首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The HO gene in Saccharomyces cerevisiae is regulated by a large and complex promoter that is similar to promoters in higher order eukaryotes. Within this promoter are 10 potential binding sites for the a1-α2 heterodimer, which represses HO and other haploid-specific genes in diploid yeast cells. We have determined that a1-α2 binds to these sites with differing affinity, and that while certain strong-affinity sites are crucial for repression of HO, some of the weak-affinity sites are dispensable. However, these weak-affinity a1-α2-binding sites are strongly conserved in related yeast species and have a role in maintaining repression upon the loss of strong-affinity sites. We found that these weak sites are sufficient for a1-α2 to partially repress HO and recruit the Tup1-Cyc8 (Tup1-Ssn6) co-repressor complex to the HO promoter. We demonstrate that the Swi5 activator protein is not bound to URS1 in diploid cells, suggesting that recruitment of the Tup1-Cyc8 complex by a1-α2 prevents DNA binding by activator proteins resulting in repression of HO.  相似文献   

2.
3.
4.
5.
6.
7.
8.
9.
10.
The binding of RCC1 (regulator of chromosome condensation 1) to chromatin is critical for cellular processes such as mitosis, nucleocytoplasmic transport, and nuclear envelope formation because RCC1 recruits the small GTPase Ran (Ras-related nuclear protein) to chromatin and sets up a Ran-GTP gradient around the chromosomes. However, the molecular mechanism by which RCC1 binds to nucleosomes, the repeating unit of chromatin, is not known. We have used biochemical approaches to test structural models for how the RCC1 β-propeller protein could bind to the nucleosome. In contrast to the prevailing model, RCC1 does not appear to use the β-propeller face opposite to its Ran-binding face to interact with nucleosomes. Instead, we find that RCC1 uses a conformationally flexible loop region we have termed the switchback loop in addition to its N-terminal tail to bind to the nucleosome. The juxtaposition of the RCC1 switchback loop to its Ran binding surface suggests a novel mechanism for how nucleosome-bound RCC1 recruits Ran to chromatin. Furthermore, this model accounts for previously unexplained observations for how Ran can interact with the nucleosome both dependent and independent of RCC1 and how binding of the nucleosome can enhance RCC1's Ran nucleotide exchange activity.  相似文献   

11.
12.
13.
14.
15.
16.
17.
Regulation of gene expression requires dynamic changes in chromatin, but the nature of these changes is not well understood. Here, we show that progesterone treatment of cultured cells leads to recruitment of progesterone receptor (PR) and SWI/SNF-related complexes to Mouse Mammary Tumor Virus (MMTV) promoter, accompanied by displacement of histones H2A and H2B from the nucleosome containing the receptor binding sites, but not from adjacent nucleosomes. PR recruits SWI/SNF to MMTV nucleosomes in vitro and facilitates synergistic binding of receptors and nuclear factor 1 to the promoter. In nucleosomes assembled on MMTV or mouse rDNA promoter sequences, SWI/SNF catalyzes ATP-dependent sliding of the histone octamer followed only on the MMTV promoter by displacement of histones H2A and H2B. In MMTV nucleosome arrays, SWI/SNF displaces H2A and H2B from nucleosome B and not from the adjacent nucleosome. Thus, the outcome of nucleosome remodeling by SWI/SNF depends on DNA sequence.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号