首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
New quinoline compounds comprising pyrazole scaffold through different amide linkages were synthesized. The synthesized compounds were evaluated for their anti-inflammatory activity. Eight compounds (5c, 11b,c, 12c, 14a,b, 20a and 21a) were found to exhibit promising anti-inflammatory profiles in acute and sub-acute inflammatory models. They were screened for their ulcerogenic activity and none of them showed significant ulcerogenic activity comparable to the reference drug celecoxib and are well tolerated by experimental animals with high safety margin (ALD50 > 0.3 g/kg). Compounds 5c, 11b,c, 12c, 14a,b, 20a and 21a showed significant in vitro LOX inhibitory activity higher than that of zileuton. In vitro COX-1/COX-2 inhibition study revealed that compounds 12c, 14a,b and 20a showed higher selectivity towards COX-2 than COX-1. Among the tested compounds, 12c, 14a and 14b showed the highest inhibitory activity against COX-2 with an IC50 values of 0.1, 0.11 and 0.11 μM respectively. The docking experiments attempted to postulate the binding mode for the most active compounds in the binding site of COX-2 enzymes and confirmed the high selectivity binding towards COX-2 enzyme over COX-1.  相似文献   

2.
A novel group of 1,3,4-oxadaiazoles, a group known for their anti-inflammatory activity, is hybridized with nitric oxide (NO) releasing group, oxime, for its gastro-protective action and potential synergistic effect. The synthesized hybrids were evaluated for their anti-inflammatory, analgesic, antioxidant and ulcerogenic activities. Most of the tested compounds showed excellent anti-inflammatory activity with compound 8e being more active than indomethacin. They also showed moderate analgesic activity but no antioxidant one. The ability of the synthesized compounds to inhibit COX-1 and COX-2 is studied and the prepared compounds were able to inhibit both COXs non-selectively with IC50s of 0.75–70.50 μM. Docking studies revealed the mode of interaction of the tested compounds into the empty pocket of the isozymes. All of the synthesized compounds interact with COXs active site with energy scores comparable to that of ibuprofen. All compounds showed a safer profile on the stomach tissue integrity compared to conventional NSAIDs. The designed strategy was applied to ibuprofen to introduce ibuprofen/oxadiazole/NO hybrid. The synthesized ibuprofen hybrid is a promising alternative to ibuprofen having similar anti-inflammatory activity but with safer GIT profile.  相似文献   

3.
A series of 5-imino-4-thioxo-2-imidazolidinone derivatives with different substituents at N1 and N3 was synthesized with high yield and excellent purity by the reaction of different N-arylcyanothioformamide derivatives with isocyanate derivatives. Treatment 5-imino-4-thioxo-2-imidazolidinone derivatives with acidic medium afforded 4-thioxoimidazolidin-2,5-dione derivatives. The structures of the obtained products were established based on spectroscopic IR, 1H NMR, 13C NMR, 1H, 1H-COSY, HSQC and elemental analyses. The anti-inflammatory activity of the synthesized compounds through the carrageenan-paw edema model as well as in vitro COX-1 and COX-2 inhibition assay were evaluated where most of the synthesized compounds showed significant anti-inflammatory activity. Mostly, all of our synthesized compounds have greater activity more than celecoxib toward both cyclooxygenase enzymes. All of the tested compounds (except one compound) exhibited IC50 valves for COX-2 ranged from 0.001 × 10−3 to 0.827 × 10−3 µM while the reference drug has IC50 40.0 × 10−3 µM. Furthermore, the analgesic activity of such compounds was also determined. Molecular modeling study was also conducted to rationalize the potential as anti-inflammatory agents of our synthesized compounds by predicting their binding modes, binding affinities and optimal orientation at the active site of the COX enzymes.  相似文献   

