首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
A new low-molecular weight dendrimer-like MRI contrast agent (Gd-D1) has been synthesized and characterized in vitro by proton and oxygen-17 relaxometry. Its pharmacokinetic parameters and biodistribution patterns were evaluated on rats. Its in vitro and in vivo properties, that is, the longitudinal relaxivity (defined as the increase of the water proton longitudinal relaxation rate induced by one millimole per liter of Gd-D1) equal to 5.6s(-1)mM(-1) at 20 MHz and 310 K, the elimination half-time equal to 85 min, and its low accumulation in liver and spleen, underline its potential as a blood-pool MRI contrast agent.  相似文献   

2.
The physical and biological properties of a water-soluble polymeric contrast agent based on a complex of N-(2-hydroxypropyl)methacrylamide copolymer with gadolinium (HE-24.8) were investigated, and its potential for experimental magnetic resonance (MR) angiography was assessed. Relaxivities of Gd-DTPA-BMA, Gd-DTPA-HSA (human serum albumin), and HE-24.8 were determined at 1.5 T. Thermic stability and biocompatibility of HE-24.8 were assessed in vitro and by analyzing kinetics and organ distribution in rats for up to 2 weeks. For comparison, HE-24.8- and Gd-DTPA-HSA-enhanced micro-MR angiographies of brain, chest, and subcutaneous tumors in rats were performed. T1 relaxivity of HE-24.8 (21.3 +/- 1.1 mM(-1) s(-1)) was 5-fold higher than that of Gd-DTPA-BMA (4.1 +/- 0.1 mM(-1) s(-1)) and twice as high as that of Gd-DTPA-HSA (12.4 +/- 0.2 mM(-1) s(-1)). Varying the molecular weight of the polymer (15-46 kDa) did not significantly change the T1 relaxivity. In rats, 20 and 10% of the injected dose of HE-24.8 was detected at 24 and 168 h postinjection, respectively. Upon a relatively rapid initial renal clearance, no specific retention in any organ was noted, with some exception for the reticulo-endothelial system. No measurable release of gadolinium from the polymer-Gd complex or cell toxicity was observed during its incubation in aqueous environment. Excellent display of rat and tumor vascularization was achieved with Gd-DTPA-HSA and HE-24.8; however, contrast of vessels was higher in HE-24.8-enhanced scans. HE-24.8 is considered a macromolecular contrast agent highly suited for experimental MR studies.  相似文献   

3.
The affinity matrix prepared by the attachment of L-thyroxine (T4) to epichlorohydrine-activated Sepharose 4B biospecifically absorbs the T4-binding globulin (TBG), 25K and 80/27K proteins, immunoglobulin G (IgG) and albumin (HSA) from human normal and retroplacental sera. The absorbed protein patterns were shown to depend on the immobilized T4 concentration, pH, temperature and incubation time. The potent eluents desorbing 85-100% of the protein are 1 mM NaOH, 3 M NH4SCN, 10(-5) M T4 or 3 mM 8-anilinonaphthalene-1-sulfonic acid (ANS) for TBG; NaOH, NH4SCN, 3 mM MgCl2 or 12mM sodium cholate for 25K protein and HSA; NaOH, NH4SCN or MgCl2 for the 80/27K and 25K proteins and IgG. Moreover, T4 desorbs small amounts (6-8%) of the 80/27K and 25K proteins, while sodium cholate elutes about 6% of TBG. The eluted from T4-Sepharose 4B and further purified TBG, 25K and 80/27K proteins display different [125I]T4-binding activities within the pH range from 2 to 9 and differ by their resistance to thermal inactivation at 50-80 degrees C. Double radial immunodiffusion analysis with the use of antisera to TBG, 25K, 80/27K, HSA and IgG demonstrated that the proteins share no common antigenic determinants. It was concluded that the novel 25K and 80/27K proteins represent endogenous components of the human blood thyroid hormone-binding protein system rather than fragments or aggregates of the known T4-binding proteins.  相似文献   

