首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Skeletal myoblasts grown in vitro and induced to differentiate either form differentiated multinucleated myotubes or give rise to quiescent, undifferentiated "reserve cells" that share several characteristics with muscle satellite cells. The mechanism of determination of reserve cells is poorly understood. We find that the expression level of the metalloprotease disintegrin ADAM12 is much higher in proliferating C2C12 myoblasts and in reserve cells than in myotubes. Inhibition of ADAM12 expression in differentiating C2C12 cultures by small interfering RNA is accompanied by lower expression levels of both quiescence markers (retinoblastoma-related protein p130 and cell cycle inhibitor p27) and differentiation markers (myogenin and integrin alpha7A isoform). Overexpression of ADAM12 in C2C12 cells under conditions that promote cell cycle progression leads to upregulation of p130 and p27, cell cycle arrest, and downregulation of MyoD. Thus, enhanced expression of ADAM12 induces a quiescence-like phenotype and does not stimulate differentiation. We also show that the region extending from the disintegrin to the transmembrane domain of ADAM12 and containing cell adhesion activity as well as the cytoplasmic domain of ADAM12 are required for ADAM12-mediated cell cycle arrest, while the metalloprotease domain is not essential. Our results suggest that ADAM12-mediated adhesion and/or signaling may play a role in determination of the pool of reserve cells during myoblast differentiation.  相似文献   

4.
The role of transmembrane 4 superfamily (TM4SF) proteins during muscle cell fusion has not been investigated previously. Here we show that the appearance of TM4SF protein, CD9, and the formation of CD9-beta1 integrin complexes were both regulated in coordination with murine C2C12 myoblast cell differentiation. Also, anti-CD9 and anti-CD81 monoclonal antibodies substantially inhibited and delayed conversion of C2C12 cells to elongated myotubes, without affecting muscle-specific protein expression. Studies of the human myoblast-derived RD sarcoma cell line further demonstrated that TM4SF proteins have a role during muscle cell fusion. Ectopic expression of CD9 caused a four- to eightfold increase in RD cell syncytia formation, whereas anti-CD9 and anti-CD81 antibodies markedly delayed RD syncytia formation. Finally, anti-CD9 and anti-CD81 monoclonal antibodies triggered apoptotic degeneration of C2C12 cell myotubes after they were formed. In summary, TM4SF proteins such as CD9 and CD81 appear to promote muscle cell fusion and support myotube maintenance.  相似文献   

5.
Caveolin-3 is the principal structural protein of caveolae membrane domains in striated muscle cells. Caveolin-3 mRNA and protein expression are dramatically induced during the differentiation of C2C12 skeletal myoblasts, coincident with myoblast fusion. In these myotubes, caveolin-3 localizes to the sarcolemma (muscle cell plasma membrane), where it associates with the dystrophin-glycoprotein complex. However, it remains unknown what role caveolin-3 plays in myoblast differentiation and myotube formation. Here, we employ an antisense approach to derive stable C2C12 myoblasts that fail to express the caveolin-3 protein. We show that C2C12 cells harboring caveolin-3 antisense undergo differentiation and express normal amounts of four muscle-specific marker proteins. However, C2C12 cells harboring caveolin-3 antisense fail to undergo myoblast fusion and, therefore, do not form myotubes. Interestingly, treatment with specific p38 mitogen-activated protein kinase inhibitors blocks both myotube formation and caveolin-3 expression, but does not affect the expression of other muscle-specific proteins. In addition, we find that three human rhabdomyosarcoma cell lines do not express caveolin-3 and fail to undergo myoblast fusion. Taken together, these results support the idea that caveolin-3 expression is required for myoblast fusion and myotube formation, and suggest that p38 is an upstream regulator of caveolin-3 expression.  相似文献   