4.
In continuation of our study of novel quinolines with anti-inflammatory activity using the Pfitzinger reaction, several new quinoline derivatives were synthesized and tested for their anti-inflammatory and ulcerogenic effect. A docking study on the COX-2 binding pocket was carried out for the target compounds to rationalize the possible selectivity of them against COX-2 enzyme. The most active compounds (5a, 8a and 11a) were found to be superior to celecoxib. Compound 11a demonstrated the highest anti-inflammatory activity as well as the best binding profiles into the COX-2 binding site. Moreover, compounds 9c, 9e, 10a and 11a were devoid of ulcerogenic activity.  相似文献   

5.
A series of novel nitric oxide (NO) donating triazole/oxime hybrids was prepared and evaluated for their anti-inflammatory activity. Most of the tested compounds showed significant anti-inflammatory activity using carrageenan-induced rat paw edema method compared to indomethacin. Calculation of the ulcer indices and histopathological investigation indicated that the prepared NO-donating oximes exhibited less ulcerogenicity compared to their intermediate ketones and indomethacin. The NO-donating oxime 6i revealed significant activity against renal cancer A498 cell lines with 50.52 cell growth inhibition.  相似文献   

6.
Design, synthesis and pharmacological activities of a group of 1,3,5-trisubstituted pyrazolines were reported. The chemical structures of the synthesized compounds have been assigned on the basis of IR, MS, 1H NMR, and 13C NMR spectral analyses. The synthesized 1,3,5-trisubstituted pyrazoline derivatives were evaluated in vivo for anti-inflammatory, analgesic activities and in vitro for COX-1/2 inhibition assay. Among the tested compounds, derivatives 4h, 6e, 7a, 7e, and 9 showed more potent anti-inflammatory and analgesic activities than the reference drug celecoxib. On the basis of their higher activities in the in vivo studies compared with celecoxib, the five compounds 4h, 6e, 7a, 7e and 9 were selected to test their inhibitory activities against ovine COX-1/2 using an in vitro cyclooxygenase inhibition assay. Docking study of compounds 7a, 7e and 9 into the COX-2 binding site revealed a similar binding mode to SC-558, a selective COX-2 inhibitor.  相似文献   

7.
A series of new 1,3,4-oxadiazole/oxime hybrids were synthesized and designed as potent COX inhibitors. The prepared compounds were evaluated for their anti-inflammatory, antioxidant and ulcerogenic activities. The results indicated that the prepared compounds exhibited remarkable anti-inflammatory activity with (69.60–109.60% of indomethacin activity) after 4 h. In vitro COX inhibitory assay showed that compounds 6d and 7h are potent COX inhibitors with IC50 of (1.10–0.94) and (2.30–5.00) µM on both COX-1 and COX-2 respectively. Compound 7h was found to inhibit both COXs non-competitively with Ki values of 73 µM and 89 µM. Most of the tested compounds showed ulcer-free stomachs compared to indomethacin.  相似文献   

8.
Some derivatives containing pyrido[2,3-d:6,5d′]dipyrimidine-4,5-diones (9a-f), tetrahydropyrido[2,3-d]pyrimidine-6-carbonitriles (11a-c) and 6-(4-acetylphenyl)-2-thioxo-2,3,5,6,7,8-hexahydro-1H-pyrimido[4,5-d]pyrimidin-4-one (12) were synthesized from 6-amino-2-thioxo-2,3-dihydro-1H-pyrimidin-4-one (8). The anti-inflammatory effect of these candidates was determined and the ulcer indices were calculated for active compounds. 7-Amino-5-(3,4,5-trimethoxyphenyl)-4-oxo-2-thioxo-1,2,3,4-tetrahydropyrido[2,3-d] pyrimidine-6-carbonitrile (11c) exhibited better edema inhibition than celecoxib. Moreover, compounds 9b, 9d and 11c revealed better COX-2 inhibitory activity in a range (IC50 = 0.25–0.89 µM) than celecoxib (IC50 = 1.11 µM). Regarding ulcerogenic liability, all of the compounds under the study were less ulcerogenic than indomethacin. Molecular docking studies had been carried on active candidates 9d and 11c to explore action mode of these candidates as leads for discovering other anti-inflammatory agents.  相似文献   

