首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
TRPA1 is a non-selective Ca2 + permeable channel located in the plasma membrane that functions as a cellular sensor detecting mechanical, chemical and thermal stimuli, being a component of neuronal, epithelial, blood and smooth muscle tissues. TRPA1 has been shown to influence a broad range of physiological processes that involve Ca2 +-dependent signaling pathways. Here we report that TRPA1 is expressed in MEG01 but not in platelets at the protein level. MEG01 cells maturation induced by PMA results in attenuation of TRPA1 protein expression and enhances thapsigargin-evoked Ca2 + entry without altering the release of Ca2 + from intracellular stores. Inhibition of TRPA1 by HC-030031 results in enhancement of both thrombin- and thapsigargin-stimulated Ca2 + entry. Co-immunoprecipitation experiments revealed that TRPA1 associates with STIM1, as well as Orai1, TRPC1 and TRPC6. Downregulation of TRPA1 expression by MEG01 maturation, as well as pharmacological inhibition of TRPA1 by HC-030031, results in enhancement of the association between STIM1 and Orai1. Altogether, these findings provide evidence for a new and interesting function of TRPA1 in cellular function associated to the regulation of agonist-induced Ca2 + entry by the modulation of STIM1/Orai1 interaction.  相似文献   

2.
STIM1 acts as an endoplasmic reticulum Ca2 + sensor that communicates the filling state of the intracellular stores to the store-operated channels. In addition, STIM1 is expressed in the plasma membrane, with the Ca2 + binding EF-hand motif facing the extracellular medium; however, its role sensing extracellular Ca2 + concentrations in store-operated Ca2 + entry (SOCE), as well as the underlying mechanism remains unclear. Here we report that divalent cation entry stimulated by thapsigargin (TG) is attenuated by extracellular Ca2 + in a concentration-dependent manner. Expression of the Ca2 +-binding defective STIM1(D76A) mutant did not alter the surface expression of STIM1 but abolishes the regulation of divalent cation entry by extracellular Ca2 +. Orai1 and TRPC1 have been shown to play a major role in SOCE. Expression of the STIM1(D76A) mutant did not alter Orai1 phosphoserine content. TRPC1 silencing significantly attenuated TG-induced Mn2 + entry. Expression of the STIM1(K684,685E) mutant impaired the association of plasma membrane STIM1 with TRPC1, as well as the regulation of TG-induced divalent cation entry by extracellular Ca2 +, which suggests that TRPC1 might be involved in the regulation of divalent cation entry by extracellular Ca2 + mediated by plasma membrane-resident STIM1. Expression of the STIM1(D76A) or STIM1(K684,685E) mutants reduced store-operated divalent cation entry and resulted in loss of dependence on the extracellular Ca2 + concentration, providing evidence for a functional role of plasma membrane-resident STIM1 in the regulation of store-operated divalent cation entry, which at least involves the EF-hand motif and the C-terminal polybasic lysine-rich domain.  相似文献   

3.
《Cell calcium》2014,55(4):219-229
In Alzheimer's disease (AD), astrocytes undergo complex morphological and functional changes that include early atrophy, reactive activation and Ca2+ deregulation. Recently, we proposed a mechanism by which nanomolar Aβ42 deregulates mGluR5 and InsP3 receptors, the key elements of astrocytic Ca2+ signalling toolkit. To evaluate the specificity of these changes, we have now investigated whether the effects of Aβ42 on Ca2+ signalling machinery can be reproduced by pro-inflammatory agents (TNFα, IL-1β, LPS). Here we report that Aβ42 (100 nM, 72 h) significantly increased mRNA levels of mGluR5, InsP3R1 and InsP3R2, whereas pro-inflammatory agents reduced expression of these specific mRNAs. Furthermore, DHPG-induced Ca2+ signals and store operated Ca2+ entry (SOCE) were augmented in Aβ42-treated cells due to up-regulation of a set of Ca2+ signalling-related genes including TRPC1 and TRPC4. Opposite changes were observed when astrocytes were treated with TNFα, IL-1β and LPS. Last, the effects observed on SOCE by treating wild-type astrocytes with Aβ42 were also identified in untreated astrocytes from 3×Tg-AD animals, suggesting a link to the AD pathology. Our results demonstrate that effects of Aβ42 on astrocytic Ca2+ signalling differ from and may contrast to the effects of pro-inflammatory agents.  相似文献   

