首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Archaeoglobus fulgidus, a sulfate-reducing Archaeon with a growth temperature optimum of 83°C, uses the 5-deazaflavin coenzyme F420 rather than pyridine nucleotides in catabolic redox processes. The organism does, however, require reduced pyridine nuclcotides for biosynthetic purposes. We describe here that the Archaeon contains a coenzyme F420-dependent NADP reductase which links anabolism to catabolism. The highly thermostable enzyme was purfied 3600-fold by affinity chromatography to apparent homogeneity in a 60% yield. The native enzyme with an apparent molecular mass of 55 kDa was composed of only one type of subunit of apparent molecular mass of 28 kDa. Spectroscopic analysis of the enzyme did not reveal the presence of any chromophoric prosthetic group. The purified enzyme catalyzed the reversible reduction of NADP (apparent K M 40 M) with reduced F420 (apparent K M 20M) with a specific activity of 660 U/mg (apparent V max) at pH 8.0 (pH optimum) and 80°C (temperature optimum). It was specific for both coenzyme F420 and NADP. Sterochemical investigations showed that the F420-dependent NADP reductase was Si face specific with respect to C5 of F420 and Si face specific with respect to C4 of NADP.Abbreviations F420 coenzyme F420 - F420H2 1,5-dihydrocoenzyme F420 - H4MPT tetrahydromethanopterin - CH=H4MPT N5, N10-methylenetetrahydromethanopterin - MFR methanofuran - HPLC high performance liquid chromatography - methylene-H4MPT dehydrogenase N5, N10-methylenetetrahydromethanopterin dehydrogenase - 1 U = 1 mol/min  相似文献   

2.
Glutathione reductase (E.C.1.8.1.7; GR) was purified from bovine erythrocytes and some characteristics properties of the enzyme were investigated. The purification procedure was composed of preparation of the hemolysate, ammonium sulfate fractionation, affinity chromatography on 2',5'-ADP Sepharose 4B, and gel filtration chromatography on Sephadex G-200. As a result of four consecutive procedures, the enzyme was purified 31,250-fold with a yield of 11.39%. Specific activity at the final step was 62.5 U (mg proteins)(-1). For the enzyme, optimum pH, optimum temperature, optimum ionic strength, and stable pH were found to be 7.3, 55 degrees C, 435 mM, 7.3, respectively. The molecular weight of the enzyme was found to be 118 kDa by Sephadex G-200 gel filtration chromatography and the subunit molecular weight was found to be 58 kDa by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). In addition, Km and Vmax values were determined for glutathione disulfide (GSSG) and NADPH. Ki constants and inhibition types were established for glutathione (GSH) and NADP+. Also, effects of NADPH and GSSG were investigated on the enzyme activities.  相似文献   

3.
Alcohol dehydrogenase (alcohol; NADP oxidoreductase, EC 1.1.1.2) was purified from Leuconostoc mesenteroides IFO 3426.

The native enzyme in sonic extract was dissociated to NAD-dependent subunit S1 and to NAD- and NADP-dependent subunit S2 by DEAE-Sephadex A-50, DEAE-cellulose column chromatography and disc electrophoresis. The molecular weights of the native enzyme, subunit S1 and S2 were approximately 240,000, 80,000, and 160,000, respectively, as determined from gel filtration on Sephadex G-200. Subunit S1 was very unstable. The physical, chemical and catalytic properties of native enzyme were compared with those of subunit S1 and S2.  相似文献   

4.
NAD+ reductase of the green photosynthetic bacterium Prosthecochloris aestuarii was isolated and purified by ammonium sulfate fractionation, DEAE-cellulose column chromatography, and Sephadex G-200 gel filtration. This enzyme is an FAD-containing flavoprotein and has absorption maxima at 485 (shoulder0 452, 411, and 385 nm (the 411 nm band is due to cytochrome). The molecular weight of the enzyme as determined by gel filtration using Sephadex G-200 is 119,000. The enzyme catalyzes the reduction of NAD+ and NADP+ by photoreduced spinach ferredoxin or reduced benzyl viologen...  相似文献   

