首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The purpose of this study was to examine the muscular activities and kinetics of the trunk during unstable sitting in healthy and LBP subjects. Thirty-one healthy subjects and twenty-three LBP subjects were recruited. They were sat on a custom-made chair mounted on a force plate. Each subject was asked to regain balance after the chair was tilted backward at 20°, and then released. The motions of the trunk and trunk muscle activity were examined. The internal muscle moment and power at the hip and lumbar spine joints were calculated using the force plate and motion data. No significant differences were found in muscle moment and power between healthy and LBP subjects (p > 0.05). The duration of contraction of various trunk muscles and co-contraction were significantly longer in the LBP subjects (p < 0.05) when compared to healthy subjects, and the reaction times of the muscles were also significantly reduced in LBP subjects (p < 0.05). LBP subjects altered their muscle strategies to maintain balance during unstable sitting, but these active mechanisms appear to be effective as trunk balance was not compromised and the internal moment pattern remained similar. The changes in muscle strategies may be the causes of LBP or the result of LBP with an attempt to protect the spine.  相似文献   

2.
Several investigators have suggested the presence of a link between Chronic Low Back Pain (CLBP) and lower limbs kinematics that can contribute to functional limitations and disability. Moreover, CLBP has been connected to postural and structural asymmetry. Understanding the movement pattern of lower extremities and its asymmetry during walking can provide a basis for examination and rehabilitation in people with CLBP. The present study focuses on lower limbs kinematics in individuals with CLBP during walking. Three-dimensional movements of the pelvic, hip, knee and ankle joints were tracked using a seven-camera Qualysis motion capture system. Functional dada analysis (FDA) was applied for the statistical analysis of pelvic and lower limbs motion patterns in 40 participants (20 CLBP and 20 controls). The CLBP group showed significantly different hip motion pattern in the transvers plane, altered knee and ankle motion pattern in the sagittal plane on the dominant side and different hip motion pattern in the transvers and frontal planes on the non-dominant side in comparison with the control group over the stance phase. In terms of symmetry, in the CLBP group, hip and knee moved through a significantly different motion patterns in the transvers plane on the dominant side in comparison with the non-dominant side. In the control group, knee moved through a significantly different motion pattern in the transvers plane on the dominant side in comparison with the non-dominant side. In conclusion, low back pain lead to altered movement patterns of the main joints of lower limbs especially on the dominant side during stance phase. Therefore, care should be taken to examine dominant lower limb movement pattern in CLBP to make a better clinical decision.  相似文献   

3.
The aim of this study was to examine the associations of spinal kinematics and physical activity (PA) with bodily pain, physical functioning, and work ability among health care workers with low back pain (LBP). Spinal kinematics and PA were measured with a wireless Inertial Measurement Unit system (ValedoMotion®) and a waist-worn tri-axial accelerometer (Hookie AM20), respectively. Their association was assessed in relation to Work Ability Index (WAI), bodily pain and physical functioning (RAND-36) in 210 health care workers with recurrent LBP. Greater lumbar movement variability/less deterministic lumbar movement (in angular velocity) during a “Pick Up a Box” functional task was correlated with higher amounts of step counts (r = -0.29, p = 0.01) and moderate PA (r = -0.24, p = 0.03). A higher amount of PA (p = 0.03) as well as less movement control impairment (p = 0.04) and movement variability (p = 0.03) were associated with greater work ability, whilst greater vigorous PA was the only parameter to explain higher physical functioning (p = 0.02). PA and movement variability were relative to each other to explain bodily pain (p = 0.01). These findings show the importance of considering the interaction between lumbar kinematics and physical activity while planning strategies to improve bodily pain, physical functioning and work ability among health care workers with LBP.  相似文献   

4.
5.
Studies of electromyographic (EMG) activity and lumbopelvic rhythm have led to a better understanding of neuromuscular alterations in chronic low back pain (cLBP) patients. Whether these changes reflect adaptations to chronic pain or are induced by acute pain is still unclear. This work aimed to assess the effects of experimental LBP on lumbar erector spinae (LES) EMG activity and lumbopelvic kinematics during a trunk flexion–extension task in healthy volunteers and LBP patients. The contribution of disability to these effects was also examined. Twelve healthy participants and 14 cLBP patients performed flexion–extension tasks in three conditions; control, innocuous heat and noxious heat, applied on the skin over L5 or T7. The results indicated that noxious heat at L5 evoked specific increases in LES activity during static full trunk flexion and extension, irrespective of participants’ group. Kinematic data suggested that LBP patients adopted a different movement strategy than controls when noxious heat was applied at the L5 level. Besides, high disability was associated with less kinematic changes when approaching and leaving full flexion. These results indicate that experimental pain can induce neuromechanical alterations in cLBP patients and healthy volunteers, and that higher disability in patients is associated with decreased movement pattern changes.  相似文献   

