共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Normal blood smears were stained by the standardised azure B-eosin Y Romanowsky procedure recently introduced by the ICSH, and the classical picture resulted. The effects of varying the times and temperature of staining, the composition of the solvent (buffer concentration, methanol content, & pH), the concentration of the dyes, and the mode of fixation were studied. The results are best understood in terms of the following staining mechanism. Initial colouration involves simple acid and basic dyeing. Eosin yields red erythrocytes and eosinophil granules. Azure B very rapidly gives rise to blue stained chromatin, neutrophil specific granules, platelets and ribosome-rich cytoplasms; also to violet basophil granules. Subsequently the azure B in certain structures combines with eosin to give purple azure B-eosin complexes, leaving other structures with their initial colours. The selectivity of complex formation is controlled by rate of entry of eosin into azure B stained structures. Only faster staining structures (i.e. chromatin, neutrophil specific granules, and platelets) permit formation of the purple complex in the standard method. This staining mechanism illuminates scientific problems (e.g. the nature of toxic granules) and assists technical trouble-shooting (e.g. why nuclei sometimes stain blue, not purple).To whom offprint should be sent 相似文献
2.
Normal blood smears were stained by the standardised azure B-eosin Y Romanowsky procedure recently introduced by the ICSH, and the classical picture resulted. The effects of varying the times and temperature of staining, the composition of the solvent (buffer concentration, methanol content, & pH), the concentration of the dyes, and the mode of fixation were studied. The results are best understood in terms of the following staining mechanism. Initial colouration involves simple acid and basic dyeing. Eosin yields red erythrocytes and eosinophil granules. Azure B very rapidly gives rise to blue stained chromatin, neutrophil specific granules, platelets and ribosome-rich cytoplasms; also to violet basophil granules. Subsequently the azure B in certain structures combines with eosin to give purple azure B-eosin complexes, leaving other structures with their initial colours. The selectivity of complex formation is controlled by rate of entry of eosin into azure B stained structures. Only faster staining structures (i.e. chromatin, neutrophil specific granules, and platelets) permit formation of the purple complex in the standard method. This staining mechanism illuminates scientific problems (e.g. the nature of 'toxic' granules) and assists technical trouble-shooting (e.g. why nuclei sometimes stain blue, not purple). 相似文献
3.
Romanowsky staining of suspension-fixed lymphocytes and fibroblasts, deposited as monolayers on slides, involves an initial basic dyeing process followed by formation of a hydrophobic Azur B/Eosin Y complex at the more permeable and so faster staining cellular sites. This mechanism is shared with blood and marrow smears. However certain morphological features peculiar to suspension-fixed, cell culture-derived preparations also influence the staining pattern via rate control: namely the irregular and bulky profiles of fibroblasts, compared to the smoother and thinner lymphocytes; and the occasional superficial occlusion of cells by culture medium. 相似文献
4.
Commerically available Romanowsky blood stains are variable mixtures of thiazein dyes and brominated fluorescein derivatives with varying degrees of metallic salt contamination in a number of different solvent systems. There is a need for standardized Romanowsky stains of constant composition, which, when used in conjunction with a carefully controlled specimen preparation technique, should give consistent performance. Such a preparation system would be of great value to hematologists in general and would be essential to the validity of data obtained by the digital processing of blood cell images. It is possible to prepare standardized Romanowsky stains as mixtures of two or three dye components, namely, eosin Y, azure B and methylene blue, although azure B has only recently become commercially available at an acceptable degree of purity. The logistic problems of stain standardization are discussed. 相似文献
5.
《Biotechnic & histochemistry》2013,88(2):82-93
AbstractIf the entire discipline of diagnostic cytopathology could be distilled into a single theme, it would be the Papanicolaou stain. Yet it was the Romanowsky stain upon which the discipline of cytopathology was founded. Both stains are used today in the cytopathology laboratory, each for a different and complementary purpose. We trace the history of cytopathological stains and discuss the advantages and limitations of Romanowsky-type stains for cytological evaluation. We also provide suggestions for the advantageous use of Romanowsky-type stains in cytopathology. 相似文献
6.