4.
Water-soluble gadofullerides exhibited high efficiency as magnetic resonance imaging (MRI) contrast agents. In this paper, we report the conjugation of the newly synthesized gadofulleride, Gd@C82O6(OH) 16(-)(NHCH2CH2COOH)8, with the antibody of green fluorescence protein (anti-GFP), as a model for "tumor targeted" imaging agents based on endohedral metallofullerenes. In this model system, the activity of the anti-GFP conjugate can be conveniently detected by green fluorescence protein (GFP), leading to in vitro experiments more direct and facile than those of tumor antibodies. Objective-type total internal reflection fluorescence microscopy revealed that each gadofulleride aggregate conjugated on average five anti-GFPs, and the activity of anti-GFPs was preserved after conjugation. In addition, the gadofulleride/antibody conjugate exhibited higher water proton relaxivity (12.0 mM (-1) s (-1)) than the parent gadofulleride aggregate (8.1 mM (-1) s (-1)) in phosphate buffered saline at 0.35 T, as also confirmed by T1-weighted images of phantoms. These observations clearly indicate that the synthesized gadofulleride/antibody conjugate not only has targeting potential, but also exhibits higher efficiency as an MRI contrast agent.  相似文献   

5.
As the first clinically approved gadolinium-based blood-pool MRI contrast agent, gadofosveset was designed to bind to human serum albumin (HSA) reversibly, extending the circulation time in the bloodstream. This valuable pharmacokinetic property required for vasculature imaging, however, raises the risk of release and accumulation of gadolinium in vivo. The binding of gadofosveset to HSA significantly increases the relaxivity at low field, which decreases drastically when the magnetic field increases, limiting the applications of gadofosveset at fields of 3 T and higher. To address those challenges, we evaluated a novel dimeric manganese(III) porphyrin (MnP2) in vitro and in vivo as a potential gadolinium-free blood-pool agent. Through multiple spectroscopic studies, we demonstrated that MnP2 binds to HSA tightly. MnP2 exhibits a moderate relaxivity decrease on HSA binding. Nevertheless, owing to the unique field-dependent relaxation behaviors and the dimeric construct (two MnIII ions per complex), MnP2–HSA has a molar relaxivity twice that of the gadofosveset–HSA complex at 3 T. Through intravenous injection in rats, MnP2 exhibits long retention and significant contrast enhancement in the vascular compartment, as tested in a 3-T high-field clinical MRI scanner. Taken together, these data demonstrate that MnP2 represents a new class of gadolinium-free blood-pool agents suitable for both regular and high-field applications.  相似文献   

6.
Interaction of isofraxidin with human serum albumin   总被引:8,自引:0,他引:8  
This study was designed to examine the interaction of isofraxidin with human serum albumin (HSA) under physiological conditions with drug concentrations in the range of 3.3 x 10(-6) mol L(-1)-3.0x10(-5) mol L(-1) and HSA concentration at 1.5 x 10(-6) mol L(-1). Fluorescence quenching methods in combination with Fourier transform infrared (FT-IR) spectroscopy and circular dichroism (CD) spectroscopy were used to determine the drug-binding mode, the binding constant and the protein structure changes in the presence of isofraxidin in aqueous solution. Spectroscopic evidence showed that the interaction results in one type of isofraxidin-HSA complex with binding constants of 4.1266 x 10(5) L mol(-1), 3.8612 x 10(5) L mol(-1), 3.5063 x 10(5) L mol(-1), 3.1241 x 10(5) L mol(-1) at 296 K, 303 K, 310 K, 318 K, respectively. The thermodynamic parameters, enthalpy change (DeltaH) and entropy change (DeltaS) were calculated to be -10.08 kJ mol(-1) and 73.57 J mol(-1) K(-1) according to van't Hoff equation, which indicated that hydrophobic interaction played a main role in the binding of isofraxidin to HSA. The experiment results are nearly in accordance with the calculation results obtained by Silicon Graphics Ocatane2 workstation.  相似文献   

