首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
In the event of abdominal aortic aneurysm (AAA) rupture, the outcome is often death. This paper aims to experimentally identify the rupture locations of in vitro AAA models and validate these rupture sites using finite element analysis (FEA). Silicone rubber AAA models were manufactured using two different materials (Sylgard 160 and Sylgard 170, Dow Corning) and imaged using computed tomography (CT). Experimental models were inflated until rupture with high speed photography used to capture the site of rupture. 3D reconstructions from CT scans and subsequent FEA of these models enabled the wall stress and wall thickness to be determined for each of the geometries. Experimental models ruptured at regions of inflection, not at regions of maximum diameter. Rupture pressures (mean±SD) for the Sylgard 160 and Sylgard 170 models were 650.6±195.1 mmHg and 410.7±159.9 mmHg, respectively. Computational models accurately predicted the locations of rupture. Peak wall stress for the Sylgard 160 and Sylgard 170 models was 2.15±0.26 MPa at an internal pressure of 650 mmHg and 1.69±0.38 MPa at an internal pressure of 410 mmHg, respectively. Mean wall thickness of all models was 2.19±0.40 mm, with a mean wall thickness at the location of rupture of 1.85±0.33 and 1.71±0.29 mm for the Sylgard 160 and Sylgard 170 materials, respectively. Rupture occurred at the location of peak stress in 80% (16/20) of cases and at high stress regions but not peak stress in 10% (2/20) of cases. 10% (2/20) of models had defects in the AAA wall which moved the rupture location away from regions of elevated stress. The results presented may further contribute to the understanding of AAA biomechanics and ultimately AAA rupture prediction.  相似文献   

2.
Post-operative changes in trabecular bone morphology at the cement-bone interface can vary depending on time in service. This study aims to investigate how micromotion and bone strains change at the tibial bone-cement interface before and after cementation. This work discusses whether the morphology of the post-mortem interface can be explained by studying changes in these mechanical quantities. Three post-mortem cement-bone interface specimens showing varying levels of bone resorption (minimal, extensive and intermediate) were selected for this study Using image segmentation techniques, masks of the post-mortem bone were dilated to fill up the mould spaces in the cement to obtain the immediately post-operative situation. Finite element (FE) models of the post-mortem and post-operative situation were created from these segmentation masks. Subsequent removal of the cement layer resulted in the pre-operative situation. FE micromotion and bone strains were analyzed for the interdigitated trabecular bone. For all specimens micromotion increased from the post-operative to the post-mortem models (distally, in specimen 1: 0.1 to 0.5 µm; specimen 2: 0.2 to 0.8 µm; specimen 3: 0.27 to 1.62 µm). Similarly bone strains were shown to increase from post-operative to post-mortem (distally, in specimen 1: −185 to −389 µε; specimen 2: −170 to −824 µε; specimen 3: −216 to −1024 µε). Post-mortem interdigitated bone was found to be strain shielded in comparison with supporting bone indicating that failure of bone would occur distal to the interface. These results indicate that stress shielding of interdigitated trabeculae is a plausible explanation for resorption patterns observed in post-mortem specimens.  相似文献   

3.
Subchondral bone (SCB) microdamage is commonly observed in traumatic joint injuries and has been strongly associated with post-traumatic osteoarthritis (PTOA). Knowledge of the three-dimensional stress and strain distribution within the SCB tissue helps to understand the mechanism of SCB failure, and may lead to an improved understanding of mechanisms of PTOA initiation, prevention and treatment. In this study, we used high-resolution micro-computed tomography (µCT)-based finite element (FE) modelling of cartilage-bone to evaluate the failure mechanism and the locations of SCB tissue at high-risk of initial failure under compression. The µCT images of five cartilage-bone specimens with an average SCB thickness of 1.23 ± 0.20 mm were used to develop five µCT-based FE models. The FE models were analysed under axial compressions of approximately 30 MPa applied to the cartilage surface while the bone edges were constrained. Strain and stress-based failure criteria were then applied to evaluate the failure mechanism of the SCB tissue under excessive compression through articular cartilage. µCT-based FE models predicted two locations in the SCB at high-risk of initial failure: (1) the interface of the calcified-uncalcified cartilage due to excessive tension, and (2) the trabecular bone beneath the subchondral plate due to excessive compression. µCT-based FE models of cartilage-bone enabled us to quantify the distribution of the applied compression which was transferred through the articular cartilage to its underlying SCB, and to investigate the mechanism and the mode of SCB tissue failure. Ultimately, the results will help to understand the mechanism of injury formation in relation to PTOA.  相似文献   

