首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glycoprotein (GP) IIb and IIIa are major constituents of the platelet membrane which are involved in forming the fibrinogen receptor on activated platelets. We used flow cytometry to study the effects of ethylene-diamine tetraacetic acid (EDTA) on the membrane GPIIb/IIIa complexes of platelets and microparticles, and to study the effects of cations on dissociated GP complexes. Microparticles were detected by both the volume signal and by fluorescence using an FITC-conjugated anti-GPIb antibody (NNKY5-5). When platelets were stimulated with ADP, calcium ionophore A23187, or thrombin, fibrinogen binding to the platelet surface increased markedly. However, fibrinogen binding to microparticles showed little increase in response to such agonists. Microparticle GPIIb/IIIa complexes were dissociated by incubation with EDTA at 37 degrees C but did not reassociate after treatment with divalent cations (Ca2+, Mg2+, and Mn2+) in contrast to platelet GPIIb/IIIa complexes. These results suggest that some interaction of GPIIb/IIIa and linked structures like the platelet cytoskeleton may be involved in the reassociation of dissociated GPIIb and GPIIIa, perhaps explaining the failure of reassociation of microparticle GPIIb/IIIa (i.e., the fibrinogen binding to microparticles).  相似文献   

2.
The focal adhesion protein vinculin contributes to cell attachment and spreading through strengthening of mechanical interactions between cell cytoskeletal proteins and surface membrane glycoproteins. To investigate whether vinculin proteolysis plays a role in the influence vinculin exerts on the cytoskeleton, we studied the fate of vinculin in activated and aggregating platelets by Western blot analysis of the platelet lysate and the cytoskeletal fractions of differentially activated platelets. Vinculin was proteolyzed into at least three fragments (the major one being approximately 95 kDa) within 5 min of platelet activation with thrombin or calcium ionophore. The 95 kDa vinculin fragment shifted cellular compartments from the membrane skeletal fraction to the cortical cytoskeletal fraction of lysed platelets in a platelet aggregation-dependent manner. Vinculin cleavage was inhibited by calpeptin and E64d, indicating that the enzyme responsible for vinculin proteolysis is calpain. These calpain inhibitors also inhibited the translocation of full-length vinculin to the cytoskeleton. We conclude that cleavage of vinculin and association of vinculin cleavage fragment(s) with the platelet cytoskeleton is an activation response that may be important in the cytoskeletal remodeling of aggregating platelets.  相似文献   

3.
We have developed a three-dimensional random network model of the intracellular actin cytoskeleton and have used it to study the role of the cytoskeleton in mechanotransduction and nucleus deformation. We use the model to predict the deformation of the nucleus when mechanical stresses applied on the plasma membrane are propagated through the random cytoskeletal network to the nucleus membrane. We found that our results agree with previous experiments utilizing micropipette pulling. Therefore, we propose that stress propagation through the random cytoskeletal network can be a mechanism to effect nucleus deformation, without invoking any biochemical signaling activity. Using our model, we also predict how nucleus strain and its relative displacement within the cytosol vary with varying concentrations of actin filaments and actin-binding proteins. We find that nucleus strain varies in a sigmoidal manner with actin filament concentration, while there exists an optimal concentration of actin-binding proteins that maximize nucleus displacement. We provide a theoretical analysis for these nonlinearities in terms of the connectivity of the random cytoskeletal network. Finally, we discuss laser ablation experiments that can be performed to validate these results in order to advance our understanding of the role of the cytoskeleton in mechanotransduction.  相似文献   

4.
The biomechanical properties of articular cartilage change profoundly with aging. These changes have been linked with increased potential for cartilage degeneration and osteoarthritis. However, less is known about the change in biomechanical properties of chondrocytes with increasing age. Cell stiffness can affect mechanotransduction pathways and may alter cell function. We measured aging-related changes in the biomechanical properties of chondrocytes. Human chondrocytes were isolated from knee articular cartilage within 48 hours after death or from osteochondral specimens obtained from knee arthroplasty. Cells were divided into two age groups: between 18 and 35 years (18 -- 35); and greater than 55 years (55+) of age. The 55+ group was further subdivided based on visual grade of osteoarthritis: normal (N) or osteoarthritic (OA). The viscoelastic properties of the cell were measured using the previously described micropipette cell aspiration technique. The equilibrium modulus, instantaneous modulus, and apparent viscosity were significantly higher in the 55+ year age group than in the 18 -- 35 age group. On the other hand, no differences were found in the equilibrium modulus, instantaneous modulus, or apparent viscosity between the N and OA groups. The increase in cell stiffness can be attributed to altered mechanical properties of the cell membrane, the cytoplasm, or the cytoskeleton. Increased stiffness has been reported in osteoarthritic chondrocytes, which in turn has been attributed to the actin cytoskeleton. A similar mechanism may be responsible for our finding of increased stiffness in aging chondrocytes. With advancing age, changes in the biomechanical properties of the cell could alter molecular and biochemical responses.  相似文献   