7.
The binding of rhein with human serum albumin (HSA) has been studied in detail by spectroscopic method including circular dichroism (CD), Fourier transformation infrared spectra (FT-IR), fluorescence spectra. The binding parameters for the reaction have been calculated according to Scatchard equation at different temperatures. The plots indicated that the binding of HSA to rhein at 303, 310 and 318 K is characterized by one binding site with the affinity constant K at (4.93+/-0.16)x10(5), (4.02+/-0.16)x10(5) and (2.69+/-0.16)x10(5) M-1, respectively. The secondary structure compositions of free HSA and its rhein complexes were estimated by the FT-IR spectra. FT-IR and curve-fitted results of amide I band are in good agreement with the analyses of CD spectra. Molecular Modeling method was used to calculate the interaction modes between the drug and HSA.  相似文献   

8.
Tumor extracellular matrix has an abundance of cancer related proteins that can be used as biomarkers for cancer molecular imaging. Innovative design and development of safe and effective targeted contrast agents to these biomarkers would allow effective MR cancer molecular imaging with high spatial resolution. In this study, we synthesized a low molecular weight CLT1 peptide targeted Gd(III) chelate CLT1-dL-(Gd-DOTA)(4) specific to clotted plasma proteins in tumor stroma for cancer MR molecular imaging. CLT1-dL-(Gd-DOTA)(4) was synthesized by conjugating four Gd-DOTA monoamide chelates to a CLT1 peptide via generation 1 lysine dendrimer. The T(1) relaxivity of CLT1-dL-(Gd-DOTA)(4) was 40.4 mM(-1) s(-1) per molecule (10.1 mM(-1) s(-1) per Gd) at 37 °C and 1.5 T. Fluorescence imaging showed high binding specificity of CLT1 to orthotopic PC3 prostate tumor in mice. The contrast agent resulted in improved tumor contrast enhancement in male athymic nude mice bearing orthotopic PC3 prostate tumor xenograft at a dose of 0.03 mmol Gd/kg. The peptide targeted MRI contrast agent is promising for high-resolution MR molecular imaging of prostate tumor.  相似文献   

9.
Pseudomonas pseudoalcaligenes POB310 contains genes that encode phenoxybenzoate dioxygenase. The enzyme transforms mono- and dichlorinated phenoxybenzoates to yield protocatechuate that is used as a growth substrate and chlorophenols that are nonmetabolizable. Mass spectral analysis of (18)O metabolites obtained from the protocatechuate 3,4-dioxygenase-deficient mutant, POB310-B1, suggested that the reaction mechanism is a regioselective angular dioxygenation. A cloning vector containing reaction relevant genes (pD30.9) was transferred into Pseudomonas sp. strain B13 containing a modified ortho-cleavage pathway for aromatic compounds. The resultant Pseudomonas sp. strain B13-D5 (pD30.9) completely metabolized 3-(4-chlorophenoxy)benzoate. During growth on 3-phenoxybenzoate, strain B13-D5 (pD30.9) (K(s) = 0.70+/-0.04 mM, mu(max) = 0.45+/-0.03 h(-1), t(d) = 1.5 h, Y = 0.45+/-0.03 g bio- mass x g substrate(-1)) was better adapted to low substrate concentrations, had a faster rate of growth, and a greater yield than POB310 (K(s) = 1.13+/-0.06 mM, mu(max) = 0.31+/-0.02 h(-1), t(d) = 2.2 h, Y = 0.39+/-0.02 g biomass. g substrate(-1)).  相似文献   

10.
Two gadolinium polyoxometalates, Gd(2)P(2)W(18)O(62) and K(15)[(GdO)(3)(PW(9)O(34))(2)], have been evaluated by in vivo as well as in vitro experiments as the candidates of tissue-specific magnetic resonance imaging (MRI) contrast agents. T(1)-relaxivities of 28.4 mM(-1).s(-1) for Gd(2)P(2)W(18)O(62) and 11.2 mM(-1).s(-1) for K(15)[(GdO)(3)(PW(9)O(34))(2)] (400 MHz, 25 degrees C) were higher than that of the commercial MRI contrast agent (GdDTPA). Their relaxivities in bovine serum albumin and human serum transferrin were also reported. The favorable liver-specific contrast enhancement and renal excretion capability in in vivo MRI with Sprague-Dawley rats after i.v. administration of K(15)[(GdO)(3)(PW(9)O(34))(2)] was demonstrated. In vivo and in vitro assay showed that K(15)[(GdO)(3)(PW(9)O(34))(2)] is a promising liver-specific MRI contrast agent. However, Gd(2)P(2)W(18)O(62) did not show the favorable quality in vivo as expected from its high relaxivity in vitro, which was attributed to low bioavailability, indicating that it is of limited value as tissue-specific MRI contrast agent.  相似文献   

