F-actin. Iba1 was recruited into cellular projections to a larger extent than Iba2. Additionally, we studied Iba recruitment in a Shigella invasion model that induces cytoskeletal rearrangements. Both proteins were recruited into the bacterial invasion zone and Iba1 was again concentrated slightly higher in the cellular extensions.  相似文献   

19.
Alpha-actinin belongs to the spectrin family of actin crosslinking and bundling proteins that function as key regulators of cell motility, morphology and adhesion. The actin-binding domain (ABD) of these proteins consists of two consecutive calponin homology (CH) domains. Electron microscopy studies on ABDs appear to support two competing actin-binding models, extended and compact, whereas the crystal structures typically display a compact conformation. We have determined the 1.7A resolution structure of the ABD of alpha-actinin 1, a ubiquitously expressed isoform. The structure displays the classical compact conformation. We evaluated the two binding models by surface conservation analysis. The results show a conserved surface that spans both domains and corresponds to two previously identified actin-binding sites (ABS2 and ABS3). A third, and probably less important site, ABS1, is mostly buried in the compact conformation. However, a thorough examination of existing structures suggests a weak and semi-polar binding interface between the two CHs, leaving open the possibility of domain reorientation or opening. Our results are consistent with a two-step binding mechanism in which the ABD interacts first in the compact form observed in the structures, and then transitions toward a higher affinity state, possibly through minor rearrangement of the domains.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号