5.
The dehydrogenation of N 5,N 10-methylenetetrahydromethanopterin (CH2=H4MPT) to N 5,N 10-methenyltetrahydromethanopterin (CH≡H4MPT+) is an intermediate step in the oxidation of methanol to CO2 in Methanosarcina barkeri. The reaction is catalyzed by CH2=H4MPT dehydrogenase, which was found to be specific for coenzyme F420 as electron acceptor; neither NAD, NADP nor viologen dyes could substitute for the 5-deazaflavin. The dehydrogenase was anaerobically purified almost 90-fold to apparent homogeneity in a 32% yield by anion exchange chromatography on DEAE Sepharose and Mono Q HR, and by affinity chromatography on Blue Sepharose. Sodium dodecyl sulfate/polyacrylamide gel electrophoresis revealed only one protein band with an apparent mass of 31 kDa. The apparent molecular mass of the native enzyme determined by polyacrylamide gradient gel electrophoresis was 240 kDa. The ultraviolet/visible spectrum of the purified enzyme was almost identical to that of albumin suggesting the absence of a chromophoric prosthetic group. Reciprocal plots of the enzyme activity versus the substrate concentrations were linear: the apparent K m for CH2=H4MPT and for coenzyme F420 were found to be 6 μM and 25 μM, respectively. Vmax was 4,000 μmol min-1·mg-1 protein (kcat=2,066 s-1) at pH 6 (the pH optimum) and 37°C. The Arrhenius activation energy was 40 kJ/mol. The N-terminal amino acid sequence was found to be 50% identical with that of the F420-dependent CH2=H4MPT dehydrogenase isolated from H2/CO2 grown Methanobacterium thermoautotrophicum.  相似文献   

6.
A carboxypeptidase B (CPB) has been purified from dogfish (Scyliorhinus canicula) pancreas and partially characterized. The purification procedure included acetone precipitation, ion-exchange chromatography on a CM-cellulose column and gel filtration on Sephadex G-75. The purified enzyme migrates as a single band both on PAGE and SDS-PAGE. Its molecular mass is estimated to be about 32 kDa. The optimum of activity is obtained at pH 7.5–8.2. The enzyme is inhibited by typical metal-chelating agents (EDTA and o-phenanthroline) and by Hg2+. It is activated by Co2+, l-cysteine and by heat treatment at 40° and 50°C. Kinetic parameters, Km and kcat, of native enzyme, Co2+-activated CPB and heat-treated CPB have been determined  相似文献   

7.
5,10-Methylenetetrahydrofolate reductase (EC 1.1.1.68) was purified from the cytosolic fraction of sheep liver by (NH4)2 SO4 fractionation, acid precipitation, DEAE-Sephacel chromatography and Blue Sepharose affinity chromatography. The homogeneity of the enzyme was established by sodium dodecyl sulphate-polyacrylamide gel electrophoresis, ultracentrifugation and Ouchterlony immunodiffusion test. The enzyme was a dimer of molecular weight 1,66,000 ± 5,000 with a subunit molecular weight of 87,000 ±5,000. The enzyme showed hyperbolic saturation pattern with 5-methyltetrahydrofolate.K 0.5 values for 5-methyltetrahydrofolate menadione and NADPH were determined to be 132 ΜM, 2.45 ΜM and 16 ΜM. The parallel set of lines in the Lineweaver-Burk plot, when either NADPH or menadione was varied at different fixed concentrations of the other substrate; non-competitive inhibition, when NADPH was varied at different fixed concentrations of NADP; competitive inhibition, when menadione was varied at different fixed concentrations of NADP and the absence of inhibition by NADP at saturating concentration of menadione, clearly established that the kinetic mechanism of the reaction catalyzed by this enzyme was ping-pong.  相似文献   