11.
The interaction of new 1, 10-phenanthrolineoctyldithiocarbamatopalladium (II) nitrate with DNA from calf thymus was investigated at 300 and 310 K in a Tris-HCl buffer of pH 7.0 medium containing 20 mM sodium chloride. This water soluble, square planar Pd(II) complex has been synthesized and spectroscopic (electronic, infrared, and nuclear magnetic resonance) and elemental analysis of the complex are discussed. This complex shows greater growth inhibitory activity against human tumor cell line K562 than cisplatin. Results of UV-visible studies show that the complex exhibits cooperative binding with DNA and denatures the DNA at an extremely low concentration (~11.98 μM). Fluorescence studies reveal that the mode of binding of this complex with DNA seems to be intercalation. The results of sephadex G-25 column show that the binding of metal complex with DNA is so strong that it does not readily break. Several binding and thermodynamic parameters are also described. They may shed light on the mechanisms of interaction of this agent with DNA, which should be quite different from that of cisplatin.  相似文献   

12.
The interaction of new 1, 10-phenanthrolineoctyldithiocarbamatopalladium (II) nitrate with DNA from calf thymus was investigated at 300 and 310 K in a Tris-HCl buffer of pH 7.0 medium containing 20 mM sodium chloride. This water soluble, square planar Pd(II) complex has been synthesized and spectroscopic (electronic, infrared, and nuclear magnetic resonance) and elemental analysis of the complex are discussed. This complex shows greater growth inhibitory activity against human tumor cell line K562 than cisplatin. Results of UV-visible studies show that the complex exhibits cooperative binding with DNA and denatures the DNA at an extremely low concentration (~11.98 μM). Fluorescence studies reveal that the mode of binding of this complex with DNA seems to be intercalation. The results of sephadex G-25 column show that the binding of metal complex with DNA is so strong that it does not readily break. Several binding and thermodynamic parameters are also described. They may shed light on the mechanisms of interaction of this agent with DNA, which should be quite different from that of cisplatin.  相似文献   

13.
1 Introduction  Serumalbuminproteinsareamongthemosthighlystudiedandappliedinbiochemistry[1~ 4].Albuministhemostabundantproteininbloodplasmaandoneofitsmainfunctionsisbasedonauniqueabilitytobindnumerousendogenousandexogenouscompounds.Duetoitsligandbindingpropertiesalbuminservesasacirculatingdepotofsomemetabolites.Thisdepoteffectisoftenmadeuseofindrugtherapy.  Humanserumalbumin(HSA)isasinglepeptidechainconsistingof 5 85aminoacids( 6 6 5ku)asdeterminedbyaminoacidsequencestudies[5] andasde…  相似文献   