6.
Discogenic lower back pain (DLBP) is the most common type of chronic lower back pain (LBP), accounting for 39% of cases, compared to 30% of cases due to disc herniation, and even lower prevalence rates for other causes, such as zygapophysial joint pain. Only a small proportion (approximately 20%) of LBP cases can be attributed with reasonable certainty to a pathologic or anatomical entity. Thus, diagnosing the cause of LBP represents the biggest challenge for doctors in this field. In this review, we summarize the process of obtaining a clinical diagnosis of DLBP and discuss the potential for serum-based diagnosis in the near future. The use of serum biomarkers to diagnose DLBP is likely to increase the ease of diagnosis as well as produce more accurate and reproducible results.  相似文献   

7.
Fear of movement has been related to changes in motor function in patients with low back pain, but little is known about how kinesiophobia affects selective motor control during gait (ability of muscles performing distinct mechanical functions) in patients with low back-related leg pain (LBLP). The aim of the study was to determine the association between kinesiophobia and selective motor control in patients with LBLP. An observational cross-sectional study was performed on 18 patients. Outcome included: kinesiophobia using the Tampa Scale of Kinesiophobia; pain mechanism using Leeds Assessment of Neuropathic Signs and Symptoms; disability using Roland-Morris Disability Questionnaire; mechanosensitivity using Straight Leg Raise. Surface electromyography was used to assess selective motor control during gait by examining the correlation and coactivation in muscle pairs involved in the stance phase. Pairs included vastus medialis (VM) and medial gastrocnemius (MG), causing opposite moments around the knee joint, and gluteus medius (GM) and MG, as muscles with distinct mechanical functions (weight acceptance vs. propulsion). A strong association was observed between kinesiophobia and correlation (r = 0.63; p = 0.005) and coactivation (r = 0.69; p = 0.001) between VM versus MG. A moderate association was observed between kinesiophobia and correlation (r = 0.58; p = 0.011) and coactivation (r = 0.55; p = 0.019) between GM versus MG. No significant associations were obtained for other outcomes. A high kinesiophobia is associated with low selective motor control of the muscles involved in the weight acceptance and propulsion phases during gait in patients with LBLP. Fear of movement was better associated with decreased neuromuscular control than other clinical variables such as pain mechanism, disability, and mechanosensitivity.  相似文献   

8.
Knowledge on the spinal kinematics and muscle activation of the cervical and thoracic spine during functional task would add to our understanding of the performance and interplay of these spinal regions during dynamic condition. The purpose of this study was to examine the influence of chronic neck pain on the three-dimensional kinematics and muscle recruitment pattern of the cervical and thoracic spine during an overhead reaching task involving a light weight transfer by the upper limb. Synchronized measurements of the three-dimensional spinal kinematics and electromyographic activities of cervical and thoracic spine were acquired in thirty individuals with chronic neck pain and thirty age- and gender-matched asymptomatic controls. Neck pain group showed a significantly decreased cervical velocity and acceleration while performing the task. They also displayed with a predominantly prolonged coactivation of cervical and thoracic muscles throughout the task cycle. The current findings highlighted the importance to examine differential kinematic variables of the spine which are associated with changes in the muscle recruitment in people with chronic neck pain. The results also provide an insight to the appropriate clinical intervention to promote the recovery of the functional disability commonly reported in patients with neck pain disorders.  相似文献   

9.
Patients with chronic low back pain exhibit characteristics such as clinical pain, psychological symptoms and neuromuscular adaptations. The purpose of this study was to determine the independent contribution of clinical pain, psychological factors and neuromuscular adaptations to disability in patients with chronic low back pain. Clinical pain intensity, pain catastrophizing, fear-avoidance beliefs, anxiety, neuromuscular adaptations to chronic pain and neuromuscular responses to experimental pain were assessed in 52 patients with chronic low back pain. Lumbar muscle electromyographic activity was assessed during a flexion–extension task (flexion relaxation phenomenon) to assess both chronic neuromuscular adaptations and neuromuscular responses to experimental pain during the task. Multiple regressions showed that independent predictors of disability included neuromuscular adaptations to chronic pain (β = 0.25, p = 0.006, sr2 = 0.06), neuromuscular responses to experimental pain (β = −0.24, p = 0.011, sr2 = 0.05), clinical pain intensity (β = 0.28, p = 0.002, sr2 = 0.08) and psychological factors (β = 0.58, p < 0.001, sr2 = 0.32). Together, these predictors accounted for 65% of variance in disability (R2 = 0.65 p < 0.001). The current investigation revealed that neuromuscular adaptations are independent from clinical pain intensity and psychological factors, and contribute to inter-individual differences in patients’ disability. This suggests that disability, in chronic low back pain patients, is determined by a combination of factors, including clinical pain, psychological factors and neuromuscular adaptations.  相似文献   