5.
Utrophin is a component of the platelet membrane cytoskeleton and participates in cytoskeletal reorganization (Earnest, J. P., Santos, G. F., Zuerbig, S., and Fox, J. E. B. (1995) J. Biol. Chem. 270, 27259-27265). Although platelets do not contain dystrophin, the identification of smaller C-terminal isoforms of dystrophin, including Dp71, which are expressed in a wide range of nonmuscle tissues and cell lines, has not been investigated. In this report, we have identified Dp71 protein variants of 55-60 kDa (designated Dp71Delta(110)) in the membrane cytoskeleton of human platelets. Both Dp71Delta(110) and utrophin sediment from lysed platelets along with the high speed detergent-insoluble pellet, which contains components of the membrane cytoskeleton. Like the membrane cytoskeletal proteins vinculin and spectrin, Dp71Delta(110) and utrophin redistributed from the high speed detergent-insoluble pellet to the integrin-rich low speed pellet of thrombin-stimulated platelets. Immunoelectron microscopy provided further evidence that Dp71Delta(110) was localized to the submembranous cytoskeleton. In addition to Dp71Delta(110), platelets contained several components of the dystrophin-associated protein complex, including beta-dystroglycan and syntrophin. To better understand the potential function of Dp71Delta(110), collagen adhesion assays were performed on platelets isolated from wild-type or Dp71-deficient (mdx(3cv)) mice. Adhesion to collagen in response to thrombin was significantly decreased in platelets isolated from mdx(3cv) mice, compared with wild-type platelets. Collectively, our results provide evidence that Dp71Delta(110) is a component of the platelet membrane cytoskeleton, is involved in cytoskeletal reorganization and/or signaling, and plays a role in thrombin-mediated platelet adhesion.  相似文献   

6.
Platelets can become activated in response to changes in flow-induced shear; however, the underlying molecular mechanisms are not clearly understood. Here we present new techniques for experimentally measuring the flow-induced shear rate experienced by platelets prior to adhering to a thrombus. We examined the dynamics of blood flow around experimentally grown thrombus geometries using a novel combination of experimental (ex vivo) and numerical (in silico) methodologies. Using a microcapillary system, platelet aggregate formation was analysed at elevated shear rates in the presence of coagulation inhibitors, where thrombus formation is predominantly platelet-dependent. These approaches permit the resolution and quantification of thrombus parameters at the scale of individual platelets (2 μm) in order to quantify real time thrombus development. Using our new techniques we can correlate the shear rate experienced by platelets with the extent of platelet adhesion and aggregation. The techniques presented offer the unique capacity to determine the flow properties for a temporally evolving thrombus field in real time.  相似文献   

7.
Cell mechanics and mechanotransduction: pathways, probes, and physiology   总被引:10,自引:0,他引:10  
Cells face not only a complex biochemical environment but also a diverse biomechanical environment. How cells respond to variations in mechanical forces is critical in homeostasis and many diseases. The mechanisms by which mechanical forces lead to eventual biochemical and molecular responses remain undefined, and unraveling this mystery will undoubtedly provide new insight into strengthening bone, growing cartilage, improving cardiac contractility, and constructing tissues for artificial organs. In this article we review the physical bases underlying the mechanotransduction process, techniques used to apply controlled mechanical stresses on living cells and tissues to probe mechanotransduction, and some of the important lessons that we are learning from mechanical stimulation of cells with precisely controlled forces. cytoskeleton; micromanipulation; cell signaling  相似文献   