John W. Gilliland William W. Dean Milos Stastny G. J. Lubrano 《Biotechnic & histochemistry》1979,54(3):141-150
It has been down that the degradation of thiazine dyes which normally occurs in methanolic solution, as in the case of Romanowsky blood stains, can be prevented by nuking the solution acidic. In a certain range of oddity, the stain precipitates in the form of monothiazine cosinate, but by making the solution sufficiently acidic, eosin is protonated and the precipitate cannot form. These observations have been used to develop a blood stain which is stable, even at elevated temperatures, for sexed months. For use the stain is neutralized by a specially formulated fixative solution. 相似文献
7.
Summary A reproducible Romanowsky-Giemsa staining (RGS) can be carried out with standardized staining solutions containing the two dyes azure B (AB) and eosin Y (EY). After staining, cell nuclei have a purple coloration generated by DNA-AB-EY complexes. The microspectra of cell nuclei have a sharp and intense absorption band at 18 100 cm–1 (552 nm), the so called Romanowsky band (RB), which is due to the EY chromophore of the dye complexes. Other absorption bands can be assigned to the DNA-bound AB cations.Artificial DNA-AB-EY complexes can be prepared outside the cell by subsequent staining of DNA with AB and EY. In the first step of our staining experiments we prepared thin films of blue DNA-AB complexes on microslides with 1:1 composition: each anionic phosphodiester residue of the nucleic acid was occupied by one AB cation. Microspectrophotometric investigations of the dye preparations demonstrated that, besides monomers and dimers, mainly higher AB aggregates are bound to DNA by electrostatic and hydrophobic interactions. These DNA-AB complexes are insoluble in water. Therefore it was possible to stain the DNA-AB films with aqueous EY solutions and also to prepare insoluble DNA-AB-EY films in the second step of the staining experiments. After the reaction with EY, thin sites within the dye preparations were purple. The microspectra of the purple spots show a strong Romanowsky band at 18 100 cm–1. Using a special technique it was possible to estimate the composition of the purple dye complexes. The ratio of the two dyes was approximately EY:AB1:3. The EY anions are mainly bound by hydrophobic interaction to the AB framework of the electrical neutral DNA-AB complexes. The EY absorption is red shifted by the interaction of EY with the AB framework of DNA-AB-EY. We suppose that this red shift is caused by a dielectric polarization of the bound EY dianions.The DNA chains in the DNA-AB complexes can mechanically be aligned in a preferred direction k. Highly orientated dye complexes prepared on microslides were birefringent and dichroic. The orientation is maintained during subsequent staining with aqueous EY solutions. In this way we also prepared highly orientated purple DNA-AB-EY complexes on microslides. The light absorption of both types of dye complexes was studied by means of a microspectrophotometer equipped with a polarizer and an analyser. The sites of best orientation within the dye preparations were selected under crossed nicols according to the quality of birefringence. Subsequently, the absorption spectra of the highly orientated dye complexes were measured with plane polarized light. We found that the transition moments, m
AB, of the bound AB cations in DNA-AB and DNA-AB-EY are orientated almost perpendicular to k, i.e. m
ABk. On the contrary, the transition moments, m
EY, of the bound EY anions in DNA-AB-EY are polarized parallel to k, i.e. m
EY k. The transition moments m
AB and m
EY lay in the direction of the long axes of the AB and EY chromophores. For that reason, in both DNA-AB and DNA-AB-EY the long molecular axes of the AB cations are orientated approximately perpendicular to the DNA chains, while the long molecular axes of the EY chromophores are polarized in the direction of the DNA chains. Therefore, in DNA-AB-EY the long axes of AB and EY are perpendicular to each other, m
ABm
EY. This molecular arrangement fully agrees with our quantitative measurements and with the theory of the absorption of plane polarized light by orientated dye complexes, which has been developed and discussed in detail. 相似文献
8.