4.
Exogenous brain-derived neurotrophic factor (BDNF) enhances Ca2 + signaling and cell proliferation in human airway smooth muscle (ASM), especially with inflammation. Human ASM also expresses BDNF, raising the potential for autocrine/paracrine effects. The mechanisms by which ASM BDNF secretion occurs are not known. Transient receptor potential channels (TRPCs) regulate a variety of intracellular processes including store-operated Ca2 + entry (SOCE; including in ASM) and secretion of factors such as cytokines. In human ASM, we tested the hypothesis that TRPC3 regulates BDNF secretion. At baseline, intracellular BDNF was present, and BDNF secretion was detectable by enzyme linked immunosorbent assay (ELISA) of cell supernatants or by real-time fluorescence imaging of cells transfected with GFP–BDNF vector. Exposure to the pro-inflammatory cytokine tumor necrosis factor-alpha (TNFα) (20 ng/ml, 48 h) or a mixture of allergens (ovalbumin, house dust mite, Alternaria, and Aspergillus extracts) significantly enhanced BDNF secretion and increased TRPC3 expression. TRPC3 knockdown (siRNA or inhibitor Pyr3; 10 μM) blunted BDNF secretion, and prevented inflammation effects. Chelation of extracellular Ca2 + (EGTA; 1 mM) or intracellular Ca2 + (BAPTA; 5 μM) significantly reduced secreted BDNF, as did the knockdown of SOCE proteins STIM1 and Orai1 or plasma membrane caveolin-1. Functionally, secreted BDNF had autocrine effects suggested by phosphorylation of high-affinity tropomyosin-related kinase TrkB receptor, prevented by chelating extracellular BDNF with chimeric TrkB-Fc. These data emphasize the role of TRPC3 and Ca2 + influx in the regulation of BDNF secretion by human ASM and the enhancing effects of inflammation. Given the BDNF effects on Ca2 + and cell proliferation, BDNF secretion may contribute to altered airway structure and function in diseases such as asthma.  相似文献   

5.
Homer1 protein is an important scaffold protein at postsynaptic density and has been demonstrated to play a central role in calcium signaling in the central nervous system. The aim of this study was to investigate the effects of Homer1 knockdown on MPP+ induced neuronal injury in cultured dopamine (DA) neurons. We found that down-regulating Homer1 expression with specific small interfering RNA (siRNA) significantly suppressed LDH release, reduced Propidium iodide (PI) or Hoechst staining, increased the number of tyrosine hydroxylase (TH) positive cells and DA uptake, and attenuated apoptotic and necrotic cell death after MPP+ injury. Homer1 knockdown decreased intracellular reactive oxygen species (ROS) generation through inhibition of intracellular calcium overload, but did not affect the endogenous antioxidant enzyme activities. Calcium imaging was used to examine the changes of intracellular Ca2 + concentration ([Ca2 +]cyt) and Ca2 + in endoplasmic reticulum (ER) ([Ca2 +]ER), and the results showed that Homer1 siRNA transfection attenuated ER Ca2 + release up to 120 min after MPP+ injury. Furthermore, decrease of [Ca2 +]cyt induced by Homer1 knockdown in MPP+ treated neurons was further enhanced by NMDA receptor antagonists MK-801 and AP-5, but not canonical transient receptor potential (TRPC) channel antagonist SKF-96365. l-type calcium antagonist isradipine but not nimodipine further inhibited intracellular calcium overload after MPP+ insult in Homer1 down-regulated neurons. These results suggest that Homer1 knockdown has protective effects against neuronal injury in in vitro PD model by reducing calcium overload mediated ROS generation, and this protection may be dependent at least in part on the regulatory effects on the function of calcium channels in both plasma membrane and ER.  相似文献   