14.
The kinetics of reduction of spinach ferredoxin (Fd), ferredoxin-NADP+ reductase (FNR), and the Fd-FNR complex have been investigated by the laser flash photolysis technique. 5-Deazariboflavin semiquinone (5-dRf), generated in situ by laser flash photolysis under anaerobic conditions, rapidly reduced both oxidized Fd (Fdox) (k = 2 X 10(8) M-1 s-1) and oxidized FNR (FNRox) (K = 6.3 X 10(8) M-1 s-1) at low ionic strength (10 mM) at pH 7.0, leading to the formation of reduced Fd (Fdred) and FNR semiquinone (FNR.), respectively. At higher ionic strengths (310 and 460 mM), the rate constant for the reduction of the free Fdox increased about 3-fold (k = 6.7 X 10(8) M-1 s-1 at 310 mM and 6.4 X 10(8) M-1 s-1 at 460 mM). No change in the second-order rate constant for reduction of the free FNRox was observed at high ionic strength. At low ionic strength (10 mM), 5-dRf. reacted only with the FAD center of the preformed 1:1 Fdox-FNRox complex (k = 5.6 X 10(8) M-1 s-1), leading to the formation of FNR.. No direct reduction of Fdox in the complex was observed. No change in the kinetics occurred in the presence of excess NADP+. The second-order rate constant for reduction of Fdox by 5-dRf. in the presence of a stoichiometric amount of fully reduced FNR at low ionic strength was 7 X 10(6) M-1 s-1, i.e., about one-thirtieth the rate constant for reduction of free Fdox.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
The pharmacokinetics and pharmacodynamics of any drug will depend, largely, on the interaction that has with human serum albumin (HSA), the most abundant plasma protein. The interaction between newly synthesized Pd(II) complexe, 2,2'-bipyridin Butylglycinato Pd(II) nitrate, an anti-tumor component, with HSA was studied at different temperatures by fluorescence, far UV circular dichroism (CD), UV-visible spectrophotometry and theoretical approaches. The Pd(II) complex has a strong ability to quench the intrinsic fluorescence of HSA through a dynamic quenching procedure. The binding parameters and thermodynamic parameters, including δH°, δS° and δG° were calculated by fluorescence quenching method, indicated that hydrophobic forces play a major role in the interaction of Pd(II) complex with HSA. Based on Autodock, FRET (fluorescence resonance energy transfer) and fluorescence quenching data, it may be concluded that one of the binding sites in the complex of HSA is near the only one Trp of HSA (Trp214) in sub domain IIA of the protein. Far-UV-CD results indicated that Pd(II)-complex induced increase in the α-helical content of the protein. The anti-tumor property of the synthesized Pd(II) complex was studied by testing it on human tumor cell line K562. The 50% cytotoxic concentration (Cc??) of complex was determined using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) assay. Also, fluorescence staining with DAPI (4,6-diamidino-2-phenylindole) revealed some typical nuclear changes that are characteristic of apoptosis which is induced at Cc?? concentration of Pd(II) complex in K562 cell line after 24?h incubation. Our results suggest that Pd(II) complex is a promising anti-proliferative agent and should execute its biological effects by inducing apoptosis.  相似文献   

16.
The interaction between mefloquine (MEF), the antimalarial drug, and human serum albumin (HSA), the main carrier protein in blood circulation, was explored using fluorescence, absorption, and circular dichroism spectroscopic techniques. Quenching of HSA fluorescence with MEF was characterized as static quenching and thus confirmed the complex formation between MEF and HSA. Association constant values for MEF-HSA interaction were found to fall within the range of 3.79-5.73 × 104 M˗1 at various temperatures (288, 298, and 308 K), which revealed moderate binding affinity. Hydrogen bonds and hydrophobic interactions were predicted to connect MEF and HSA together in the MEF-HSA complex, as deduced from the thermodynamic data (ΔS = +133.52 J mol−1 K−1 and ΔH = +13.09 kJ mol−1) of the binding reaction and molecular docking analysis. Three-dimensional fluorescence spectral analysis pointed out alterations in the microenvironment around aromatic amino acid (tryptophan and tyrosine) residues of HSA consequent to the addition of MEF. Circular dichroic spectra of HSA in the wavelength ranges of 200-250 and 250-300 nm hinted smaller changes in the protein's secondary and tertiary structures, respectively, induced by MEF binding. Noncovalent conjugation of MEF to HSA bettered protein thermostability. Site marker competitive drug displacement results suggested HSA Sudlow's site I as the MEF binding site, which was also supported by molecular docking analysis.  相似文献   