4.
Many commercial cemented glenoid components claim superior fixation designs and increased survivability. However, both research and clinical studies have shown conflicting results and it is unclear whether these design variations do improve loosening rates. Part of the difficulty in investigating fixation failure is the inability to directly observe the fixation interface, a problem addressed in this study by using a novel experimental set-up.Cyclic loading-displacement tests were carried out on 60 custom-made glenoid prostheses implanted into a bone substitute. Design parameters investigated included treatment of the fixation surface of the component resulting in different levels of back-surface roughness, flat-back versus curved-back, keel versus peg and more versus less conforming implants. Visually-observed failure and ASTM-recommended rim-displacements were recorded throughout testing to investigate fixation failure and if rim displacement is an appropriate measure of loosening.Roughening the implant back (Ra > 3 µm) improved resistance to failure (P < 0.005) by an order of magnitude with the rough and smooth groups failing at 8712 ± 5584 cycles (mean ± SD) and 1080 ± 1197 cycles, respectively. All other design parameters had no statistically significant effect on the number of cycles to failure. All implants failed inferiorly and 95% (57/60) at the implant/cement interface. Rim-displacement correlated with visually observed failure.The most important effect was that of roughening the implant, which strengthened the polyethylene-cement interface. Rim-displacement can be used as an indicator of fixation failure, but the sensitivity was insufficient to capture subtle effects.Level of Evidence: Basic Science Study, Biomechanical Analysis.  相似文献   

5.
In order to examine the effect of salinity on Cu accumulation from a naturally incorporated diet, oysters (Crassostrea virginica) were exposed in sea water for 96 days to four waterborne [Cu]: 2.9 ± 0.7 (control), 4.3 ± 0.6, 5.4 ± 0.5, and 10.7 ± 1.0 µg L? 1. After 96 days, the control whole body [Cu] increased from 2.1 ± 0.5 to 9.1 ± 1.1 µg g? 1 w.w. and the highest [Cu] was 163.4 ± 27.1 µg g? 1 w.w. in the oysters. Despite large differences in tissue [Cu], there was no effect on the fraction of trophically available metal in the oyster suggesting that trophic transfer will correlate well with tissue [Cu]. The control and highest [Cu] oysters became diet for killifish (Fundulus heteroclitus) in fresh and seawater for 40 days. The two diets contained 84.7 ± 5.1 and 850.5 ± 8.8 µg Cu g? 1 d.w. Fish were fed a combined diet of oyster and a pellet supplement (20.5 ± 1.0 µg Cu g? 1 d.w.) both at 5% body mass day? 1. In killifish, Cu increased ~ 7% in gills and 100% in intestines after 6 weeks of exposure to the high Cu diet. No other tissues accumulated Cu above control levels. An 11-fold difference free Cu2+ concentrations was predicted in intestinal fluid between fresh and sea water, but there was no corresponding effect of salinity on intestinal Cu accumulation suggesting that Cu is not accumulated as the free ion.  相似文献   

6.
Twenty five derivatives of indole carbohydrazide (125) had been synthesized. These compounds were characterized using 1H NMR and EI-MS, and further evaluated for their α-amylase inhibitory potential. The analogs (125) showed varying degree of α-amylase inhibitory potential.ranging between 9.28 and 599.0 µM when compared with standard acarbose having IC50 value 8.78 ± 0.16 µM. Six analogs, 25 (IC50 = 9.28 ± 0.153 µM), 22 (IC50 = 9.79 ± 0.43 µM), 4 (IC50 = 11.08 ± 0.357 µM), 1 (IC50 = 12.65 ± 0.169 µM), 8 (IC50 = 21.37 ± 0.07 µM) and 14 (IC50 = 43.21 ± 0.14 µM) showed potent α-amylase inhibition as compared to the standard acarbose (IC50 = 8.78 ± 0.16 µM). All other analogs displayed good to moderate inhibitory potential. Structure-activity relationship was established through the interaction of the active compounds with enzyme active site with the help of docking studies.  相似文献   