6.
The transient receptor potential canonical channel 5 (TRPC5) is a Ca2+-permeable ion channel, which is predominantly expressed in the brain. TRPC5-deficient mice exhibit a reduced innate fear response and impaired motor control. In addition, outgrowth of hippocampal and cerebellar neurons is retarded by TRPC5. However, pharmacological evidence of TRPC5 function on cellular or organismic levels is sparse. Thus, there is still a need for identifying novel and efficient TRPC5 channel modulators.We, therefore, screened compound libraries and identified the glucocorticoid methylprednisolone and N-[3-(adamantan-2-yloxy)propyl]-3-(6-methyl-1,1-dioxo-2H-1λ6,2,4-benzothiadiazin-3-yl)propanamide (BTD) as novel TRPC5 activators. Comparisons with closely related chemical structures from the same libraries indicate important substructures for compound efficacy. Methylprednisolone activates TRPC5 heterologously expressed in HEK293 cells with an EC50 of 12 μM, while BTD-induced half-maximal activation is achieved with 5-fold lower concentrations, both in Ca2+ assays (EC50 = 1.4 μM) and in electrophysiological whole cell patch clamp recordings (EC50 = 1.3 μM). The activation resulting from both compounds is long lasting, reversible and sensitive to clemizole, a recently established TRPC5 inhibitor. No influence of BTD on homotetrameric members of the remaining TRPC family was observed. On the main sensory TRP channels (TRPA1, TRPV1, TRPM3, TRPM8) BTD exerts only minor activity. Furthermore, BTD can activate heteromeric channel complexes consisting of TRPC5 and its closest relatives TRPC1 or TRPC4, suggesting a high selectivity of BTD for channel complexes bearing at least one TRPC5 subunit.  相似文献   

7.
Mutations in the cation channel TRPC6 result in a renal-specific phenotype of familial nephrotic syndrome, affecting intracellular calcium ([Ca2+]i) signalling in the glomerular podocyte. Tools to study native TRPC6 activity are scarce, although there has been recent success with flufenamic acid (FFA). We confirm the specificity of FFA for TRPC6 both in an artificial expression system and in a human conditionally immortalised podocyte cell line (ciPod).Cells were loaded with fura-2AM and changes in intracellular calcium ([Ca2+]i) were calculated. 200 μM FFA induced an increase in [Ca2+]i in HEK293 cells with native TRPC6 expression, which was enhanced by overexpression of TRPC6 and completely blocked in the absence of extracellular calcium. Expressed TRPC7 did not significantly affect the response to FFA whereas expressed TRPC3 reduced it. FFA also induced an increase ciPod in [Ca2+]i, which was inhibited using SKF96365 and 2-APB, but not indomethacin. In ciPod, adenovirus (Ad-v) wild type (WT) TRPC6 increased [Ca2+]i activity to FFA compared to native TRPC6, whereas activity was significantly reduced with Ad-v dominant negative (DN) TRPC6. The niflumic acid (NFA) induced increase in [Ca2+]i in ciPod was not affected by Ad-v TRPC6 DN, and in HEK293 cells was not affected by WT TRPC6.In conclusion, FFA activates TRPC6 [Ca2+]i signalling in both ciPod and HEK293 cells independently of TRPC3 and TRPC7, and independently of properties of the fenamate family.  相似文献   