8.
Blebs are pressure-driven protrusions that play an important role in cell migration, particularly in three-dimensional environments. A bleb is initiated when the cytoskeleton detaches from the cell membrane, resulting in the pressure-driven flow of cytosol toward the area of detachment and local expansion of the cell membrane. Recent experiments involving blebbing cells have led to conflicting hypotheses regarding the timescale of intracellular pressure propagation. The interpretation of one set of experiments supports a poroelastic model of the cytoplasm that leads to slow pressure equilibration when compared to the timescale of bleb expansion. A different study concludes that pressure equilibrates faster than the timescale of bleb expansion. To address this discrepancy, a dynamic computational model of the cell was developed that includes mechanics of and the interactions among the cytoplasm, the actin cortex, the cell membrane, and the cytoskeleton. The model results quantify the relationship among cytoplasmic rheology, pressure, and bleb expansion dynamics, and provide a more detailed picture of intracellular pressure dynamics. This study shows the elastic response of the cytoplasm relieves pressure and limits bleb size, and that both permeability and elasticity of the cytoplasm determine bleb expansion time. Our model with a poroelastic cytoplasm shows that pressure disturbances from bleb initiation propagate faster than the timescale of bleb expansion and that pressure equilibrates slower than the timescale of bleb expansion. The multiple timescales in intracellular pressure dynamics explain the apparent discrepancy in the interpretation of experimental results.  相似文献   

9.
This study evaluates the structural organization of the cytoskeleton within unactivated, discoid platelets. Previously, such studies have been difficult to interpret because of the ease with which platelets are stimulated, the sensitivity of actin filaments to cell extraction buffers, and the general problem of preserving actin filaments with conventional fixatives, compounded by the density of the cytoplasm in the platelet. In this study we have employed a new fixative containing lysine, which protects actin filaments against damage during fixation and thin-section processing. We used thick (0.25-micron) sections and conventional thin sections of extracted cells (fixed and lysed simultaneously by the addition of 1% Triton X-100 to the initial fixative) as well as thin sections of whole cells to examine three preparations of human platelets: discoid platelets washed by sedimentation; discoid platelets isolated by gel filtration; and circulating platelets collected by dripping blood directly from a vein into fixative. In all of these preparations, long, interwoven actin filaments were observed within the platelet and were particularly concentrated beneath the plasma membrane. These filaments appeared to be linked at irregular intervals to the membrane and to each other via short, approximately 20- to 50-nm-long cross-links of variable width. Although most filaments were outside the circumferential band of microtubules and the cisternae of the open canalicular system, individual filaments dipped down into the cytoplasm and were found between the microtubules and in association with other membranes. The ease with which single actin filaments can be seen in the dense cytoplasm of the human platelet after lysine/aldehyde fixation suggests the great potential of this new fixative for other cells.  相似文献   

10.
《The Journal of cell biology》1993,121(6):1329-1342
Activation of blood platelets triggers a series of responses leading to the formation and retraction of blood clots. Among these responses is the establishment of integrin-mediated transmembrane connections between extracellular matrix components and the actin cytoskeleton of the platelet. Here we report that a specific subpopulation of the major platelet integrin, glycoprotein IIb-IIIa (GPIIb-IIIa) (also referred to as alpha IIb beta 3 integrin), becomes incorporated into the detergent- insoluble actin cytoskeleton of platelets during the platelet activation response. The cytoskeletal association of GPIIb-IIIa is independent of platelet aggregation and fibrin sedimentation and is sensitive to cytochalasin D treatment. As determined by Western immunoblot analysis, approximately 22% of the total cellular GPIIb-IIIa becomes associated with the actin cytoskeleton upon thrombin activation in a manner that is independent of the detection of talin, alpha- actinin, or vinculin in the complex. We found that the cytoskeleton- associated GPIIb-IIIa is derived from an intracellular source since it is not available for lactoperoxidase-catalyzed radioiodination before platelet activation. Two intracellular sources of GPIIb-IIIa are present in resting platelets: GPIIb-IIIa associated with the alpha- granule secretory compartment as well as surface-inaccessible domains of the surface-connected canalicular system. Interestingly, alpha- granule secretion, which occurs in thrombin-activated platelets and results in the translocation of intracellular GPIIb-IIIa to the plasma membrane, appears to be required for the cytoskeleton incorporation of GPIIb-IIIa that we observe. Collectively, our data provide evidence that a subpopulation of GPIIb-IIIa derived from an intracellular source is selectively linked to the actin cytoskeleton of platelets upon thrombin activation in the absence of platelet aggregation.  相似文献   