6.
The small GTPase protein Rac1 is involved in a wide range of biological processes, yet its role in cell differentiation is mostly unknown. Here we show that Rac1 activity is high in proliferating myoblasts and decreases during the differentiation process. To analyze the involvement of Rac1 in muscle differentiation, different forms of the protein were expressed in muscle cells. A constitutively activated form of Rac1 (Rac1Q61L) inhibited the activity of MyoD in promoting muscle differentiation, whereas a dominant negative form of Rac1 (Rac1T17N) induced the activity of MyoD in promoting muscle differentiation. Expression of Rac1T17N imposed myogenic differentiation on myoblasts growing under mitogenic conditions. In inquiring whether Rac1 affected the withdrawal of myoblasts from the cell cycle, we analyzed the expression of cyclin D1 and p21(WAF1) and the phosphorylation state of the retinoblastoma protein. According to these markers and bromodeoxyuridine incorporation, C2 myoblasts expressing Rac1T17N exited the cell cycle earlier than control C2 cells. Myoblasts expressing Rac1Q61L did not permanently withdraw from the cell cycle. An indication of the possible involvement of the mitogen-activated protein kinase (MAPK) pathway in Rac1-mediated myoblast proliferation was obtained by the use of MAPK kinase inhibitors U0126 and PD098059. These inhibitors arrested C2-Rac1Q61L cell cycling. Taken together, our results show that Rac1 activation interferes with myoblast exit from the cell cycle via or in concert with the MAPK pathway.  相似文献   

7.
干扰Sirt2促进C2C12成肌细胞分化   总被引:1,自引:0,他引:1  
Sirt2是组蛋白去乙酰化酶(HDAC III)家族成员之一, 对细胞周期、自噬、脂肪细胞分化、神经细胞存活等生物学过程的调节发挥重要作用. 目前,Sirt2在肌肉发育过程中的研究尚未见报道.本文通过构建Sirt2慢病毒干扰载体,侵染C2C12成肌细胞,并用细胞免疫荧光化学、real-time PCR 和Western印迹方法,检测其对成肌分化标志基因及相关信号通路因子的影响. 结果显示,干扰质粒shRNA 663处理C2C12细胞后,Sirt2 mRNA及蛋白质表达水平与对照相比显著下调(P<0.01);C2C12细胞分化第4 d,MyoD,MyoG,MyHC mRNA及蛋白质表达均显著增加(P<0.01); PI3K,AKT,FoxO1磷酸化水平明显升高. 结果表明,Sirt2可通过PI3K/AKT/FOXO1信号通路来促进成肌细胞分化,是肌生成的一个潜在调节因子.  相似文献   

8.
Recently, miR-22 was found to be differentially expressed in different skeletal muscle growth period, indicated that it might have function in skeletal muscle myogenesis. In this study, we found that the expression of miR-22 was the most in skeletal muscle and was gradually up-regulated during mouse myoblast cell (C2C12 myoblast cell line) differentiation. Overexpression of miR-22 repressed C2C12 myoblast proliferation and promoted myoblast differentiation into myotubes, whereas inhibition of miR-22 showed the opposite results. During myogenesis, we predicted and verified transforming growth factor beta receptor 1 (TGFBR1), a key receptor of the TGF-β/Smad signaling pathway, was a target gene of miR-22. Then, we found miR-22 could regulate the expression of TGFBR1 and down-regulate the Smad3 signaling pathway. Knockdown of TGFBR1 by siRNA suppressed the proliferation of C2C12 cells but induced its differentiation. Conversely, overexpression of TGFBR1 significantly promoted proliferation but inhibited differentiation of the myoblast. Additionally, when C2C12 cells were treated with different concentrations of transforming growth factor beta 1 (TGF-β1), the level of miR-22 in C2C12 cells was reduced. The TGFBR1 protein level was significantly elevated in C2C12 cells treated with TGF-β1. Moreover, miR-22 was able to inhibit TGF-β1-induced TGFBR1 expression in C2C12 cells. Altogether, we demonstrated that TGF-β1 inhibited miR-22 expression in C2C12 cells and miR-22 regulated C2C12 cell myogenesis by targeting TGFBR1.  相似文献   