7.
《Process Biochemistry》2010,45(10):1616-1623
A modelling study on the anaerobic digestion process of a synthetic medium-strength wastewater containing molasses as a carbon source was carried out at different influent conditions. The digestion was conducted in a laboratory-scale hybrid anaerobic baffled reactor with three compartments and a working volume of 54 L, which operated at mesophilic temperature (35 °C). Two different kinetic models (one model was based on completely stirred tank reactors (CSTR) in series and the other an axial diffusion or dispersion model typical of deviations of plug-flow reactors), were assessed and compared to simulate the organic matter removal or fractional conversion. The kinetic constant (k) obtained by using the CSTR in series model was 0.60 ± 0.07 h−1, while the kinetic parameter achieved with the dispersion model was 0.67 ± 0.06 h−1, the dispersion coefficient (D) being 46. The flow pattern observed in the reactor studied was intermediate between plug-flow and CSTR in series systems, although the plug-flow system was somewhat predominant. The dispersion model allowed for a better fit of the experimental results of fractional conversions with deviations lower than 8% between the experimental and theoretical values. By contrast, the CSTR in series model predicted the behaviour of the reactor somewhat less accurately showing deviations lower than 10% between the experimental and theoretical values of the fractional conversion.  相似文献   

8.
Discovery and development of carbonic anhydrase inhibitors is crucial for their clinical use as antiepileptic, diurectic and antiglaucoma agents. Keeping this in mind, we have synthesized carbohydrazones 127 and evaluated them for their in vitro carbonic anhydrase inhibitory potential. Out of twenty-seven compounds, compounds 1 (IC50 = 1.33 ± 0.01 µM), 2 (IC50 = 1.85 ± 0.24 µM), 3 (IC50 = 1.37 ± 0.06 µM), and 9 (IC50 = 1.46 ± 0.12 µM) have showed carbonic anhydrase inhibition better than the standard drug zonisamide (IC50 = 1.86 ± 0.03 µM). Moreover, compounds 4 (IC50 = 2.32 ± 0.04 µM), 5 (IC50 = 3.96 ± 0.35 µM), 7 (IC50 = 2.33 ± 0.02 µM), and 8 (IC50 = 2.67 ± 0.01 µM) showed good inhibitory activity. Cheminformatic analysis has shown that compounds 1 and 2 possess lead-like properties. In addition, kinetic and molecular docking studies were also performed to investigate the binding interaction between carbohydrazones and carbonic anhydrase enzyme. This study has identified a novel and potent class of carbonic anhydrase inhibitors with the potential to be investigated further.  相似文献   

9.
A library of 4,6-dihydroxypyrimidine diones (135) were synthesized and evaluated for their urease inhibitory activity. Structure-activity relationships, and mechanism of inhibition were also studied. All compounds were found to be active with IC50 values between 22.6 ± 1.14–117.4 ± 0.73 µM, in comparison to standard, thiourea (IC50 = 21.2 ± 1.3 µM). Kinetics studies on the most active compounds 27, 16, 17, 28, and 33 were performed to investigate their modes of inhibition, and dissociation constants Ki. Compounds 2, 3, 7, 16, 28, and 33 were found to be mixed-type of inhibitors with Ki values in the range of 7.91 ± 0.024–13.03 ± 0.013 µM, whereas, compounds 46, and 17 were found to be non-competitive inhibitors with Ki values in the range of 9.28 ± 0.019–13.05 ± 0.023 µM. In silico study was also performed, and a good correlation was observed between experimental and docking studies. This study is continuation of our previously reported urease inhibitory activity of pyrimidine diones, representing potential leads for further research as possible treatment of diseases caused by ureolytic bacteria.  相似文献   

10.
Primary stability of uncemented resurfacing prosthesis is provided by an interference fit between the undersized implant and the reamed bone. Dependent on the magnitude of interference, the implantation process causes high shear forces and large strains which can exceed the elastic limit of cancellous bone. Plastification of the bone causes reduced stiffness and could lead to bone damage and implant loosening. The purpose in this study was to determine press-fit conditions which allow implantation without excessive plastic bone deformation and sufficient primary stability to achieve bone ingrowth. In particular, the influence of interference, bone quality and friction on the micromotion during walking and stair-climbing was investigated. Therefore elastic and plastic finite element (FE) models of the proximal femur were developed. Implantation was realized by displacing the prosthesis onto the femur while monitoring the contact pressure, plastic bone deformation as well as implantation forces. Subsequently a physiologic gait and stair-climbing cycle was simulated calculating the micromotion at the bone-implant interface. Results indicate that plastic deformation starts at an interference of 30 μm and the amount of plastified bone at the interface increases up to 90% at 150 μm interference. This effect did not reduce the contact pressure if interference was below 80 μm. The micromotion during walking was similar for the elastic and plastic FE models. A stable situation allowing bony ingrowth was achieved for both constitutive laws (elastic, plastic) for walking and stair climbing with at least 60 μm press-fit, which is feasible with clinically used implantation forces of 4 kN.  相似文献   