11.
During metastasis, tumor cells need to adapt to their dynamic microenvironment and modify their mechanical properties in response to both chemical and mechanical stimulation. Physical interactions occur between cancer cells and the surrounding matrix including cell movements and cell shape alterations through the process of mechanotransduction. The latter describes the translation of external mechanical cues into intracellular biochemical signaling. Reorganization of both the cytoskeleton and the extracellular matrix (ECM) plays a critical role in these spreading steps. Migrating tumor cells show increased motility in order to cross the tumor microenvironment, migrate through ECM and reach the bloodstream to the metastatic site. There are specific factors affecting these processes, as well as the survival of circulating tumor cells (CTC) in the blood flow until they finally invade the secondary tissue to form metastasis. This review aims to study the mechanisms of metastasis from a biomechanical perspective and investigate cell migration, with a focus on the alterations in the cytoskeleton through this journey and the effect of biologic fluids on metastasis. Understanding of the biophysical mechanisms that promote tumor metastasis may contribute successful therapeutic approaches in the fight against cancer.  相似文献   

12.
In numerous cell types, the cytoskeleton has been widely implicated in mechanotransduction pathways involving stretch-activated ion channels, integrins and deformation of intracellular organelles. Studies have also demonstrated that the cytoskeleton can undergo remodelling in response to mechanical stimuli such as tensile strain or fluid flow. In articular chondrocytes, the mechanotransduction pathways are complex, inter-related and as yet, poorly understood. Furthermore, little is known of how the chondrocyte cytoskeleton responds to physiological mechanical loading. This study utilises the well-characterised chondrocyte-agarose model and an established confocal image-analysis technique to demonstrate that both static and cyclic, compressive strain and hydrostatic pressure all induce remodelling of actin microfilaments. This remodelling was characterised by a change from a uniform to a more punctate distribution of cortical actin around the cell periphery. For some loading regimes, this remodelling was reversed over a subsequent 1h unloaded period. This reversible remodelling of actin cytoskeleton may therefore represent a mechanism through which the chondrocyte alters its mechanical properties and mechanosensitivity in response to physiological mechanical loading.  相似文献   

13.
Binding experiments were performed to demonstrate a direct interaction between cytoskeletons from human blood platelets and phosphatidylserine. A centrifugation technique using radiolabeled phosphatidylserine-vesicles and Triton X-100 insoluble residues from unstimulated human platelets was used to assess the binding. Interaction between cytoskeleton and phospholipid is demonstrated to be specific for phosphatidylserine. No binding was observed for phosphatidylcholine. The binding of phosphatidylserine was saturable and dependent on the concentration of cytoskeleton used. The interaction between phosphatidylserine and the cytoskeleton appeared to be completely reversible. The existence of a reversible and specific interaction between phosphatidylserine and the cytoskeleton of unstimulated platelets would suggest a role for the cytoskeleton in the maintenance of the asymmetric distribution of this lipid in the plasma membrane. We have previously shown (Comfurius et al. (1985) Biochim. Biophys. Acta 815, 143-148) that in activated platelets a strong correlation exists between degradation of platelet cytoskeletal proteins by the endogenous calcium-dependent proteinase (calpain) and exposure of phosphatidylserine at their outer surface. Nevertheless, hydrolysis of the isolated cytoskeleton by calpain did not result in a change in the parameters of the binding between phosphatidylserine and cytoskeleton. Also, sulfhydryl oxidation of the cytoskeleton by diamide did not affect its binding properties for phosphatidylserine, in spite of the fact that diamide treatment of platelets results in exposure of phosphatidylserine at the outer surface. Exposition of phosphatidylserine upon activation of platelets cannot be directly ascribed to a change in affinity or number of binding sites of the modified cytoskeleton as measured in model systems. However, it cannot be excluded that topological rearrangements of the cytoskeleton as occur within the cell during platelet activation lead to a decreased contact between cytoskeleton and lipid, irrespective of the binding parameters.  相似文献   