9.
A series of new cannabidiol (CBD) derivatives were synthesized by employing hydrogenation reaction and click chemistry. Then, the cytotoxicity and anti-inflammatory activities of cannabinoid derivatives were determined. Compound 14 was found to have low cytotoxicity and high anti-inflammatory activity, and the anti-inflammatory mechanism of compound 14 was preliminarily explored, which inhibited the synthesis and release of the pro-inflammatory cytokine TNF-α. The experimental results were confirmed by docking analysis. The water solubility of compound 14 was determined. Based on the results, the structure-activity relationships (SARs) of the CBD derivatives were discussed for exploring novel anti-inflammatory drugs.  相似文献   

10.
In searchof the potenttherapeutic agent as an α-glucosidase inhibitor, we have synthesized twenty-five analogs (125) of quinoline-based Schiff bases as an inhibitoragainst α-glucosidase enzyme under positive control acarbose (IC50 = 38.45 ± 0.80 µM). From the activity profile it was foundthat analogs 1, 2, 3, 4, 11, 12 and 20with IC50values 12.40 ± 0.40, 9.40 ± 0.30, 14.10 ± 0.40, 6.20 ± 0.30, 14.40 ± 0.40, 7.40 ± 0.20 and 13.20 ± 0.40 µMrespectively showed most potent inhibition among the series even than standard drug acarbose (IC50 = 38.45 ± 0.80 µM). Here in the present study analog 4 (IC50 = 6.20 ± 0.30 µM) was found with many folds better α-glucosidase inhibitory activity than the reference drug. Eight analogs like 5, 7, 8, 16, 17, 22, 24 and 25 among the whole series displayed less than 50% inhibition. The substituents effects on phenyl ring thereby superficially established through SAR study. Binding interactions of analogs and the active site of ligands proteins were confirmed through molecular docking study. Spectroscopic techniques like 1H NMR, 13C NMR and ESIMS were used for characterization.  相似文献   

11.
First-line medical treatment against nerve agents consists of co-administration of anticholinergic agents and oxime reactivators, which reactivate inhibited AChE. Pralidoxime, a commonly used oxime reactivator, is effective against some nerve agents but not against others; thus, new oxime reactivators are needed. Novel tacrine-pyridinium hybrid reactivators in which 4-pyridinealdoxime derivatives are connected to tacrine moieties by linear carbon chains of different lengths (C2–C7) were prepared (Scheme 1, 5a–f). Their binding affinities to electric eel AChE were tested because oximes can inhibit free AChE, and the highest AChE activity (95%, 92%, and 90%) was observed at 1?μM concentrations of the oximes (5a, 5b, and 5c, respectively). Based on their inhibitory affinities towards free AChE, 1?μM concentrations of the oxime derivatives (5) were used to examine reactivation of paraoxon-inhibited AChE. Reactivation ability increased as the carbon linker chains lengthened (n?=?2–5), and 5c and 5d showed remarkable reactivation ability (41%) compared to that of 2-PAM (16%) and HI-6 (4%) against paraoxon-inhibited electric eel AChE at 1?μM concentrations. Molecular docking simulation showed that the most stable binding free energy was observed in 5c at 73.79?kcal?mol?1, and the binding mode of 5c is acceptable for the oxygen atom of oximate to attack the phosphorus atom of paraoxon and reactivate paraoxon-inhibited eel AChE model structure.  相似文献   