10.
The current study examined of the effect of intermittent, short-term periods of full trunk flexion on the development of low back pain (LBP) during two hours of standing. Sixteen participants completed two 2-h standing protocols, separated by one week. On one day, participants stood statically for 2 h (control day); on the other day participants bent forward to full spine flexion (termed flexion trials) to elicit the flexion relaxation (FR) phenomenon for 5 s every 15 min (experimental day). The order of the control and experimental day was randomized. During both protocols, participants reported LBP using a 100 mm visual analogue scale every 15 min. During the flexion trials, lumbar spine posture, erector spinae and gluteus medius muscle activation was monitored. Ultimately, intermittent trunk flexion reduced LBP by 36% (10 mm) at the end of a 2-h period of standing. Further, erector spinae and gluteus medius muscle quietening during FR was observed in 91% and 65% of the flexion trials respectively, indicating that periods of rest did occurred possibly contributing to the reduction in LBP observed. Since flexion periods do not require any aids, they can be performed in most workplaces thereby increasing applicability.  相似文献   

11.
Coordination of the trunk and hips is crucial for successful dynamic balance in many activities of daily living. Persons with recurrent low back pain (rLBP), both while symptomatic and during periods of symptom remission, exhibit dysfunctional muscle activation patterns and coordination of these joints. In a novel dynamic balance task where persons in remission from rLBP exhibit dissociated trunk motion, it is unknown how trunk and hip musculature are coordinated. Activation of hip and trunk muscles were acquired from nineteen persons with and without rLBP during the Balance-Dexterity Task, which involves balancing on one limb while compressing an unstable spring with the other. There were no between-group differences in activation amplitude for any muscle groups tested. In back-healthy control participants, hip and trunk muscle activation amplitudes increased proportionally in response to the added instability of the spring (R = 0.837, p < 0.001). Increases in muscle activation amplitudes in the group in remission from rLBP were not proportional (R = 0.113, p = 0.655). Instead, hip muscle activation in this group was associated with task performance, i.e. dexterous control of the spring (R = 0.676, p = 0.002). These findings highlight atypical coordination of hip and trunk musculature potentially related to task demands in persons with rLBP even during remission from pain.  相似文献   

12.
There is limited information in the literature related to the lower back loading in patients with LBP, particularly those with non-chronic LBP. Toward addressing such a research gap, a case-control study was conducted to explore the differences in lower back mechanical loads between a group of females (n = 19) with non-chronic, non-specific LBP and a group of asymptomatic females (n = 19). The differences in lower back mechanical loads were determined when participants completed one symmetric lowering and lifting of a 4.5 kg load at their preferred cadence. The axial, shearing, and moment components of task demand at the time of peak moment component as well as measures of peak trunk kinematics were analyzed. Patient vs. asymptomatic group performed the task with smaller peak thoracic rotation and peak lumbar flexion. While no differences in the moment component of task demand on the lower back between the patients and controls were found, the shearing (40–50 age group) and axial components of task demand were, respectively, larger and smaller in patients vs. controls. Whether alterations in lower back loads in patients with non-chronic LBP are in response to pain or preceded the pain, the long-term exposure to abnormal lower back mechanics may adversely affect spinal structure and increase the likelihood of further injury or pain. Therefore, the underlying reason(s) as well as the potential consequence(s) of such altered lower back mechanics in patients with non-chronic LBP should to be further investigated.  相似文献   