It has been shown that the degradation of thiazine dyes which normally occurs in methanolic solution, as in the case of Romanowsky blood stains, can be prevented by making the solution acidic. In a certain range of acidity, the stain precipitates in the form of monothiazine eosinate, but by making the solution sufficiently acidic, eosin is protonated and the precipitate cannot form. These observations have been used to develop a blood stain which is stable, even at elevated temperatures, for several months. For use the stain is neutralized by a specially formulated fixative solution. 相似文献
9.
A reproducible Romanowsky-Giemsa staining (RGS) can be carried out with standardized staining solutions containing the two dyes azure B (AB) and eosin Y (EY). After staining, cell nuclei have a purple coloration generated by DNA-AB-EY complexes. The microspectra of cell nuclei have a sharp and intense absorption band at 18,100 cm-1 (552 nm), the so called Romanowsky band (RB), which is due to the EY chromophore of the dye complexes. Other absorption bands can be assigned to the DNA-bound AB cations. Artificial DNA-AB-EY complexes can be prepared outside the cell by subsequent staining of DNA with AB and EY. In the first step of our staining experiments we prepared thin films of blue DNA-AB complexes on microslides with 1:1 composition: each anionic phosphodiester residue of the nucleic acid was occupied by one AB cation. Microspectrophotometric investigations of the dye preparations demonstrated that, besides monomers and dimers, mainly higher AB aggregates are bound to DNA by electrostatic and hydrophobic interactions. These DNA-AB complexes are insoluble in water. Therefore it was possible to stain the DNA-AB films with aqueous EY solutions and also to prepare insoluble DNA-AB-EY films in the second step of the staining experiments. After the reaction with EY, thin sites within the dye preparations were purple. The microspectra of the purple spots show a strong Romanowsky band at 18,100 cm-1. Using a special technique it was possible to estimate the composition of the purple dye complexes. The ratio of the two dyes was approximately EY:AB approximately 1:3. The EY anions are mainly bound by hydrophobic interaction to the AB framework of the electrical neutral DNA-AB complexes. The EY absorption is red shifted by the interaction of EY with the AB framework of DNA-AB-EY. We suppose that this red shift is caused by a dielectric polarization of the bound EY dianions. The DNA chains in the DNA-AB complexes can mechanically be aligned in a preferred direction k. Highly oriented dye complexes prepared on microslides were birefringent and dichroic. The orientation is maintained during subsequent staining with aqueous EY solutions. In this way we also prepared highly orientated purple DNA-AB-EY complexes on microslides. The light absorption of both types of dye complexes was studied by means of a microspectrophotometer equipped with a polarizer and an analyser. The sites of best orientation within the dye preparations were selected under crossed nicols according to the quality of birefringence.(ABSTRACT TRUNCATED AT 400 WORDS) 相似文献
10.
Summary Bone marrow smears were made and fixed in methanol or formaldehyde. Marrow sections of various thicknesses were also prepared from formaldehyde fixed marrows embedded in paraffin or plastic (glycol methacrylate). The different smears and sections were then stained by a Romanowsky-Giemsa procedure. Some specimens were stained using a standard microwave-stimulated method previously used diagnostically. The effects of technical variations were studied, including degree of microwave irradiation and the staining time. Comparisons of the resulting staining outcomes showed that microwave stimulated Romanowsky-Giemsa staining of plastic sections is a rate controlled process. Unusual aspects of the staining pattern of plastic sections (namely the purple basophilic cytoplasms and nucleoli, and blue chromatin) are due to microwave stimulation and formaldehyde fixation respectively. 相似文献
11.
12.
13.