14.
We have previously reported that stimulation of platelets causes a relocation of annexin V to the cytoplasmic side of the plasma membrane where it associates with actin. This study examined the association of annexin V with the platelet cytoskeleton and its binding to actin, following both physiological activation with thrombin and Ca2+ -ionophore activation. The time-dependence of annexin V incorporation into the detergent-extracted cytoskeleton following activation with thrombin was also measured. Although calcium from the intracellular stores was enough to relocate intracellular annexin V to the cytoskeleton, this relocation was further enhanced by influx of extracellular calcium. The association of annexin V with the cytoskeleton was found to be unaffected by the action of cytochalasin E, however, annexin V was solubilized when DNase I was used to depolymerize the membrane cytoskeleton, and spontaneously re-associated with the actin filaments when re-polymerization was induced in vitro. Using a bifunctional crosslinking reagent we have identified an 85-kDa complex in both membrane and cytoskeleton fractions containing annexin V and actin. Direct binding to actin filaments was only observed in high [Ca2+], however, inclusion of an extract from thrombin-stimulated platelets lowered the [Ca2+] requirement for the binding of annexin V to F-actin to physiological levels. We also show that GST-annexin V mimics the physiological binding of annexin V to membranes, and that this GST-annexin V binds directly to a specific isoform of actin. Immunoprecipitation using antibodies against annexin V copurify annexin V and gamma- but not beta-actin from activated platelets. This is the first report of a possible preferential binding of annexin V to a specific isoform of actin, namely gamma-actin. The results of this study suggest a model in which annexin V that relocates to the plasma membrane and binds to gamma-actin in an activation-dependent manner forms a strong association with the platelet cytoskeleton.  相似文献   

15.
The fine structure of resting and activated platelets was compared using two approaches novel to this dense cytoplasm. First, rapid lysis of platelets on carbon-coated grids was following by negative staining of the "cytoskeleton." Second, a brief, minimal fixation of platelets in plasma was coupled with partial lysis and examination of the unstained whole mounts at 200 kV. The results showed that the dense ground cytoplasm of discoid, fully resting platelets appeared granular or amorphous, and microfilaments were not observed. A coiled microtubule terminated in one, free, straight end. When any slight degree of activation occurred, microfilaments could be detected in the platelets. In fully spread specimens, the amorphous character of the resting cytoplasm was strikingly altered into an interconnected network of microfilaments. Stereo views of the whole mounts showed that dense granules, 100-250 nm in diameter, appeared as if suspended in the filament nets. The results support the view that platelet activation involves a major assembly of microfilaments from amorphous precursors. The change can only be seen convincingly when stringent precautions are taken during preparation because the platelets are very easily activated by thermal or mechanical stimuli.  相似文献   

16.
Mechanisms of platelet production   总被引:3,自引:0,他引:3  
The precise mechanism by which platelets are formed from megakaryocytes (MK) remains unclear, despite numerous studies which have been performed during this century. Models have been proposed that attempt to account for platelet formation from disruption of elongated processes of MK cytoplasm, designated proplatelets, or by fragmentation of MK cytoplasm. MK demarcation membranes are hypothesized by some investigators to delineate platelet territories in the MK cytoplasm, and by others to act as a membrane reservoir for MK process formation. Platelet production has been variously speculated to occur primarily in the bone marrow or lung. Each theory or model has attempted to elucidate the phenomenon of size heterogeneity of circulating platelets and the changes that occur under conditions of altered thrombopoiesis. In this article, we have analyzed and compared the characteristics of previously proposed models for platelet production and suggested additional techniques for future studies of thrombopoiesis.  相似文献   

17.
Association of fibrin with the platelet cytoskeleton   总被引:2,自引:0,他引:2  
We have previously postulated that surface membrane proteins become specifically associated with the internal platelet cytoskeleton upon platelet activation (Tuszynski, G.P., Walsh, P.N., Piperno, J., and Koshy, A. (1982) J. Biol. Chem. 257, 4557-4563). Four lines of evidence are in support of this general hypothesis since we now show that platelet surface receptors for fibrin become specifically associated with the platelet Triton-insoluble cytoskeleton. 1) Fibrin was detected immunologically in the washed Triton-insoluble cytoskeletons of thrombin-activated platelets under conditions where fibrin polymerization and resultant precipitation was blocked with Gly-Pro-Arg-Pro, a synthetic peptide that inhibits polymerization of fibrin monomer. 2) Radiolabeled fibrin bound to thrombin-activated platelets and became associated with the cytoskeleton. 3) The amount of radiolabeled fibrin bound to thrombin-activated thrombasthenic platelets and their cytoskeletons amounted to about 20% of the fibrin bound to thrombin-activated control platelets and their cytoskeletons. 4) The association of fibrin with cytoskeletons and with the platelet surface was nearly quantitatively blocked by an antibody prepared against cytoskeletons (anti-C), an antibody against isolated membranes of Pronase-treated platelets (anti-M1), and a monoclonal antibody to the platelet surface glycoprotein complex, GPIIb-GPIII (anti-GPIII). These antibodies blocked ADP and thrombin-induced platelet aggregation as well as thrombin-induced clot retraction. Analysis of the immunoprecipitates obtained with anti-C, anti-M1, and anti-GPIII from detergent extracts of 125I-surface labeled platelets revealed that these antibodies recognized GPIIb-GPIII. These data suggest that thrombin activation of platelets results in the specific association of fibrin with the platelet cytoskeleton, that this association may be mediated by the GPIIb-GPIII complex, and that these mechanisms may play an important role in platelet aggregation and clot retraction induced by thrombin.  相似文献   