13.
14.
Persons who develop low back pain from prolonged standing exhibit increased muscle cocontraction, decreased movement and increased spine extension. However, it is unclear how these factors relate to pain development. The purpose of this study was to use hip abductor fatigue to manipulate muscle activity patterns and determine its effects on standing behaviours and pain development. Forty participants stood for two hours twice, once following a hip abductor fatigue exercise (fatigue), and once without exercise beforehand (control). Trunk and gluteal muscle activity were measured to determine cocontraction. Lumbo-pelvic angles and force plates were used to assess posture and movement strategies. Visual analog scales differentiated pain (PDs) and non-pain developers (NPDs). PDs reported less low back pain during the fatigue session, with females having earlier reductions of similar scale than males. The fatigue session reduced gluteal and trunk cocontraction and increased centre of pressure movement; male and female PDs had opposing spine posture compensations. Muscle fatigue prior to standing reduced cocontraction, increased movement during standing and reduced the low back pain developed by PDs; the timing of pain reductions depended on spine postures adopted during standing.  相似文献   

15.
Intervertebral disc degeneration is the main cause of low back pain. In the past 20 years, the injection of mesenchymal stromal cells (MSCs) into the nucleus pulposus of the degenerative disc has become the main approach for the treatment of low back pain. Despite the progress made in this field, there are still many barriers to overcome. First, intervertebral disc is a highly complex load-bearing composite tissue composed of annulus fibrosus, nucleus pulposus and cartilaginous endplates. Any structural damage will change its overall biomechanical function, thereby causing progressive degeneration of the entire intervertebral disc. Therefore, MSC-based treatment strategies should not only target the degenerated nucleus pulposus but also include degenerated annulus fibrosus or cartilaginous endplates. Second, to date, there has been relatively little research on the basic biology of annulus fibrosus and cartilaginous endplates, although their pathological changes such as annular tears or fissures, Modic changes, or Schmorl's nodes are more commonly associated with low back pain. Given the high complexity of the structure and composition of the annulus fibrosus and cartilaginous endplates, it remains an open question whether any regeneration techniques are available to achieve their restorative regeneration. Finally, due to the harsh microenvironment of the degenerated intervertebral disc, the delivered MSCs die quickly. Taken together, current MSC-based regenerative medicine therapies to regenerate the entire disc complex by targeting the degenerated nucleus pulposus alone are unlikely to be successful.  相似文献   

16.
The purpose of this study was to determine if 8 weeks of exercise affects motor control in people with chronic low back pain (CLBP), measured by anticipatory (APAs) and compensatory postural adjustments (CPAs). APAs and CPAs were measured prior to and following 8 weeks in two groups of people with CLBP: an exercise group (n = 12) who attended three exercise sessions per week for 8 weeks; and a non-exercise control group (n = 12) who were advised to continue their usual activities for the duration of the study. APAs and CPAs were recorded during unilateral arm flexion, bilaterally from rectus abdominis (RA), transverse abdominis/internal oblique (TA/IO), and erector spinae (ES) via surface electromyography. Analysis of muscle onsets and APA amplitudes suggests APAs did not change for either group. Ipsi-lateral TA/IO CPAs increased for the exercise group and ipsi-lateral TA/IO CPAs decreased for the control group. Only exercise promoted a pattern of TA/IO activity during CPAs similar to healthy individuals, suggesting improved control of rotational torques. These results show motor control improvement following exercise in people with CLBP, highlighted by improved side specific control of TA/IO.  相似文献   

17.
Although deficits in the activation of abdominal muscles are present in people with low back pain (LBP), this can be modified with motor training. Training of deep abdominal muscles in isolation from the other trunk muscles, as an initial phase of training, has been shown to improve the timing of activation of the trained muscles, and reduce symptoms and recurrence of LBP. The aim of this study was to determine if training of the trunk muscles in a non-isolated manner can restore motor control of these muscles in people with LBP. Ten subjects with non-specific LBP performed a single session of training that involved three tasks: “abdominal curl up”, “side bridge” and “birdog”. Electromyographic activity (EMG) of trunk and deltoid muscles was recorded with fine-wire and surface electrodes during rapid arm movements and walking, before and immediately following the intervention. Onset of trunk muscle EMG relative to that of the prime mover (deltoid) during arm movements and the mean, standard deviation (SD) and coefficient of variation of abdominal muscle EMG during walking were calculated. There was no significant change in the times of onset of trunk muscle EMG during arm movements nor was there any change in the variability of EMG of the abdominal muscles during walking. However, the mean amplitude and SD of abdominal EMG was reduced during walking after training. The results of this study suggest that unlike isolated voluntary training, co-contraction training of the trunk muscles does not restore the motor control of the deep abdominal muscles in people with LBP after a single session of training.  相似文献   

18.