11.
The α-amylase acts as attractive target to treat type-2 diabetes mellitus. Therefore in discovering a small molecule as α-amylase inhibitor, we have synthesized benzofuran carbohydrazide analogs (1–25), characterized through different spectroscopic techniques such as 1HNMR and EI-MS. All screened analog shows good α-amylase inhibitory potentials with IC50 value ranging between 1.078 ± 0.19 and 2.926 ± 0.05 µM when compared with acarbose having IC50 = 0.62 ± 0.22 µM. Only nine analogs among the series such as analogs 3, 5, 7, 8, 10, 12, 21, 23 and 24 exhibit good inhibitory potential with IC50 values 1.644 ± 0.128, 1.078 ± 0.19, 1.245 ± 0.25, 1.843 ± 0.19, 1.350 ± 0.24, 1.629 ± 0.015, 1.353 ± 0.232, 1.359 ± 0.119 and 1.488 ± 0.07 µM when compare with standard drug acarbose. All other analogs showed good to moderate α-amylase inhibitory potentials. The SAR study was conducted on the basis of substituent difference at the phenyl ring. The binding interaction between analogs and active site of enzyme was confirmed by docking studies.  相似文献   

12.
Forward falls represent a risk of injury for the elderly. The risk is increased in elderly persons with bone diseases, such as osteoporosis. However, half of the patients with fracture were not considered at risk based on bone density measurement (current clinical technique). We assume that loading conditions are of high importance and should be considered. Real loading conditions in a fall can reach a loading speed of 2 m/s on average. The current study aimed to apply more realistic loading conditions that simulate a forward fall on the radius ex vivo. Thirty radii from elderly donors (79 y.o. ± 12 y.o., 15 males, 15 females) were loaded at 2 m/s using a servo-hydraulic testing machine to mimic impact that corresponds to a fall. Among the 30 radii, 14 had a fracture after the impact, leading to two groups (fractured and non-fractured). Surfacic strain fields were measured using stereovision and allow for visualization of fracture patterns. The average maximum load was 2963 ± 1274 N. These experimental data will be useful for assessing the predictive capability of fracture risk prediction methods such as finite element models.  相似文献   

13.
PurposeThis study evaluates the radiological properties of different 3D printing materials for a range of photon energies, including kV and MV CT imaging and MV radiotherapy beams.MethodsThe CT values of a number of materials were measured on an Aquilion One CT scanner at 80 kVp, 120 kVp and a Tomotherapy Hi Art MVCT imaging beam. Attenuation of the materials in a 6 MV radiotherapy beam was investigated.ResultsPlastic filaments printed with various infill densities have CT values of −743 ± 4, −580 ± 1 and −113 ± 3 in 120 kVp CT images which approximate the CT values of low-density lung, high-density lung and soft tissue respectively. Metal-infused plastic filaments printed with a 90% infill density have CT values of 658 ± 1 and 739 ± 6 in MVCT images which approximate the attenuation of cortical bone. The effective relative electron density REDeff is used to describe the attenuation of a megavoltage treatment beam, taking into account effects relating to the atomic number and mass density of the material. Plastic filaments printed with a 90% infill density have REDeff values of 1.02 ± 0.03 and 0.94 ± 0.02 which approximate the relative electron density RED of soft tissue. Printed resins have REDeff values of 1.11 ± 0.03 and 1.09 ± 0.03 which approximate the RED of bone mineral.Conclusions3D printers can model a variety of body tissues which can be used to create phantoms useful for both imaging and dosimetric studies.  相似文献   