9.
10.
11.
Obesity is documented to be a state of chronic mild inflammation associated with increased macrophage infiltration into adipose tissue and liver and skeletal muscle. As a pleiotropic inflammatory mediator, macrophage migration inhibitory factor (MIF) is associated with metabolic disease, so MIF may signal molecular links between adipocytes and myocytes. MIF expression was modified during myoblast differentiation, but the role of MIF during this process is unclear. C2C12 cells were transfected with MIF to investigate their role during differentiation. MIF expression attenuated C2C12 differentiation. It did not change proliferation, but downregulated cyclin D1 and CDK4, causing cell accumulation in the G1 phase. p21 protein was increased significantly and MyoD, MyoG, and p21 mRNA also increased significantly in the C2C12 cells treated with ISO-1, suggesting that inhibition of MIF promotes differentiation. MIF inhibits the myoblast differentiation by affecting the cell cycle progression, but does not affect proliferation.  相似文献   

12.
13.
14.
配对框(Paired box)首先是在果蝇的分节基因中发现的一段DNA保守序列,编码能与DNA特异结合的一个蛋白质结构域。这些序列在进化中有一定的保守性,在许多种生物基因组内存在,其中包括小鼠和人。至今为止,在小鼠中分离到九个含配对框的Pax基因,按基因发现时序,分别定名为Pax 1至Pax 9。Pax 7是其中的一个成员,它不但含有配对框,还含有八肽结构(Octapeptide)和  相似文献   

15.
Terminal cell differentiation involves permanent withdrawal from the cell division cycle. The inhibitors of cyclin-dependent kinases (CDKs) are potential molecules functioning to couple cell cycle arrest and cell differentiation. In murine C2C12 myoblast cells, G1 CDK enzymes (CDK2, CDK4, and CDK6) associate with four CDK inhibitors: p18INK4c, p19INK4d, p21, and p27Kip1. During induced myogenesis, p21 and its associated CDK proteins underwent an initial increase followed by a decrease as cells became terminally differentiated. The level of p27 protein gradually increased, but the amount of total associated CDK proteins remained unchanged. p19 protein decreased gradually during differentiation, as did its associated CDK4 protein. In contrast, p18 protein increased 50-fold, from negligible levels in proliferating myoblasts to clearly detectable levels within 8-12 h of myogenic induction. This initial rise was followed by a precipitous increase between 12 and 24 h postinduction, with p18 protein finally accumulating to its highest level in terminally differentiated cells. Induction of p18 correlated with increased and sequential complex formation--first increasing association with CDK6 and then with CDK4 over the course of myogenic differentiation. All of the CDK6 and half of the CDK4 were complexed with p18 in terminally differentiated C2C12 cells as well as in adult mouse muscle tissue. Finally, kinase activity of CDK2 and CDK4 decreases as C2C12 cells differentiate, whereas the CDK6 kinase activity is low in both proliferating myoblasts and differentiated myotubes. Our results indicate that p18 may play a critical role in causing and/or maintaining permanent cell cycle arrest associated with mature muscle formation.  相似文献   

16.
17.
18.
The A-type lamins that localize in nuclear domains termed lamin speckles are reorganized and antigenically masked specifically during myoblast differentiation. This rearrangement was observed to be linked to the myogenic program as lamin speckles, stained with monoclonal antibody (mAb) LA-2H10, were reorganized in MyoD-transfected fibroblasts induced to transdifferentiate to muscle cells. In C2C12 myoblasts, speckles were reorganized early during differentiation in cyclin D3-expressing cells. Ectopic cyclin D3 induced lamin reorganization in C2C12 myoblasts but not in other cell types. Experiments with adenovirus E1A protein that can bind to and segregate the retinoblastoma protein (pRb) indicated that pRb was essential for the cyclin D3-mediated reorganization of lamin speckles. Cyclin D3-expressing myoblasts displayed site-specific reduction of pRb phosphorylation. Furthermore, disruption of lamin structures by overexpression of lamins inhibited expression of the muscle regulatory factor myogenin. Our results suggest that the reorganization of internal lamins in muscle cells is mediated by key regulators of the muscle differentiation program.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号