8.
In the present study, the isolated cricket (Gryllus bimaculatus) lateral oviduct exhibited spontaneous rhythmic contractions (SRCs) with a frequency of 0.29 ± 0.009 Hz (n = 43) and an amplitude of 14.6 ± 1.25 mg (n = 29). SRCs completely disappeared following removal of extracellular Ca2+ using a solution containing 5 mM EGTA. Application of the non-specific Ca2+ channel blockers Co2+, Ni2+, and Cd2+ also decreased both the frequency and amplitude of SRCs in dose-dependent manners, suggesting that Ca2+ entry through plasma membrane Ca2+ channels is essential for the generation of SRCs. Application of ryanodine (30 μM), which depletes intracellular Ca2+ by locking ryanodine receptor (RyR)-Ca2+ channels in an open state, gradually reduced the frequency and amplitude of SRCs. A RyR antagonist, tetracaine, reduced both the frequency and amplitude of SRCs, whereas a RyR activator, caffeine, increased the frequency of SRCs with a subsequent increase in basal tonus, indicating that RyRs are essential for generating SRCs. To further investigate the involvement of phospholipase C (PLC) and inositol 1,4,5-trisphosphate receptors (IP3Rs) in SRCs, we examined the effect of a PLC inhibitor, U73122, and an IP3R antagonist, 2-aminoethoxydiphenyl borate (2-APB), on SRCs. Separately, U73122 (10 μM) and 2-APB (30–50 μM) both significantly reduced the amplitude of SRCs with little effect on their frequency, further indicating that the PLC/IP3R signaling pathway is fundamental to the modulation of the amplitude of SRCs. A hypotonic-induced increase in the frequency and amplitude of SRCs and a hypertonic-induced decrease in the frequency and amplitude of SRCs indicated that mechanical stretch of the lateral oviduct is involved in the generation of SRCs. The sarcoplasmic reticulum Ca2+-pump ATPase inhibitors thapsigargin and cyclopiazonic acid impaired or suppressed the relaxation phase of SRCs. Taken together, the present results indicate that Ca2+ influx through plasma membrane Ca2+ channels and Ca2+ release from RyRs play an essential role in pacing SRCs and that Ca2+ release from IP3Rs may play a role in modulating the amplitude of SRCs, probably via activation of PLC.  相似文献   

9.
The scorpion toxin maurocalcine acts as a high affinity agonist of the type-1 ryanodine receptor expressed in skeletal muscle. Here, we investigated the effects of the reducing agent dithiothreitol or the oxidizing reagent thimerosal on type-1 ryanodine receptor stimulation by maurocalcine. Maurocalcine addition to sarcoplasmic reticulum vesicles actively loaded with calcium elicited Ca2+ release from native vesicles and from vesicles pre-incubated with dithiothreitol; thimerosal addition to native vesicles after Ca2+ uptake completion prevented this response. Maurocalcine enhanced equilibrium [3H]-ryanodine binding to native and to dithiothreitol-treated reticulum vesicles, and increased 5-fold the apparent Ki for Mg2+ inhibition of [3H]-ryanodine binding to native vesicles. Single calcium release channels incorporated in planar lipid bilayers displayed a long-lived open sub-conductance state after maurocalcine addition. The fractional time spent in this sub-conductance state decreased when lowering cytoplasmic [Ca2+] from 10 μM to 0.1 μM or at cytoplasmic [Mg2+]  30 μM. At 0.1 μM [Ca2+], only channels that displayed poor activation by Ca2+ were readily activated by 5 nM maurocalcine; subsequent incubation with thimerosal abolished the sub-conductance state induced by maurocalcine. We interpret these results as an indication that maurocalcine acts as a more effective type-1 ryanodine receptor channel agonist under reducing conditions.  相似文献   