12.
Nucleoside triphosphate diphosphohydrolases (NTPDases), an important class of ectonucleotidases, are responsible for the sequential hydrolysis of extracellular nucleotides. However, over-expression of NTPDases has been linked with various pathological diseases e.g. cancer. Thus, to treat these diseases, the inhibitors of this class of enzyme are of interest. The significance of this class of enzyme encouraged us to synthesize a new class of quinoline derivatives with the aim to find selective and potent inhibitors of NTPDases. Therefore, a mild and efficient synthetic route was established for the synthesis of quinoline derivatives. The reaction was catalyzed by molecular iodine to afford the substituted quinoline derivatives. All the synthetic derivatives (3a-3w) were evaluated for their potential to inhibit the h-NTPDase1, 2, 3 and 8. Most of the compounds were identified as dual inhibitors of h-NTPDase1 and 8 with lower effects on h-NTPDase2 and 3. Two compounds i.e. 3f and 3t were identified as selective inhibitor of h-NTPDase1 whereas the compound 3s inhibited the h-NTPDase8 selectively. Moreover, the compounds 3p (IC50 = 0.23 ± 0.01 µM), 3j (IC50 = 21.0 ± 0.03 µM) 3d (IC50 = 5.38 ± 0.21 µM) and 3c (IC50 = 1.13 ± 0.04 µM) were found to be the most potent inhibitors of h-NTPDase1, 2, 3 and 8, respectively. To determine the binding interaction, molecular docking studies were also carried out.  相似文献   

13.
Trimellitimides 621 were prepared and investigated in vivo for anti-inflammatory and ulcerogenic effects and in vitro for cytotoxicity. They were subjected to in vitro cyclooxygenase (COX-1/2) and carbonic anhydrase inhibition protocols. Compounds 611 and 18 exhibited anti-inflammatory activities and had median effective doses (ED50) of 34.3–49.8 mg kg−1 and 63.6–86.6% edema inhibition relative to the reference drug celecoxib (ED50: 33.9 mg kg−1 and 85.2% edema inhibition). Compounds 611 and 18 were weakly cytotoxic at 10 μM against 59 cell lines compared with the reference standard 5-fluorouracil (5-FU). Compounds 611 had optimal selectivity against COX-2. The selectivity index (SI) range was >200–490 and was comparable to that for celecoxib [COX-2 (SI) > 416.7]. In contrast, compounds 12, 13, and 1618 were nonselective COX inhibitors with a selectivity index range of 0.92–0.25. The carbonic anhydrase inhibition assay showed that sulfonamide incorporating trimellitimides 611 inhibited the cytosolic isoforms hCA I and hCA II, and tumor-associated isoform hCA IX. They were relatively more susceptible to inhibition by compounds 8, 9, and 11. The KI ranges were 54.1–81.9 nM for hCA I, 25.9–55.1 nM for hCA II, and 46.0–348.3 nM for hCA IX. © 2018 Elsevier Science. All rights reserved.  相似文献   

14.
Over the last few decades, a growing body of studies addressed the anticancer activity of NSAIDs, particularly selective COX-2 inhibitors. However, their exact molecular mechanism is still unclear and is not fully investigated. In this regard, a novel series of compounds bearing a COXs privilege scaffold, diphenyl thiazole, was synthesized and evaluated for their anticancer activity against a panel of cancer cell lines. The most active compounds 10b, 14a,b, 16a, 17a,b and 18b were evaluated in vitro for COX-1/COX-2 inhibitory activity. These compounds were suggested to exert their anticancer activity through a multi-target mechanism based on their structural features. Thus, compounds 10b and 17b with the least IC50 values in MTT assay were tested against three known anticancer targets; EGFR, BRAF and tubulin. Compounds 10b and 17b showed remarkable activity against EGFR with IC50 values of 0.4 and 0.2 μM, respectively and good activity against BRAF with IC50 values of 1.3 and 1.7 μM, respectively. In contrast, they showed weak activity in tubulin polymerization assay. The in vivo anti-inflammatory potential was assessed and interestingly, compound 17b was the most potent compound. Together, this study offers some important insights into the correlation between COXs inhibition and cancer treatment. Additionally, the results demonstrated the promising activity of these compounds with a multi-target mechanism as good candidates for further development into potential anticancer agents.  相似文献   