14.
AimsThis study was performed to evaluate the therapeutic efficacy of nanocapsulated flavonoidal quercetin (QC) in combating arsenic-induced reactive oxygen species (ROS)-mediated oxidative damage in hepatocytes and brain cells in a rat model.Main methodsHepatic and neuronal cell damage in rats was made by a single injection (sc) of sodium arsenite (NaAsO2, 13 mg/kg b. wt. in 0.5 ml of physiological saline). A single dose of 500 µl of quercetin suspension (QC) (QC 8.98 µmol/kg) or 500 µl of nanocapsulated QC (NPQC) (QC 8.98 µmol/kg) was given orally to rats at 90 min prior to the arsenite injection.Key findingsInorganic arsenic depositions (182 ± 15.6 and 110 ± 12.8 ng/g protein) were found in hepatic and neuronal mitochondrial membranes. Antioxidant levels in hepatic and neuronal cells were reduced significantly by arsenic. NPQC prevented the arsenite-induced reduction in antioxidant levels in the liver and brain. Arsenic induced a substantial decrease in liver and brain cell membrane microviscosities, and NPQC treatment resulted in a unique protection against the loss. A significant correlation between mitochondrial arsenic and its conjugated diene level was observed both in liver and brain cells for all experimental rats.SignificanceArsenic-specific antidotes are used against arsenic-induced toxicity. However, the target site is poorly recognized and therefore achieving an active concentration of drug molecules can be a challenge. Thus, our objective was to formulate NPQC and to investigate its therapeutic potential in an oral route against arsenite-induced hepatic and neuronal cell damage in a rat model.  相似文献   

15.
The demands for applicable tissue-engineered scaffolds that can be used to repair load-bearing segmental bone defects (SBDs) is vital and in increasing demand. In this study, seven different combinations of 3 dimensional (3D) novel nanocomposite porous structured scaffolds were fabricated to rebuild SBDs using an extraordinary blend of cockle shells (CaCo3) nanoparticles (CCN), gelatin, dextran and dextrin to structure an ideal bone scaffold with adequate degradation rate using the Freeze Drying Method (FDM) and labeled as 5211, 5400, 6211, 6300, 7101, 7200 and 8100. The micron sized cockle shells powder obtained (75 µm) was made into nanoparticles using mechano-chemical, top-down method of nanoparticles synthesis with the presence of the surfactant BS-12 (dodecyl dimethyl bataine). The phase purity and crystallographic structures, the chemical functionality and the thermal characterization of the scaffolds’ powder were recognized using X-Ray Diffractometer (XRD), Fourier transform infrared (FTIR) spectrophotometer and Differential Scanning Calorimetry (DSC) respectively. Characterizations of the scaffolds were assessed by Scanning Electron Microscopy (SEM), Degradation Manner, Water Absorption Test, Swelling Test, Mechanical Test and Porosity Test. Top-down method produced cockle shell nanoparticles having averagely range 37.8±3–55.2±9 nm in size, which were determined using Transmission Electron Microscope (TEM). A mainly aragonite form of calcium carbonate was identified in both XRD and FTIR for all scaffolds, while the melting (Tm) and transition (Tg) temperatures were identified using DSC with the range of Tm 62.4–75.5 °C and of Tg 230.6–232.5 °C. The newly prepared scaffolds were with the following characteristics: (i) good biocompatibility and biodegradability, (ii) appropriate surface chemistry and (iii) highly porous, with interconnected pore network. Engineering analyses showed that scaffold 5211 possessed 3D interconnected homogenous porous structure with a porosity of about 49%, pore sizes ranging from 8.97 to 337 µm, mechanical strength 20.3 MPa, Young's Modulus 271±63 MPa and enzymatic degradation rate 22.7 within 14 days.  相似文献   

16.
Intraoperative digitization of osseous structures is an integral component of computer-assisted orthopaedic surgery. This study determined the repeatability and accuracy of predicting known radii and center locations of spherical objects for different proportions of digitized surface areas and various sphere sizes. Also, we investigated these accuracies for some relevant near-spherical osseous structures where results from full area digitizations were considered to be true. Digitizations were performed using an electromagnetic tracker with a stylus on the total and fractional surfaces of 10 hemispheres, ranging from 10 to 28 mm in radius. Repeatability was quantified by digitizing five trials of the entire surface and various fractional areas of selected hemisphere sizes. Similar trials were conducted on models of a humeral and femoral head, using the full head area as baseline and digitizing 15 and 30 mm diameter areas of the full head. Mean error for the predicted radii and center positions of the hemispheres ranged from 0.39±0.29 to 0.14±0.07 mm and 0.52±0.31 to 0.22±0.12 mm, respectively. Repeatability for the predicted radii and centers produced maximum standard deviations of 0.31 and 0.42 mm, respectively. All errors decreased as fractional area (40%, 60%, 80% and 100%) increased (p<0.05). Radius of curvature and center position errors for the humeral head model were 1.51±2.11 and 2.28±1.51 mm, respectively. These errors for the femoral head model were 3.37±4.14 and 4.25±4.14 mm, respectively. Errors resulting from the prediction of radius and center indicate that non-spherical anatomical structures are more sensitive to the digitized area, and hence digitization of the largest surface possible seems warranted.  相似文献   