E Zipfel J R Grezes A Naujok W Seiffert D H Wittekind H W Zimmermann 《Histochemistry》1984,81(4):337-351
The Romanowsky-Giemsa staining (RG staining) has been studied by means of microspectrophotometry using various staining conditions. As cell material we employed in our model experiments mouse fibroblasts, LM cells. They show a distinct Romanowsky-Giemsa staining pattern. The RG staining was performed with the chemical pure dye stuffs azure B and eosin Y. In addition we stained the cells separately with azure B or eosin Y. Staining parameters were pH value, dye concentration, staining time etc. Besides normal LM cells we also studied cells after RNA or DNA digestion. The spectra of the various cell species were measured with a self constructed microspectrophotometer by photon counting technique. The optical ray pass and the diagramm of electronics are briefly discussed. The nucleus of RG stained LM cells, pH congruent to 7, is purple, the cytoplasm blue. After DNA or RNA digestion the purple respectively blue coloration in the nucleus or the cytoplasm completely disappeares. Therefore DNA and RNA are the preferentially stained biological substrates. In the spectrum of RG stained nuclei, pH congruent to 7, three absorption bands are distinguishable: They are A1 (15400 cm-1, 649 nm), A2 (16800 cm-1, 595 nm) the absorption bands of DNA-bound monomers and dimers of azure B and RB (18100 cm-1, 552 nm) the distinct intense Romanowsky band. Our extensive experimental material shows clearly that RB is produced by a complex of DNA, higher polymers of azure B (degree of association p greater than 2) and eosin Y. The complex is primarily held together by electrostatic interaction: inding of polymer azure B cations to the polyanion DNA generates positively charged binding sites in the DNA-azure B complex which are subsequently occupied by eosin Y anions. It can be spectroscopically shown that the electronic states of the azure B polymers and the attached eosin Y interact. By this interaction the absorption of eosin Y is red shifted and of the azure B polymers blue shifted. The absorption bands of both molecular species overlap and generate the Romanowsky band. Its strong maximum at 18100 cm-1 is due to the eosin Y part of the DNA-azure B-eosin Y complex. The discussed red shift of the eosin Y absorption is the main reason for the purple coloration of RG stained nuclei. Using a special technique it was possible to prepare an artificial DNA-azure B-eosin Y complex with calf thymus DNA as a model nucleic acid and the two dye stuffs azure B and eosin Y.(ABSTRACT TRUNCATED AT 400 WORDS) 相似文献
14.
Teaching students about the physiology of neurotransmitter receptors usually requires practical lessons with the use of sophisticated equipment and complex analysis of data. Here, we report our experience in teaching medical students with a simple, practical protocol that transforms the physiology of glutamate receptors into neuronal staining, observable under bright-field microscopy. Essentially, the students were challenged to selectively stain a subpopulation of cultured neurons expressing Ca(2+)-permeable alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) receptors (a subgroup of ionotropic glutamate receptors). Neurons expressing this type of receptors were loaded with Co(2+) (in substitution for Ca(2+)) after nondesensitizing activation of AMPA receptors. After precipitation, the Co(2+) was revealed after treatment with silver. At the end of the procedure, the neurons expressing Ca(2+)-permeable AMPA receptors were visually identified under bright-field microscopy. The procedure allowed the visualization of the complete dendritic network of the stained neurons and allowed the students to learn very efficiently about the physiology of glutamate receptors. 相似文献
15.
16.
17.