10.
Glucagon like-peptide-1 (GLP-1) is an incretin hormone with antidiabetic effects through stimulating insulin secretion, β cell neogenesis, satiety sensation, and inhibiting glucagon secretion. Administration of GLP-1 provides cardioprotective effects through attenuating cardiac inflammation and insulin resistance. GLP-1 also modulates the heart rate and systolic pressure, which suggests that GLP-1 may have cardiac electrical effects. Therefore, the purposes of this study were to evaluate whether GLP-1 has direct cardiac effects and identify the underlying mechanisms. Patch clamp, confocal microscopy with Fluo-3 fluorescence, and Western blot analyses were used to evaluate the electrophysiological characteristics, calcium homeostasis, and calcium regulatory proteins in HL-1 atrial myocytes with and without GLP-1 (1 and 10 nM) incubation for 24 h. GLP-1 (1 and 10 nM) and control cells had similar action potential durations. However, GLP-1 at 10 nM significantly increased calcium transients and sarcoplasmic reticular Ca2+ contents. Compared to the control, GLP-1 (10 nM)—treated cells significantly decreased phosphorylation of the ryanodine receptor at S2814 and total phospholamban, but there were similar protein levels of sarcoplasmic reticular Ca2+-ATPase and the sodium–calcium exchanger. Moreover, exendin (9–39) amide (a GLP-1 receptor antagonist, 10 nM) attenuated GLP-1-mediated effects on total SR content and phosphorylated ryanodine receptor S2814. This study demonstrates GLP-1 may regulate HL-1 cell arrhythmogenesis through modulating calcium handling proteins.  相似文献   

11.
Physiologically relevant concentrations of [Arg8]-vasopressin (AVP) induce repetitive action potential firing and Ca2+ spiking responses in the A7r5 rat aortic smooth muscle cell line. These responses may be triggered by suppression of KCNQ potassium currents and/or activation of non-selective cation currents. Here we examine the relative contributions of KCNQ5 channels and TRPC6 non-selective cation channels to AVP-stimulated Ca2+ spiking using patch clamp electrophysiology and fura-2 fluorescence measurements in A7r5 cells. KCNQ5 or TRPC6 channel expression levels were suppressed by short hairpin RNA constructs. KCNQ5 knockdown resulted in more positive resting membrane potentials and induced spontaneous action potential firing and Ca2+ spiking. However physiological concentrations of AVP induced additional depolarization and increased Ca2+ spike frequency in KCNQ5 knockdown cells. AVP activated a non-selective cation current that was reduced by TRPC shRNA treatment or removal of external Na+. Neither resting membrane potential nor the AVP-induced depolarization was altered by knockdown of TRPC6 channel expression. However, both TRPC6 shRNA and removal of external Na+ delayed the onset of Ca2+ spiking induced by 25 pM AVP. These results suggest that suppression of KCNQ5 currents alone is sufficient to excite A7r5 cells, but AVP-induced activation of TRPC6 contributes to the stimulation of Ca2+ spiking.  相似文献   

12.
《Cell calcium》2011,49(6):352-357
The purpose of this study was to invent an extracellular inhibitor selective for the plasma membrane Ca2+ pump(s) (PMCA) isoform 1. PMCA extrude Ca2+ from cells during signalling and homeostasis. PMCA isoforms are encoded by 4 genes (PMCA1–4). Pig coronary artery endothelium and smooth muscle express the genes PMCA1 and 4. We showed that the endothelial cells contained mostly PMCA1 protein while smooth muscle cells had mostly PMCA4. A random peptide phage display library was screened for binding to synthetic extracellular domain 1 of PMCA1. The selected phage population was screened further by affinity chromatography using PMCA from rabbit duodenal mucosa which expressed mostly PMCA1. The peptide displayed by the selected phage was termed caloxin 1b3. Caloxin 1b3 inhibited PMCA Ca2+–Mg2+-ATPase in the rabbit duodenal mucosa (PMCA1) with a greater affinity (inhibition constant = 17 ± 2 μM) than the PMCA in the human erythrocyte ghosts (PMCA4, inhibition constant = 45 ± 4 μM). The affinity of caloxin 1b3 was also higher for PMCA1 than for PMCA2 and 3 indicating its selectivity for PMCA1. Consistent with an inhibition of PMCA1, caloxin 1b3 addition to the medium increased cytosolic Ca2+ concentration in endothelial cells. Caloxin 1b3 is the first known PMCA1 selective inhibitor. We anticipate caloxin 1b3 to aid in understanding PMCA physiology in endothelium and other tissues.  相似文献   