17.
Recent efforts to develop cure for chronic diabetic complications have led to the discovery of potent inhibitors against aldose reductase (AKR1B1, EC 1.1.1.21) whose role in diabetes is well-evident. In the present work, two new natural products were isolated from the ariel part of Ocimum basilicum; 7-(3-hydroxypropyl)-3-methyl-8-β-O-d-glucoside-2H-chromen-2-one (1) and E-4-(6′-hydroxyhex-3′-en-1-yl)phenyl propionate (2) and confirmed their structures with different spectroscopic techniques including NMR spectroscopy etc. The isolated compounds (1, 2) were evaluated for in vitro inhibitory activity against aldose reductase (AKR1B1) and aldehyde reductase (AKR1A1). The natural product (1) showed better inhibitory activity for AKR1B1 with IC50 value of 2.095 ± 0.77 µM compare to standard sorbinil (IC50 = 3.14 ± 0.02 µM). Moreover, the compound (1) also showed multifolds higher activity (IC50 = 0.783 ± 0.07 µM) against AKR1A1 as compared to standard valproic acid (IC50 = 57.4 ± 0.89 µM). However, the natural product (2) showed slightly lower activity for AKR1B1 (IC50 = 4.324 ± 1.25 µM). Moreover, the molecular docking studies of the potent inhibitors were also performed to identify the putative binding modes within the active site of aldose/aldehyde reductases.  相似文献   

18.
A new library of 2-(2-methyl-5-nitro-1H-imidazol-1-yl)ethyl aryl ether derivatives (1 2 3) were synthesized and characterized by EI-MS and 1H NMR, and screened for their α-amylase inhibitory activity. Out of twenty-three derivatives, two molecules 19 (IC50 = 0.38 ± 0.82 µM) and 23 (IC50 = 1.66 ± 0.14 µM), showed excellent activity whereas the remaining compounds, except 10 and 17, showed good to moderate inhibition in the range of IC50 = 1.77–2.98 µM when compared with the standard acarbose (IC50 = 1.66 ± 0.1 µM). A plausible structure-activity relationship has also been presented. In addition, in silico studies was carried out in order to rationalize the binding interaction of compounds with the active site of enzyme.  相似文献   

19.
The cocoon of insect larvae is thought to help conserve water while affording mechanical protection. If the cocoon is a barrier to water loss, then it must also impose a barrier to inward oxygen diffusion. We tested this hypothesis in pupae of the silkworm, Bombyx mori. The rate of water loss and oxygen uptake (V?O2) at 25 °C was measured in control pupae in their naturally spun cocoon and in exposed pupae experimentally removed from their cocoon. Additional measurements included the oxygen diffusion coefficient, DO2, of the cocoon wall and dimensions and density of the cocoon fibers. Water loss (as % body mass loss) in both control and exposed pupae was ~ 1%.day? 1, and was not significantly different between populations. Similarly, V?O2 was statistically identical in both control and exposed pupae, at 0.22 ± 0.01 and 0.21 ± 0.02 mL g? 1 · h? 1, respectively. The silk fiber diameter was significantly different in the outer fibers, 26 ± 1 µm, compared with 16 ± 1 µm for the inner fibers lining the cocoon. Inner fibers were also spun significantly more densely (20.8 ± 1.2 mm? 1 transect) than outer fibers (8.3 ± 0.2). Mean DO2 at 25 °C was 0.298 ± 0.002 cm2 · s? 1, approximately the same as unstirred air. These data indicate that the cocoon, while creating a tough barrier offering mechanical protection to the pupa, imposes no barrier to the diffusion of oxygen or water vapor.  相似文献   

20.
Nerolidol is a sesquiterpene present in the essential oils of many plants, approved by the U.S. FDA as a food flavoring agent. Nerolidol interferes with the isoprenoid biosynthetic pathway in the apicoplast of P. falciparum. In the present study, the in vitro growth of four Babesia species was significantly (P < 0.05) inhibited in the presence of nerolidol (IC50s values = 21 ± 1, 29.6 ± 3, 26.9 ± 2, and 23.1 ± 1 µM for B. bovis, B. bigemina, B. ovata, and B. caballi, respectively). Parasites from treated cultures failed to grow in the subsequent viability test at a concentration of 50 µM. Nerolidol significantly (P < 0.05) inhibited the growth of B. microti at the dosage of 10 and 100 mg/kg BW, while the inhibition was low compared with the high doses used. Therefore, nerolidol could not be used as a chemotherapeutic drug for babesiosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号