Background

Non-specific low back pain (LBP) has been one of the most frequently occurring musculoskeletal problems. Impairment in the mechanical stability of the lumbar spine has been known to lower the safety margin of the spine musculature and can result in the occurrence of pain symptoms of the low back area. Previously, changes in spinal stability have been identified by investigating recruitment patterns of low back and abdominal muscles in laboratory experiments with controlled postures and physical activities that were hard to conduct in daily life. The main objective of this study was to explore the possibility of developing a reliable spine stability assessment method using surface electromyography (EMG) of the low back and abdominal muscles in common physical activities.

Methods

Twenty asymptomatic young participants conducted normal walking, plank, and isometric back extension activities prior to and immediately after maintaining a 10-min static upper body deep flexion on a flat bed. EMG data of the erector spinae, external oblique, and rectus abdominals were collected bilaterally, and their mean normalized amplitude values were compared between before and after the static deep flexion. Changes in the amplitude and co-contraction ratio values were evaluated to understand how muscle recruitment patterns have changed after the static deep flexion.

Results

Mean normalized amplitude of antagonist muscles (erector spinae muscles while conducting plank; external oblique and rectus abdominal muscles while conducting isometric back extension) decreased significantly (P < 0.05) after the 10-min static deep flexion. Normalized amplitude of agonist muscles did not vary significantly after deep flexion.

Conclusions

Results of this study suggest the possibility of using surface EMG in the evaluation of spinal stability and low back health status in simple exercise postures that can be done in non-laboratory settings. Specifically, amplitude of antagonist muscles was found to be more sensitive than agonist muscles in identifying changes in the spinal stability associated with the 10-min static deep flexion. Further research with various loading conditions and physical activities need to be performed to improve the reliability and utility of the findings of the current study.  相似文献   

19.
Transcranial magnetic stimulation (TMS) has revealed differences in the motor cortex (M1) between people with and without low back pain (LBP). There is potential to reverse these changes using motor skill training, but it remains unclear whether changes can be induced in people with LBP or whether this differs between LBP presentations. This study (1) compared TMS measures of M1 (single and paired-pulse) and performance of a motor task (lumbopelvic tilting) between individuals with LBP of predominant nociceptive (n = 9) or nociplastic presentation (n = 9) and pain-free individuals (n = 16); (2) compared these measures pre- and post-training; and (3) explored correlations between TMS measures, motor performance, and clinical features. TMS measures did not differ between groups at baseline. The nociplastic group undershot the target in the motor task. Despite improved motor performance for all groups, only MEP amplitudes increased across the recruitment curve and only for the pain-free and nociplastic groups. TMS measures did not correlate with motor performance or clinical features. Some elements of motor task performance and changes in corticomotor excitability differed between LBP groups. Absence of changes in intra-cortical TMS measures suggests regions other than M1 are likely to be involved in skill learning of back muscles.  相似文献   

20.
Although subjects with recurrent low back pain (LBP) demonstrate altered trunk control, the kinematic and kinetic responses of the trunk have not been carefully investigated. This study was conducted to compare the standing time, spine range of motion (ROM), and dynamic postural steadiness index (DPSI) based on visual condition between subjects with and without recurrent LBP during upright one leg standing. Sixty-three individuals participated in the study, including 34 control subjects and 29 subjects with recurrent LBP. The DPSI was a composite of the medio-lateral (MLSI), anterior-posterior (APSI), and vertical steadiness indices (VSI) on a force platform. The control group demonstrated longer standing time (s) during the eyes-open condition than the LBP group (26.82 ± 6.03 vs. 19.87 ± 9.36; t = 2.96, p = 0.01). Regarding spine ROM, visual condition was significantly different between groups (F = 7.09, p = 0.01) and demonstrated interactions with spine region and group (F = 5.53, p = 0.02). For the kinetic measures, there was a significant interaction between visual conditions and indices (F = 25.30, p = 0.001). In the LBP group, the DPSI was significantly correlated with the MLSI (r = 0.59, p = 0.002), APSI (r = 0.44, p = 0.03), and VSI (r = 0.98, p = 0.01) in the eyes-closed condition. Overall, the results of this study indicated that the LBP group decreased thorax and lumbar spine rotations during the eyes-closed condition. The LBP group also demonstrated positive correlations with the kinetic indices, enhancing dynamic postural steadiness in the eyes-closed condition in order to possibly avoid pain or further injury. This dynamic postural steadiness strategy is necessary to improve kinetic and kinematic chain reactions in the LBP group. This compensatory pattern supports the development of optimal postural correction strategies to prevent LBP recurrence and might represent a chain reaction to protect trunk control without visual input.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号