13.
AimsThis study investigates the actions of KMUP-1 on RhoA/Rho-kinase (ROCK)-dependent Ca2+ sensitization and the K+-channel in chronic pulmonary arterial hypertension (PAH) rats.Main methodsSprague–Dawley rats were divided into control, monocrotaline (MCT), and MCT + KMUP-1 groups. PAH was induced by a single intraperitoneal injection (i.p.) of MCT (60 mg/kg). KMUP-1 (5 mg/kg, i.p.) was administered once daily for 21 days to prevent MCT-induced PAH. All rats were sacrificed on day 22.Key findingsMCT-induced increased right ventricular systolic pressure (RVSP) and right ventricular hypertrophy were prevented by KMUP-1. In myograph experiments, KCl (80 mM), phenylephrine (10 µM) and K+ channel inhibitors (TEA, 10 mM; paxilline, 10 µM; 4-AP, 5 mM) induced weak PA contractions in MCT-treated rats compared to controls, but the PA reactivity was restored in MCT + KMUP-1-treated rats. By contrast, in β-escin- or α-toxin-permeabilized PAs, CaCl2-induced (1.25 mM, pCa 5.1) contractions were stronger in MCT-treated rats, and this action was suppressed in MCT + KMUP-1-treated rats. PA relaxation in response to the ROCK inhibitor Y27632 (0.1 μM) was much higher in MCT-treated rats than in control rats. In Western blot analysis, the expression of Ca2+-activated K+ (BKCa) and voltage-gated K+ channels (Kv2.1 and Kv1.5), and ROCK II proteins was elevated in MCT-treated rats and suppressed in MCT + KMUP-1-treated rats. We suggest that MCT-treated rats upregulate K+-channel proteins to adapt to chronic PAH.SignificanceKMUP-1 protects against PAH and restores PA vessel tone in MCT-treated rats, attributed to alteration of Ca2+ sensitivity and K+-channel function.  相似文献   

14.
Local Ca2+ spark releases are essential to the Ca2+ cycling process. Thus, they play an important role in ventricular and atrial cell contraction, as well as in sinoatrial cell automaticity. Characterizing their properties in healthy cells from different regions in the heart can reveal the basic biophysical differences among these regions. We designed a semi-automatic Matlab Graphical User Interface (called Sparkalyzer) to characterize parameters of Ca2+ spark release from any major cardiac tissue, as recorded in line-scan mode with a confocal laser-scanning microscope. We validated the algorithm on experimental images from rabbit sinoatrial, atrial, and ventricular cells loaded with Fluo-4 AM. The program characterizes general image parameters of Ca2+ transients and sparks: spark duration, which indicates for how long the spark provides Ca2+ to the closed intracellular mechanisms (typical value: 25 ± 1, 23 ± 1, 26 ± 1 ms for sinoatrial, atrial, and ventricular cells, respectively); spark amplitude, which indicates the amount of Ca2+ released by a single spark (1.6 ± 0.1, 1.6 ± 0.2, 1.4 ± 0.1 F/F0 for sinoatrial, atrial, and ventricular cells, respectively); spark length, which is the length of the Ca2+ wavelets fired out of a row of ryanodine receptors (5 ± 0.1, 5 ± 0.2, 3.4 ± 0.3 μm for sinoatrial, atrial, or ventricular cells, respectively) and number of sparks (0.14 ± 0.02, 0.025 ± 0.01, 0.02 ± 0.01 for 1 μm in 1 s for sinoatrial, atrial, and ventricular cells, respectively). This method is reliable for Ca2+ spark analysis of sinoatrial, atrial, or ventricular cells. Moreover, by examining the average value of Ca2+ spark characteristics and their scattering around the mean, atrial, ventricular and sinoatrial cells can be differentiated.  相似文献   