18.
Polarity is critical for development and tissue-specific function. However, the acquisition and maintenance of tissue polarity is context dependent. Thus, cell and tissue polarity depend on cell adhesion which is regulated by the cytoskeleton and influenced by the biochemical composition of the extracellular microenvironment and modified by biomechanical cues within the tissue. These biomechanical cues include fluid flow induced shear stresses, cell-density and confinement-mediated compression, and cellular actomyosin tension intrinsic to the tissue or induced in response to morphogens or extracellular matrix stiffness. Here, we discuss how extracellular matrix stiffness and fluid flow influence cell–cell and cell–extracellular matrix adhesion and alter cytoskeletal organization to modulate cell and tissue polarity. We describe model systems that when combined with state of the art molecular screens and high-resolution imaging can be used to investigate how force modulates cell and tissue polarity.  相似文献   

19.
Triton-insoluble cytoskeletons prepared from either normal or thrombasthenic platelets were found to contain approximately 1.3 micrograms of fibronectin/10(9) platelets as measured by a radioimmunoassay. Total endogenous platelet fibronectin was quantitatively retained on the platelet cytoskeleton, whereas 70% of exogenously added fibronectin that bound the surface of thrombin-activated platelets was recovered with the Triton-insoluble cytoskeleton. The exogenously added fibronectin specifically bound platelets and cytoskeletons with the same affinity giving an apparent binding constant of 1.47 X 10(-7) M. The possibility that fibrin associated with the platelet cytoskeleton could serve as the fibronectin receptor was investigated by measuring the binding constant of fibronectin for polymerizing fibrin and by measuring the amount of fibronectin associated with cytoskeletons of thrombasthenic platelets which contain 4-fold less fibrin than controls. The binding constant of fibronectin for polymerizing fibrin was 14-fold lower than that for cytoskeletons and cytoskeletons prepared from thrombasthenic platelets contained approximately the same amount of fibronectin as controls. Therefore, it is unlikely that fibrin is the platelet fibronectin receptor. These results support the hypothesis that platelet fibronectin is released from platelet alpha granules upon thrombin stimulation and becomes bound to the platelet surface and cytoskeleton either directly or through some intermediate protein that spans the membrane and interacts both with fibronectin and the internal cell cytoskeleton.  相似文献   

20.
The motility of cells crawling on a substratum has its origin in a thin cell organ called lamella. We present a 2-dimensional continuum model for the lamella dynamics of a slowly migrating cell, such as a human keratinocyte. The central components of the model are the dynamics of a viscous cytoskeleton capable to produce contractile and swelling stresses, and the formation of adhesive bonds in the plasma cell membrane between the lamella cytoskeleton and adhesion sites at the substratum. We will demonstrate that a simple mechanistic model, neglecting the complicated signaling pathways and regulation processes of a living cell, is able to capture the most prominent aspects of the lamella dynamics, such as quasi-periodic protrusions and retractions of the moving tip, retrograde flow of the cytoskeleton and the related accumulation of focal adhesion complexes in the leading edge of a migrating cell. The developed modeling framework consists of a nonlinearly coupled system of hyperbolic, parabolic and ordinary differential equations for the various molecular concentrations, two elliptic equations for cytoskeleton velocity and hydrodynamic pressure in a highly viscous two-phase flow, with appropriate boundary conditions including equalities and inequalities at the moving boundary. In order to analyse this hybrid continuum model by numerical simulations for different biophysical scenarios, we use suitable finite element and finite volume schemes on a fixed triangulation in combination with an adaptive level set method describing the free boundary dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号