8.
Washed membranes prepared from H2+CO2- or formate-grown cells of Methanococcus voltae catalyzed the oxidation of coenzyme F420H2 and the reduction of the heterodisulfide (CoB–S–S–CoM) of 2-mercaptoethanesulfonate and 7-mercaptoheptanoylthreonine phosphate, which is the terminal electron acceptor of the methanogenic pathway. The reaction followed a 1:1 stoichiometry according to the equation: F420H2 + COB–S–S–CoM → F420 + CoM–SH + CoB–SH. These findings indicate that the reaction depends on a membrane-bound F420H2-oxidizing enzyme and on the heterodisulfide reductase, which remains partly membrane-bound after cell lysis. To elucidate the nature of the F420H2-oxidizing protein, washed membranes were solubilized with detergent, and the enzyme was purified by sucrose density centrifugation, anion-exchange chromatography, and gel filtration. Several lines of evidence indicate that F420H2 oxidation is catalyzed by a membrane-associated F420-reducing hydrogenase. The purified protein catalyzed the H2-dependent reduction of methyl viologen and F420. The apparent molecular mass and the subunit composition (43, 37, and 27 kDa) are almost identical to those of the F420-reducing hydrogenase that has already been purified from Mc. voltae. Moreover, the N-terminus of the 37-kDa subunit is identical to the amino acid sequence deduced from the fruG gene of the operon encoding the selenium-containing F420-reducing hydrogenase from Mc. voltae. A distinct F420H2 dehydrogenase, which is present in methylotrophic methanogens, was not found in this organism. Received: 18 September 1998 / Accepted: 2 November 1998  相似文献   

9.
Methanogenic archaea growing on ethanol or isopropanol as the electron donor for CO2 reduction to CH4 contain either an NADP-dependent or a coenzyme F420-dependent alcohol dehydrogenase. We report here that in both groups of methanogens, the N 5, N 10-methylenetetrahydromethanopterin dehydrogenase and the N 5, N 10-methylenetetrahydromethanopterin reductase, two enzymes involved in CO2 reduction to CH4, are specific for F420. This raised the question how F420H2 is regenerated in the methanogens with an NADP-dependent alcohol dehydrogenase. We found that these organisms contain catabolic activities of an enzyme catalyzing the reduction of F420 with NADPH. The F420-dependent NADP reductase from Methanogenium organophilum was purified and characterized. The N-terminal amino acid sequence showed 42% sequence identity to a putative gene product in Methanococcus jannaschii, the total genome of which has recently been sequenced. Received: 12 May 1997 / Accepted: 1 July 1997  相似文献   

10.
The effects of ketotifen, meloxicam, phenyramidol–HCl and gadopentetic acid on the enzyme activity of GR were studied using human erythrocyte glutathione reductase (GR) enzymes in vitro. The enzyme was purified 209-fold from human erythrocytes in a yield of 19% with 0.31?U/mg. The purification procedure involved the preparation of haemolysate, ammonium sulphate precipitation, 2′′,5′-ADP Sepharose 4B affinity chromatography and Sephadex G-200 gel filtration chromatography. Purified enzyme was used in the in vitro studies. In the in vitro studies, IC50 values and Ki constants were 0.012?mM and 0.0008?±?0.00021?mM for ketotifen; 0.029?mM and 0.0061?±?0.00127?mM for meloxicam; 0.99?mM and 0.4340?±?0.0890?mM for phenyramidol–HCl; 138?mM and 28.84?±?4.69?mM for gadopentetic acid, respectively, showing the inhibition effects on the purified enzyme. Phenyramidol–HCl showed competitive inhibition, whereas the others showed non-competitive inhibition.  相似文献   