15.
Recent studies have implicated a relationship between RhoA/ROCK activity and defective Ca2+ homeostasis in hypertrophic hearts. This study investigated molecular mechanism underlying ROCK inhibition-mediated cardioprotection against pressure overload-induced cardiac hypertrophy, with a focus on Ca2+ homeostasis.Cardiac hypertrophy model was established by performing transverse aortic constriction (TAC) in 8-week-old male rats. Groups were assigned as SHAM, TAC and TAC + Fas (rats undergoing TAC and treated with fasudil). Rats in the TAC + Fas group were administered fasudil (5 mg/kg/day), and rats in the SHAM and TAC groups were treated with vehicle for 10 weeks. Electrophysiological recordings were obtained from isolated left ventricular myocytes and expression levels of proteins were determined using western blotting. Rats in the TAC group showed remarkable cardiac hypertrophy, and fasudil treatment significantly reversed this alteration. TAC + Fas myocytes showed significant improvement in reduced contractility and Ca2+ transients. Moreover, these myocytes showed restoration of slow relaxation rate and Ca2+ reuptake. Although L-type Ca2+ currents did not change in TAC group, there was a significant reduction in the triggered Ca2+ transients which was reversed either by long-term fasudil treatment or incubation of TAC myocytes with fasudil. The hearts of rats in the TAC group showed a significant decrease in ROCK1, ROCK2, RyR2 protein levels and p-PLBS16/T17/SERCA2 ratio and increase in RhoA expression and MLC phosphorylation. However, fasudil treatment largely reversed TAC-induced alterations in protein expression.Thus, our findings indicate that upregulation of the RhoA/ROCK pathway is significantly associated with cardiac hypertrophy-related Ca2+ dysregulation and suggest that ROCK inhibition prevents hypertrophic heart failure.  相似文献   

16.
17.
A gene encoding acidic, thermostable and raw starch hydrolysing α-amylase was cloned from an extreme thermophile Geobacillus thermoleovorans and expressed. The ORF of 1650 bp encodes a 515 amino acid protein (Gt-amy) with a signal peptide of 34 amino acids at the N-terminus. Seven conserved sequences of GH-13 family have been found in its sequence. The specific enzyme activity of recombinant Gt-amy is 1723 U mg−1 protein with a molecular mass of 59 kDa. It is optimally active at pH 5.0 and 80 °C with t1/2 values of 283, 184 and 56 min at 70, 80 and 90 °C, respectively. The activation energy required for its temperature deactivation is 84.96 kJ mol−1. Ca2+ strongly inhibits Gt-amy at 10 mM concentration, and inhibition kinetics with Ca2+ reveals that inhibition occurs as a result of binding to a lower affinity secondary Ca2+ binding site in the active centre in a mixed-type inhibition manner. The Km and kcat of the Gt-amy are 0.315 mg mL−1 and 2.62 × 103 s−1, respectively. Gt-amy is Ca2+-independent at the concentration used in industrial starch saccharification, and hydrolyses raw corn and wheat starches efficiently, and thus, is applicable in starch saccharification at the industrial sub-gelatinization temperatures.  相似文献   

18.
《Cytokine》2011,53(3):210-214
To examine the roles of intracellular calcium in RANKL-induced bone marrow macrophages (BMMs) differentiation, the effects of intracellular calcium chelator BAPTA-AM on RANKL-induced BMMs differentiation, and the activation of its relating signal proteins (MAPKs, and the PI3K/Akt) were studied. BMMs were cultured with various concentrations of BAPTA-AM in the presence of M-CSF (25 ng/ml) and RANKL (25 ng/ml) for 7 days, osteoclastogenic ability, cytosolic free Ca2+ concentration, osteoclast survival and the expression of phosphorylated ERK1/2, SAPK/JNK, Akt and p38 MAPK were measured by TRAP staining, spectrofluorometer and Western blotting. BAPTA-AM inhibited osteoclastogenesis and osteoclast survival of BMMs by RANKL induction. In osteoclasts without the pretreatment of BAPTA-AM, the increased response of [Ca2+]i was observed within 15 min and the maximum was about 1.2 times that of control. This response was sustained for 30 min and returned to the control level at 1 h after RANKL-inducing, and the increased response of [Ca2+]i was completely abolished and sustained to at least 8 h by BAPTA-AM. Although immunoblotting data revealed that RANKL could activate the phosphorylation of ERK1/2, SAPK/JNK, Akt and p38 MAPK, the expression of ERK1/2, Akt and p38 MAPK phosphorylation was inhibited by BAPTA-AM dose-dependently. These results revealed that BAPTA-AM inhibit osteoclastogenic ability of BMMs via suppressing the increase of [Ca2+]i which lead to inhibit RANKL-induced the phosphorylation of ERK, Akt and p38 MAPK, but not JNK. This finding may be useful in the development of an osteoclastic inhibitor that targets intracellular signaling factors.  相似文献   