17.
Binding of the bioactive component jatrorrhizine to human serum albumin   总被引:2,自引:0,他引:2  
The interaction between Jatrorrhizine with human serum albumin (HSA) were studied by fluorescence quenching technique, circular dichroism (CD) spectroscopy, and Fourier transform infrared (FT-IR) spectroscopy. Fluorescence data revealed the presence of a single class of binding site on HSA and its binding constants (K) are 7.278 x 10(4), 6.526 x 10(4), and 5.965 x 10(4) L.mol(-1) at 296, 303, and 310 K, respectively. The CD spectra and FT-IR spectra have proved that the protein secondary structure changed in the presence of Jatrorrhizine in aqueous solution. The effect of common ions on the binding constants was also investigated. In addition, the thermodynamic functions standard enthalpy (DeltaH(0)) and standard entropy (DeltaS(0)) for the reaction were calculated to be -10.891 kJ.mol(-1) and 56.267 J.mol(-1) K(-1), according to the van't Hoff equation. These data indicated that hydrophobic and electrostatic interactions played a major role in the binding of Jatrorrhizine to HSA. Furthermore, the displacement experiments indicated that Jatrorrhizine could bind to the site I of HSA, which was also in agreement with the result of the molecular modeling study.  相似文献   

18.
Legler PM  Lee HC  Peisach J  Mildvan AS 《Biochemistry》2002,41(14):4655-4668
Escherichia coli GDP-mannose mannosyl hydrolase (GDPMH), a homodimer, catalyzes the hydrolysis of GDP-alpha-D-sugars to yield the beta-D-sugar and GDP by nucleophilic substitution with inversion at the C1' carbon of the sugar [Legler, P. M., Massiah, M. A., Bessman, M. J., and Mildvan, A. S. (2000) Biochemistry 39, 8603-8608]. GDPMH requires a divalent cation for activity such as Mn2+ or Mg2+, which yield similar kcat values of 0.15 and 0.13 s(-1), respectively, at 22 degrees C and pH 7.5. Kinetic analysis of the Mn2+-activated enzyme yielded a K(m) of free Mn2+ of 3.9 +/- 1.3 mM when extrapolated to zero substrate concentration (K(a)Mn2+), which tightened to 0.32 +/- 0.18 mM when extrapolated to infinite substrate concentration (K(m)Mn2+). Similarly, the K(m) of the substrate extrapolated to zero Mn2+ concentration (K(S)(GDPmann) = 1.9 +/- 0.5 mM) and to infinite Mn2+ concentration (K(m)(GDPmann) = 0.16 +/- 0.09 mM) showed an order of magnitude decrease at saturating Mn2+. Such mutual tightening of metal and substrate binding suggests the formation of an enzyme-metal-substrate bridge complex. Direct Mn2+ binding studies, monitoring the concentration of free Mn2+ by EPR and of bound Mn2+ by its enhanced paramagnetic effect on the longitudinal relaxation rate of water protons (PRR), detected three Mn2+ binding sites per enzyme monomer with an average dissociation constant (K(D)) of 3.2 +/- 1.0 mM, in agreement with the kinetically determined K(a)Mn2+. The enhancement factor (epsilon(b)) of 11.5 +/- 1.2 indicates solvent access to the enzyme-bound Mn2+ ions. No cross relaxation was detected among the three bound Mn2+ ions, suggesting them to be separated by at least 10 A. Such studies also yielded a weak dissociation constant for the binary Mn2+-GDP-mannose complex (K1 = 6.5 +/- 1.0 mM) which significantly exceeded the kinetically determined K(m) values of Mn2+, indicating the true substrate to be GDP-mannose rather than its Mn2+ complex. Substrate binding monitored by changes in 1H-15N HSQC spectra yielded a dissociation constant for the binary E-GDP-mannose complex (K(S)(GDPmann)) of 4.0 +/- 0.5 mM, comparable to the kinetically determined K(S) value (1.9 +/- 0.5 mM). To clarify the metal stoichiometry at the active site, product inhibition by GDP, a potent competitive inhibitor (K(I) = 46 +/- 27 microM), was studied. Binding studies revealed a weak, binary E-GDP complex (K(D)(GDP) = 9.4 +/- 3.2 mM) which tightened approximately 500-fold in the presence of Mn2+ to yield a ternary E-Mn2+-GDP complex with a dissociation constant, K3(GDP) = 18 +/- 9 microM, which overlaps with the K(I)(GDP). The tight binding of Mn2+ to 0.7 +/- 0.2 site per enzyme subunit in the ternary E-Mn2+-GDP complex (K(A)' = 15 microM) and the tight binding of GDP to 0.8 +/- 0.1 site per enzyme subunit in the ternary E-Mg2+-GDP complex (K3 < 0.5 mM) indicate a stoichiometry close to 1:1:1 at the active site. The decrease in the enhancement factor of the ternary E-Mn2+-GDP complex (epsilon(T) = 4.9 +/- 0.4) indicates decreased solvent access to the active site Mn2+, consistent with an E-Mn2+-GDP bridge complex. Fermi contact splitting (4.3 +/- 0.2 MHz) of the phosphorus signal in the ESEEM spectrum established the formation of an inner sphere E-Mn2+-GDP complex. The number of water molecules coordinated to Mn2+ in this ternary complex was determined by ESEEM studies in D2O to be two fewer than on the average Mn2+ in the binary E-Mn2+ complexes, consistent with bidentate coordination of enzyme-bound Mn2+ by GDP. Kinetic, metal binding, and GDP binding studies with Mg2+ yielded dissociation constants similar to those found with Mn2+. Hence, GDPMH requires one divalent cation per active site to promote catalysis by facilitating the departure of the GDP leaving group, unlike its homologues the MutT pyrophosphohydrolase, which requires two, or Ap4A pyrophosphatase, which requires three.  相似文献   