11.
Methylene-H4MPT reductase was found to be present in Archaeoglobus fulgidus in a specific activity of 1 U/mg. The reductase was purified 410-fold. The native enzyme showed an apparent molecular mass of approximately 200 kDa. Sodium dodecylsulfate/polyacrylamide gel electrophoresis revealed the presence of only 1 polypeptide of apparent molecular mass 35 kDa. The ultraviolet/visible spectrum of the reductase was almost identical to that of albumin indicating the absence of a chromophoric prosthetic group. The reductase was dependent on reduced coenzyme F420 as electron donor. Neither NADH, NADPH, nor reduced viologen dyes could substitute for the reduced deazaflavin. From reciprocal plots, which showed an intersecting patter, a K m for methylene-H4MPT of 16 M, a K m for F420H2 of 4 M, and a V max of 450 U/mg (Kcat=265 s-1) were obtained. The enzyme was found to be rapidly inactivated when incubated at 80°C in 100 mM Tris/HCl pH 7. The rate of inactivation, however, decreased to essentially zero in the presence of either F420 (0.2 mM), methylene-H4MPT (0.2 mM), albumin (1 mg/ml), or KCl (0.5 M). The N-terminal amino acid sequence was determined and found to be similar to that of methylene-H4MPT reductase (F420-dependent) from the methanogens Methanobacterium thermoautotrophicum, Methanosarcina barkeri, and Methanopyrus kandleri. The purification and some properties of formylmethanofuran dehydrogenase from A. fulgidus are also described.Abbreviations H4MPT tetrahydromethanopterin - CH2=H4MPT N 5,N 10-methylene-H4MPT - CH3–H4MPT N 5-methyl-H4MPT - CHH4MPT methenyl-H4MPT - F420 coenzyme F420 - MFR methanofuran - CHO-MFR formyl-MFR - 1 U 1 mol/min  相似文献   

12.
Cytochrome b5 from Candida tropicalis grown on alkane has been solubilized in three different ways (sodium cholate, trypsin, osmotic wash). After solubilization of the microsomal membrane with sodium cholate, the purification of cytochrome b5 was achieved by DEAE-cellulose chromatography, hydroxylapatite chromatography, a second DEAE-cellulose chromatography and a Sephadex G-75 gel filtration. The purified protein had an apparent molecular weight of 16 000 ± 1 000. After solubilization by trypsin treatment or osmotic wash, the purification procedure yielded a protein with an apparent molecular weight of 12 000 ± 1 000. Though the purified proteins presented molecular weights depending on the technique of solubilization, they exhibited identical optical properties, a great stability with respect to temperature and pH, and were all autooxidable. Redox titrations revealed differences in their midpoint potential values, which were 35 ± 5 mV for the b5 purified after cholate solubilization, —59 ± 5 mV for the b5 purified after trypsin treatment and —65 ± 5 mV for the b5 purified after osmotic wash.  相似文献   

13.
This study reports the presence of glycylprolyl dipeptidyl aminopeptidase in porcine pancreas, and its partial purification and some properties. Crude enzyme preparation was obtained by extraction from acetone-dried powder of the pancreas at pH 7.6. For solubilization of enzyme, freezing and thawing were carried out. Crude enzyme extract was fractionated with ammonium sulfate precipitation, gel filtration on Sephadex G-200 column and ion-exchange chromatography on DEAE-cellulose. Partially purified enzyme showed 2897-folds purification. The enzyme activity on polyacrylamide gel electrophoresis showed good agreement with a main protein band stained with Coomassie brilliant blue. Molecular weight of this enzyme from the pancreas was estimated to be 300 000 by gel filtration on Sephacryl S-300 column. Optimum pH was between 8.5 and 9.0, and Km value for glycylproline-p-nitroanilide tosilate was 0.33 mM. This enzyme from the pancreas was a serine enzyme and was relatively stable to heat at 60°C for 10 min.  相似文献   

14.
A fructosyltransferase that catalyses the transfer of the terminal (2 → 1)-β-linked d-fructosyl group of fructo-oligosaccharides [1F(1-β-d-fructofuranosyl)msucrose, m > 0] to HO-6 of the glucosyl group of similar saccharides [1F(1-β-d-fructofuranosyl)nsucrose, n > 0] has been purified (760-fold) from an extract of the roots of asparagus (Asparagus officinalis L.) by successive fractionation with ammonium sulfate, treatment with calcium phosphate gel, and then chromatography on octyl-Sepharose, DEAE-cellulose, Sephadex G-200, and raffinose-coupled Sepharose 6B. The enzyme, tentatively termed 6G-fructosyltransferase, was homogeneous in disc electrophoresis, had a mol. wt. of ~69,000 and an optimum pH of ~5.5, was stable at pH 5.0–6.0 on heating for 20 mins at 45° and for 10 min at 20–37°, and was inhibited by Hg2+, p-chloromercuribenzoate, and Ag+.  相似文献   