15.
Selective inhibition of both cyclooxygenase-2 (COX-2) and 15-lipooxygenase (15-LOX) may provide good strategy for alleviation of inflammatory disorders while minimizing side effects associated with current anti-inflammatory drugs. The present study describes the synthesis, full characterization and biological evaluation of a series of thiadiazole-thiazolidinone hybrids bearing 5-alk/arylidene as dual inhibitors of these enzymes. Our design was based on merging pharmacophores that exhibit portent anti-inflammatory activities in one molecular frame. 5-(4-hydroxyphenyl)-1,3,4-thiadiazol-2-amine (3) was efficiently synthesized, chloroacetylated and cyclized to give the key 4-thiazolidinone (5). Knovenagel condensation of 5 with different aldehydes afforded the final compounds 6a-m, 7, 8 and 9. These compounds were subjected to in vitro COX-1/COX-2, 15-LOX inhibition assays. Compounds (6a, 6f, 6i, 6l, 6m and 9) with promising potency (IC50 = 70–100 nM) and selectivity index (SI = 220-55) were further tested for in vivo anti-inflammatory activity and effect on gastric mucosa. The most promising compound (6l) inhibits COX-2 enzyme at a nanomolar concentration (IC50 = 70 nM, SI = 220) with simultaneous inhibition of 15-LOX (IC50 = 11 µM). These results are comparable to the potency and selectivity of the standard drugs of both enzymes; celecoxib (COX-2 IC50 = 49 nM, SI = 308) and zileuton (15-LOX IC50 = 15 µM) in one construct. Interestingly three compounds (6a, 6l and 9) exhibited equivalent to or even higher than that of celecoxib in vivo anti-inflammatory activity at 3 h interval with good GIT safety profile. Molecular docking study conferred binding sites of these compounds on COX-2 and 15-LOX. Such type of compounds would represent valuable leads for further investigation and derivatization.  相似文献   

16.
Stellatin (4), isolated from Dysophylla stellata is a cyclooxygenase (COX) inhibitor. The present study reports the synthesis and biological evaluation of new stellatin derivatives for COX-1, COX-2 inhibitory and anti-inflammatory activities. Eight derivatives showed more pronounced COX-2 inhibition than stellatin and, 17 and 21 exhibited the highest COX-2 inhibition. They also exhibited the significant anti-inflammatory activity in TPA-induced mouse ear edema assay and their anti-inflammatory effects were more than that of stellatin and indomethacin at 0.5 mg/ear. The derivatives were further evaluated for antioxidant activity wherein 16 and 17 showed potent free radical scavenging activity against DPPH and ABTS radicals. Molecular docking study revealed the binding orientations of stellatin and its derivatives into the active sites of COX-1 and COX-2 and thereby helps to design the potent inhibitors.  相似文献   

17.
A series of fourteen (A1A14) new qunioline based chalcones were synthesized by condensing 2,7-dichloro-8-methyl-3-formyl quinoline with acetophenone and acetylthiophenes, and subsequently characterized by IR, NMR and Mass spectroscopy. All the compounds were screened for antibacterial activities and found potentially active antibacterial agents. Bioassay, theoretical and dockings studies with DNA gyrase (the enzyme required for super coiling of DNA of bacteria) results showed that the type and positions of the substituents seemed to be critical for their antibacterial activities. The bromo and chloro substituted chalcone displayed high anti-bacterial activity. The A4 and A6 showed high interaction with DNA gyrase, contributing high free binding energy (ΔG −8.18 and −8.88 kcal).  相似文献   