19.
Ca2 +-activated Cl currents (CaCCs) play important roles in many physiological processes. Recent studies have shown that TMEM16A/anoctamin1 and TMEM16B/anoctamin2 constitute CaCCs in several cell types. Here we have investigated for the first time the extracellular effects of the Cl channel blocker anthracene-9-carboxylic acid (A9C) and of its non-charged analogue anthracene-9-methanol (A9M) on TMEM16B expressed in HEK 293T cells, using the whole-cell patch-clamp technique. A9C caused a voltage-dependent block of outward currents and inhibited a larger fraction of the current as depolarization increased, whereas the non-charged A9M produced a small, not voltage dependent block of outward currents. A similar voltage-dependent block by A9C was measured both when TMEM16B was activated by 1.5 and 13 μM Ca2 +. However, in the presence of 1.5 μM Ca2 + (but not in 13 μM Ca2 +), A9C also induced a strong potentiation of tail currents measured at − 100 mV after depolarizing voltages, as well as a prolongation of the deactivation kinetics. On the contrary, A9M did not produce potentiation of tail currents, showing that the negative charge is required for potentiation. Our results provide the first evidence that A9C has multiple effects on TMEM16B and that the negative charge of A9C is necessary both for voltage-dependent block and for potentiation. Future studies are required to identify the molecular mechanisms underlying these complex effects of A9C on TMEM16B. Understanding these mechanisms will contribute to the elucidation of the structure and functional properties of TMEM16B channels.  相似文献   

20.
The proinflammatory cytokine interleukin-1 (IL-1) elicits catabolic effects on the myocardial extracellular matrix (ECM) early after myocardial infarction but there is little understanding of its direct effects on cardiac myofibroblasts (CMF), or the role of p38 mitogen-activated protein kinase (MAPK). We used a focused RT-PCR microarray to investigate the effects of IL-1α on expression of 41 ECM genes in CMF cultured from different patients, and explored regulation by p38 MAPK.IL-1α (10 ng/ml, 6 h) had minimal effect on mRNA expression of structural ECM proteins, including collagens, laminins, fibronectin and vitronectin. However, it induced marked increases in expression of specific ECM proteases, including matrix metalloproteinases MMP-1 (collagenase-1), MMP-3 (stromelysin-1), MMP-9 (gelatinase-B) and MMP-10 (stromelysin-2). Conversely, IL-1α reduced mRNA and protein expression of ADAMTS1, a metalloproteinase that suppresses neovascularization. IL-1α increased expression of TIMP-1 slightly, but not TIMP-2. Data for MMP-1, MMP-2, MMP-3, MMP-9, MMP-10 and ADAMTS1 were confirmed by quantitative real-time RT-PCR. Tumor necrosis factor-alpha (TNFα), another important myocardial proinflammatory cytokine, did not alter expression of these metalloproteinases. IL-1α strongly activated the p38 MAPK pathway in human CMF. Pharmacological inhibitors of p38-α/β (SB203580) or p38-α/β/γ/δ (BIRB-0796) reduced MMP-3 and ADAMTS1 mRNA expression, but neither inhibitor affected MMP-9 levels. MMP-1 and MMP-10 expression were inhibited by BIRB-0796 but not SB203580, suggesting roles for p38-γ/δ.In summary, IL-1α induces a distinct pattern of ECM protein and protease expression in human CMF, in part regulated by distinct p38 MAPK subtypes, affirming the key role of IL-1α and CMF in post-infarction cardiac remodeling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号