15.
Geotrichum candidum is well known for the reduction of prochiral ketones to chiral alcohol with high yield and excellent enantioselectivity. Carbonyl reductase from G. candidum was purified by ammonium sulphate precipitation, anion exchange and hydrophobic interaction chromatographies. Gel filtration chromatography together with SDS-PAGE revealed this protein to be a dimer of 60 kDa subunits. Maximum enzyme activity was found in acetate buffer at pH 5.4 with t1/2 of 7.13 h at 30 °C and t1/2 of 2.8 h at 65 °C. The enzyme was inhibited by p-hydroxymercuribenzoate and hydroxylamine indicating the involvement of thiol and carbonyl groups in the reduction reaction catalyzed by the enzyme. Chelating agents also reduced the enzyme activity indicating the requirement of metal ions as cofactors. The purified carbonyl reductase was found to be highly selective for ketones containing naphthyl ring, whereas aryl or hetero-aryl ketones showed very less or no activity at all.  相似文献   

16.
The extracellular invertase (β-D-fructofuranoside fructohydrolase, EC 3.2.1.26) was isolated and characterized from the hypocotyls of mung bean (Phaseolus radiatus L.). The enzyme was purified to apparent homogeneity by ammonium sulfate fractionation and sequential chromatography over diethylaminoethyl (DEAE)-cellulose anion exchange, Concanavalin (Con) A-Sepharose 4B affinity and Sephadex G-200. The overall purification was about 77-fold with a recovery of about 11%. The finally purified enzyme exhibited a specific activity of about 113 μmol of glucose produced mg-1 protein min-1 at pH 5.0 and appeared to be a single protein by nondenaturing polyacrylamide gel electrophoresis (PAGE) and sodium dodecyl sulfate (SDS)-PAGE. The enzyme had the native molecular mass of 134 kD and subunit molecular weight of 67 kD as estimated by Sephadex G-200 chromatography and SDS-PAGE, respectively, suggesting that the enzyme was composed of homodimeric proteins. On the other hand, the enzyme appeared to be a glycoprotein containing mannosyl residues on the basis of its ability to interact specifically with the immobilized Con A and the separability of invertase-Con A complex by methyl-α-D-mannopyranoside. The enzyme had a Km for sucrose of 3.4 mM and its pH optimum of 4.0. The enzyme showed highest enzyme activity with sucrose as substrate. Raffinose and cellobiose were hydrolyzed at a low rate, maltose and lactose were not cleaved by the enzyme. These results indicate the extracellular invertase is a β-fructofuranosidase.  相似文献   

17.
d-Xylulose reductase (EC 1.1.1.9) from Pachysolen tannophilus IFO 1007 was purified by Sephadex G-100 gel chromatography with three columns and DEAE cellulose chromatography. The purified enzyme was entirely homogeneous on disc gel electrophoresis. It was most active at pH 9.1–10.0 and 55°C, and stable at pH 7–9 and below 25 °C. Its activity was stimulated by NH4Cl,NaCl,MgCl2,KCl, glutathione, cysteine and glycine, and inhibited remarkably by SH inhibitor such as lead acetate, HgCl2 and AgNO3. It oxidized xylitol, sorbitol, ribitol and glycerine but not mannitol, inositol, arabitol and erythritol. Its Km values of enzyme against xylitol, sorbitol and ribitol were 1.1 × 10−2 M, 3.0 × 10−2 M and 5.0 × 10−2 M, respectively. Its molecular weight was determined to be 120,000 by Sephadex G-200 column chromatography, and that of its subunit was 40,000 by sodium dodecyl sulfate polyacrylamide gel electrophoresis.  相似文献   