R Chatelain A Willms S Biesterfeld W Auffermann A B?cking 《Analytical and quantitative cytology and histology / the International Academy of Cytology [and] American Society of Cytology》1989,11(3):211-217
A Shandon Varistain 24-3 staining machine was modified in order to run automated DNA Feulgen staining. Initial studies showed a strict dependence of the staining intensity (integrated optical density [IOD]) on the temperature of the DNA hydrolysis in 4 N HCl: a difference of 0.5 degrees C around the optimum hydrolysis temperature of 27.5 degrees C resulted in IOD differences of up to 7.8% in epithelial cells and up to 12.0% in lymphocytes. A temperature-controlled stainless steel cuvette, covered with a 4 N HCl-resistant material, was developed and integrated into the machine. Temperature measurements were performed at different positions in the cuvette and on glass slides with copper-constantan electrodes fixed on them; no temperature gradient could be detected within the cuvette. The adjusted temperature of 27.5 degrees C remained constant over 24 hours. The coefficient of variation (CV) of the staining intensity in lymphocytes between different areas on the same slide and between different slides of the same staining cycle was less than 0.6%. The CV between different staining cycles was 5.9%. This system for automated Feulgen staining thus gives reproducible and reliable results and may be introduced into routine diagnostic procedures. 相似文献
18.
We investigated the binding of azure B to DNA (calf thymus) over a wide range of concentrations of the dye (CF) and the nucleic acid (CN) using absorption spectroscopy [CF and CN represent the total concentrations of the ye (F) and the mononucleotide units (N) of the DNA, respectively]. The binding isotherms of the dye to DNA in aqueous solutions were determined. In addition, we analysed the composition of insoluble DNA/azure B precipitates that are formed in presence of an excess of azure B. These precipitates are of particular interest, because Giemsa staining is usually performed using high dye concentrations. Azure B easily forms dimers in aqueous solutions. When determining the binding isotherms, the equilibrium between free monomers and dimers must be taken into account. Therefore, we determined the dimerisation constant (Kd) of azure B from the concentration dependency of its absorption spectra in water at the standard temperature T = 298 K (25 degrees C), Kd = 6.5 X 10(3) M-1 (experimental conditions: tris buffer, pH 7.2; concentration of Na ions, CNa = 0.002 M). As the CNa value increases, the dimerisation constant rises rapidly. When the azure B concentration is very low and there is an excess of DNA, ordinary Scatchard and Langmuir isotherms are observed. Monomer dye cations are bound to DNA, these cations being in equilibrium with free monomers in the solution. In order to obtain the Scatchard binding constant (Ks) and the binding parameter (n) spectroscopically, it is necessary to determine the extinction coefficient (epsilon Fb) of the monomer bound (b) dye molecules (F) at one analytical wave number (upsilon a). The three constants can be determined simultaneously using an iterative technique that combines Scatchard isotherms and the Benesi-Hildebrand extrapolation, CN----infinity. We obtained Ks = 1.8 X 10(5) M-1 and n = 0.18 (25 degrees C; tris buffer, pH 7.2; CNa = 0.002 M). At very low dye (CF) and competitor (CNa) concentrations, only 18% of the anionic binding sites of the DNA are capable of binding the dye cations. With increasing CNa values the concentration of bound azure B cations decreases rapidly. The Na cations displace the bound dye cations and act as a competitor. The Ks value also greatly depends on the competitor concentration (CNa).(ABSTRACT TRUNCATED AT 400 WORDS) 相似文献
19.
20.
Feulgen staining is considered to be a quantitative DNA-specific cytochemical procedure. The applicability of this staining in high-resolution cytometry was tested in comparison with a regressive Papanicolaou staining. Papanicolaou-stained or Feulgen-stained intermediate and carcinoma cells selected by a cytologist were examined with a Zeiss scanning microscope photometer at 546 and 560 nm, respectively. After cell image segmentation and feature extraction, a statistical data evaluation was carried out by computer. Cell distributions with respect to four selected nuclear features demonstrated the influence of the staining procedure on cell feature measurements. The discriminatory power of the classification system as related to both staining procedures was studied using discriminant analysis. Using only nuclear features, a 7.3% improvement of the overall correct classification rate (from 85.0% to 92.3%) was achieved using Feulgen staining. The misclassification rate was simultaneously reduced by 50%. Using cytoplasmic as well as nuclear features, a 98% rate of correct classification was achieved. 相似文献