18.
A new series of 1,3,5-triaryl-4,5-dihydro-1H-pyrazole derivatives 13ap were synthesized via aldol condensation of 3/4-nitroacetophenones with appropriately substituted aldehydes followed by cyclization of the formed chalcones with 4-methanesulfonylphenylhydrazine hydrochloride. All the synthesized compounds were evaluated for their cyclooxygenase (COX) inhibition, anti-inflammatory activity and ulcerogenic liability. All compounds were more potent inhibitors for COX-2 than COX-1. While most compounds showed good anti-inflammatory activity, compounds 13d, 13f, 13k and 13o were the most potent derivatives (ED50?=?66.5, 73.4, 79.8 and 70.5?μmol/kg, respectively) in comparison with celecoxib (ED50?=?68.1?μmol/kg). Compounds 13d, 13f, 13k and 13o (ulcer index?=?3.89, 4.86, 4.96 and 3.92, respectively) were 4–6 folds less ulcerogenic than aspirin (ulcer index?=?22.75) and showed approximately ulceration effect similar to celecoxib (ulcer index?=?3.35). In addition, molecular docking studies were performed for compounds 13d, 13f, 13k and 13o inside COX-2 active site which showed acceptable binding interactions (affinity in kcal/mol ?2.1774, ?6.9498) in comparison with celecoxib (affinity in kcal/mol ?6.5330).  相似文献   

19.
A series of novel compounds carrying 1,2,4-triazole scaffold was synthesized and evaluated for their anticancer activity against a panel of cancer cell lines using MTT assay. Compounds 8a, 8b, 8c, 8d, 10b, 10e, and 10 g showed remarkable antiproliferative activity against the tested cell lines. Compounds 8a, 8b, 8c, 8d, 10b, 10e, and 10 g with the least IC50 values in MTT assay were tested against three known anticancer targets including EGFR, BRAF and Tubulin. The results revealed that compounds 8c and 8d showed almost same BRAF inhibitory activity and were discovered to be potent inhibitors of cancer cell proliferation and were also observed to be strong Tubulin inhibitors. Moreover, 8c also showed the best EGFR inhibition with IC50 = 3.6 μM. Finally molecular modeling studies were performed to explore the binding mode of the most active compounds to the target enzymes.  相似文献   

20.
Although dual inhibition of Cyclooxygenase-2 (COX-2) and 5-Lipoxygenase (5-LOX) enzymes is highly effective than targeting COX or LOX alone, there are only a few reports of examining such compounds in case of colorectal cancers (CRC). In the present work we report that the novel di-tert-butyl phenol-based dual inhibitors DTPSAL, DTPBHZ, DTPINH, and DTPNHZ exhibit significant cytotoxicity against human CRC cell lines. Molecular docking studies revealed a good fit of these compounds in the COX-2 and 5-LOX protein cavities. The inhibitors show significant inhibition of COX-2 and 5-LOX activities and are effective against a panel of human colon cancer cell lines including HCA-7, HT-29, SW480 and intestinal Apc10.1 cells as well as the hyaluronan synthase-2 (Has2) enzyme over-expressing colon cancer cells, through inhibition of the Hyaluronan/CD44v6 cell survival pathway. Western blot analysis and qRT-PCR analyses indicated that the di-tert-butyl phenol-based dual inhibitors reduce the expression of COX-2, 5-LOX, and CD44v6 in human colon cancer HCA-7 cells, while the combination of CD44v6shRNA and DTPSAL has an additional inhibitory effect on CD44v6 mRNA expression. The synergistic inhibitory effect of Celecoxib and Licofelone on CD44v6 mRNA expression suggests that the present dual inhibitors down-regulate cyclooxygenase and lipoxygenase enzymes through CD44v6. The compounds also exhibited enhanced antiproliferative potency compared to standard dual COX/LOX inhibitor, viz. Licofelone. Importantly, the HA/CD44v6 antagonist CD44v6shRNA in combination with synthetic compounds had a sensitizing effect on the cancer cells which enhanced their antiproliferative potency, a finding which is crucial for the anti-proliferative potency of the novel synthetic di-tert-butyl phenol based dual COX–LOX inhibitors in colon cancer cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号