18.
The distribution of the F420-reactive and F420-nonreactive hydrogenases from the methylotrophic Methanosarcina strain Gö1 indicated a membrane association of the F420-nonreactive enzyme. The membrane-bound F420-nonreactive hydrogenase was purified 42-fold to electrophoretic homogeneity with a yield of 26.7%. The enzyme had a specific activity of 359 mol H2 oxidized · min-1 · mg protein-1. The purification procedure involved dispersion of the membrane fraction with the detergent Chaps followed by anion exchange, hydrophobic and hydroxylapatite chromatography. The aerobically prepared enzyme had to be reactivated anaerobically. Maximal activity was observed at 80°C. The molecular mass as determined by native gel electrophoresis and gel filtration was 77000 and 79000, respectively. SDS gel electrophoresis revealed two polypeptides with molecular masses of 60000 and 40000 indicating a 1:1 stoichiometry. The purified enzyme contained 13.3 mol S2-, 15.1 mol Fe and 0.8 mol Ni/mol enzyme. Flavins were not detected. The amino acid sequence of the N-termini of the subunits showed a higher degree of homology to cubacterial uptake-hydrogenases than to F420-dependent hydrogenases from other methanogenic bacteria. The physiological function of the F420-nonreactive hydrogenase from Methanosarcina strain Gö1 is discussed.Abbreviations transmembrane electrochemical gradient of H- - CoM-SH 2-mercaptoethanesulfonate - F420 (N-l-lactyl--l-glutamyl)-l-glutamic acid phospodiester of 7,8-didemethyl-8-hydroxy-5-deazariboflavin-5-phosphate - F420H2 reduced F420 - HTP-SH 7-mercaptoheptanoylthreonine phosphate - Mb. Methanobacterium - PMSF phenylmethyl-sulfonylfluoride - Cl3AcOH trichloroacetic acid  相似文献   

19.
The effects of streptomycin sulfate, gentamicin sulfate, thiamphenicol, penicillin G, teicoplanin, ampicillin, cefotaxime, and cefodizime on the enzyme activity of glutathione reductase (GR) were studied using human and rat erythrocyte GR enzymes in in vitro and in vivo studies, respectively. The enzyme was purified 5,342-fold from human erythrocytes in a yield of 29% with 50.75?U/mg. The purification procedure involved the preparation of hemolysate, ammonium sulfate precipitation, 2′,5′-ADP Sepharose 4B affinity chromatography and Sephadex G-200 gel filtration chromatography. Purified enzyme was used in the in vitro studies, and rat erythrocyte hemolysate was used in the in vivo studies. In the in vitro studies, I50 and Ki values were 12.179?mM and 6.5123±4.1139?mM for cefotaxime, and 1.682?mM and 0.7446±0.2216?mM for cefodizime, respectively, showing the inhibition effects on the purified enzyme. Inhibition types were noncompetitive for cefotaxime and competitive for cefodizime. In the in vivo studies, 300?mg/kg cefotaxime and 1000?mg/kg cefodizime when administered to rats inhibited enzyme activity during the first 2?h (p<0.01). Cefotaxime led to increased enzyme activity at 4?h (p<0.05), but neither cefotaxime nor cefodizime had any significant inhibition or activation effects over 6?h (p>0.05).  相似文献   

20.
-Acetolactate synthase (-ALS) of Enterobacter cloacae ATCC 27613 was purified to homogeneity by ammonium sulphate precipitation, Sephadex G-200 gel filtration and hydroxyapatite affinity chromatography. The molecular weight of the enzyme was found to be 60 kDa by SDS–polyacrylamide gel electrophoresis and 200 kDa by gel filtration through Sephadex G-200, showing that the enzyme is a homotrimer. The K m and V max of the enzyme were 20 mM and 200 mol min–1 mg (protein)–1 respectively. The enzyme was optimally active at pH 6.0–8.0, 37 °C and showed concentration-dependent sensitivity to cofactors viz. FAD, NADP and NADPH and branched chain amino acids: leucine, isoleucine and valine. Substances like sodium formate, sodium acetate and sodium propionate, sugars and the selected intermediates of glycolytic pathway inhibited the enzyme. Glycerol, BSA and pyruvate-TPP stabilized the -ALS. The enzyme showed the properties of both a catabolic as well as an anabolic -ALS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号