19.
Protein physical and chemical properties can be altered by polymer interaction. The presence of several high affinity binding sites on human serum albumin (HSA) makes it a possible target for many organic and polymer molecules. This study was designed to examine the interaction of HSA with poly(ethylene glycol) (PEG) in aqueous solution at physiological conditions. Fourier transform infrared, ultraviolet-visible, and CD spectroscopic methods were used to determine the polymer binding mode, the binding constant, and the effects of polymer complexation on protein secondary structure.The spectroscopic results showed that PEG is located along the polypeptide chains through H-bonding interactions with an overall affinity constant of K = 4.12 x 10(5) M(-1). The protein secondary structure showed no alterations at low PEG concentration (0.1 mM), whereas at high polymer content (1 mM), a reduction of alpha-helix from 59 (free HSA) to 53% and an increase of beta-turn from 11 (free HSA) to 22% occurred in the PEG-HSA complexes (infrared data). The CDSSTR program (CD data) also showed no major alterations of the protein secondary structure at low PEG concentrations (0.1 and 0.5 mM), while at high polymer content (1 mM), a major reduction of alpha-helix from 69 (free HSA) to 58% and an increase of beta-turn from 7 (free HSA) to 18% was observed.  相似文献   

20.
The effectiveness and specificity of a tannin inhibition on human salivary amylase (HSA) catalyzed hydrolysis was studied using 2-chloro-4-nitrophenyl 4-O-beta-D-galactopyranosyl-alpha-maltoside (GalG(2)-CNP) and amylose substrates. Aleppo tannin was isolated from the gall nut of Aleppo oak. This tannin is a gallotannin, in which glucose is esterified with gallic acids. This is the first kinetic report, which details the inhibitory effects of this compound on HSA. A mixed non-competitive type inhibition has been observed on both substrates. The extent of inhibition is markedly dependent on the substrate-type. Kinetic constants were calculated from Lineweaver-Burk secondary plots for GalG(2)-CNP (K(EI) 0.82 microg mL(-1), K(ESI) 3.3 microg mL(-1)). This indicates a 1:1 binding ratio of inhibitor-enzyme and/or inhibitor-enzyme-substrate complex. When amylose was the substrate the binding ratio of inhibitor to enzyme-substrate complex was found to be 2:1, with the binding constants of K(EI) 17.4 microg mL(-1), K(ESI) 14.9 microg mL(-1), K(ESI(2)) 9.6 microg mL(-1). Presumably, the tannin inhibitor can bind not only to HSA, but to the amylose substrate, as well. Kinetic data suggest that Aleppo tannin is a more efficient amylase inhibitor than the recently studied other tannin with quinic acid core (GalG(2)-CNP: K(EI) 9.0 microg mL(-1), K(ESI) 47.9 microg mL(-1)).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号