首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sixteen subjects (aged 54.2 ± 14.1 years) with hemiparesis (7.9 ± 7.1 years since diagnosis) demonstrating a foot-drop and hamstrings muscle weakness were fitted with a dual-channel functional electrical stimulation (FES) system activating the dorsiflexors and hamstrings muscles. Measurements of gait performance were collected after a conditioning period of 6 weeks, during which the subjects used the system throughout the day. Gait was assessed with and without the dual-channel FES system, as well as with peroneal stimulation alone. Outcomes included lower limb kinematics and the step length taken with the non-paretic leg. Results with the dual-channel FES indicate that in the subgroup of subjects who demonstrated reduced hip extension but no knee hyperextension (n = 9), hamstrings FES increased hip extension during terminal stance without affecting the knee. Similarly, in the subgroup of subjects who demonstrated knee hyperextension but no limitation in hip extension (n = 7), FES restrained knee hyperextension without having an impact on hip movement. Additionally, step length was increased in all subjects. The peroneal FES had a positive effect only on the ankle. The results suggest that dual-channel FES for the dorsiflexors and hamstrings muscles may affect lower limb control beyond that which can be attributed to peroneal stimulation alone.  相似文献   

2.
This study focused on the application of vacuum system to synthesize capsiate analogs. The capsiate analogs containing conjugated linoleic acid (CLA) was successfully synthesized in solvent free system via lipase-catalyzed esterification. This esterification was carried out using vanillyl alcohol and CLA as substrates, and Lipozyme RM IM from Rhizomucor miehei as a biocatalyst. The best reaction condition was a molar ratio of 1:2 (vanillyl alcohol to CLA), a reaction temperature of 50 °C, and a lipase loading of 10% (w/w, based on total substrates). Application of vacuum increased the yield of capsiate analog as well as the reaction rate. When the vacuum levels were between 66.7 kPa and 1.3 kPa, an equilibrium yield of 100 mol% was achieved. The maximum yield was approached after only 3 h of reaction at the vacuum levels of higher than 13.3 kPa. The content of 9c,11t-CLA in capsiate analog synthesized was higher than that of 10t,12c-CLA.  相似文献   

3.
Compared to intact limbs, running-specific prostheses have high resonance non-biologic materials and lack active tissues to damp high frequencies. These differences may lead to ground reaction forces (GRFs) with high frequency content. If so, ubiquitously applying low-pass filters to prosthetic and intact limb GRFs may attenuate veridical high frequency content and mask important and ecologically valid data from prostheses. To explore differences in frequency content between prosthetic and intact limbs we divided signal power from transtibial unilateral amputees and controls running at 2.5, 3.0, and 3.5 m/s into Low (<10 Hz), High (10–25 Hz), and Non-biologic (>25 Hz) frequency bandwidths. Faster speeds tended to reduce the proportion of signal power in the Low bandwidth while increasing it in the High and Non-biologic bandwidths. Further, prostheses had lower proportions of signal power at the High frequency bandwidth but greater proportions at the Non-biologic bandwidth. To evaluate whether these differences in frequency content interact with filter cut-offs and alter results, we filtered GRFs with cut-offs from 1 to 100 Hz and calculated vertical impact peak (VIP). Changing cut-off had inconsistent effects on VIP across speeds and limbs: Faster speeds had significantly larger changes in VIP per change in cut-off while, compared to controls, prosthetic limbs had significantly smaller changes in VIP per change in cut-off. These findings reveal differences in GRF frequency content between prosthetic and intact limbs and suggest that a cut-off frequency that is appropriate for one limb or speed may be inappropriate for another.  相似文献   

4.
Different functional roles for the hands have been demonstrated, however leg control is not as well understood. The purpose of the present study was to evaluate bilateral knee neuromuscular control to determine if the limb receiving greater attention would have more well-tuned control compared to an unattended limb. Surface electrodes were placed on seven muscles of each limb, before standing on two force platforms. Visual feedback was given of the forces and moments of the “focus limb,” but not the “unattended limb.” Static isometric forces were matched with their focus limb, requiring their unattended limb to push in the opposite direction, using a combination of forward–backward–medial–lateral shear forces while muscle activity was collected bilaterally. There was a significant main effect for limb task (p = 0.02), with the medial hamstrings being more specific (p = 0.001) while performing the unattended limb and the lateral hamstring being more well-tuned (p = 0.007) while performing the focus limb task. The focus limb’s medial and lateral gastrocnemius were principally active in the forwards direction, but only the unattended limb’s lateral gastrocnemius was active in the backwards direction. Findings suggest unique neuromuscular control strategies are used for the legs depending on limb task.  相似文献   

5.
The aim of this study was to determine if athletes with a history of hamstring strain injury display lower levels of surface EMG (sEMG) activity and median power frequency in the previously injured hamstring muscle during maximal voluntary contractions. Recreational athletes were recruited, 13 with a history of unilateral hamstring strain injury and 15 without prior injury. All athletes undertook isokinetic dynamometry testing of the knee flexors and sEMG assessment of the biceps femoris long head (BF) and medial hamstrings (MHs) during concentric and eccentric contractions at ±180 and ±60° s?1. The knee flexors on the previously injured limb were weaker at all contraction speeds compared to the uninjured limb (+180° s?1 p = 0.0036; +60° s?1 p = 0.0013; ?60° s?1 p = 0.0007; ?180° s?1 p = 0.0007) whilst sEMG activity was only lower in the BF during eccentric contractions (?60° s?1 p = 0.0025; ?180° s?1 p = 0.0003). There were no between limb differences in MH sEMG activity or median power frequency from either BF or MH in the injured group. The uninjured group showed no between limb differences in any of the tested variables. Secondary analysis comparing the between limb difference in the injured and the uninjured groups, confirmed that previously injured hamstrings were mostly weaker (+180° s?1 p = 0.2208; +60° s?1 p = 0.0379; ?60° ?1 p = 0.0312; ?180° s?1 p = 0.0110) and that deficits in sEMG were confined to the BF during eccentric contractions (?60° s?1 p = 0.0542; ?180° s?1 p = 0.0473). Previously injured hamstrings were weaker and BF sEMG activity was lower than the contralateral uninjured hamstring. This has implications for hamstring strain injury prevention and rehabilitation which should consider altered neural function following hamstring strain injury.  相似文献   

6.
The purposes were twofold: (a) to ascertain the inter-session reliability of hamstrings total reaction time, pre-motor time and motor time; and (b) to examine sex-related differences in the hamstrings reaction times profile. Twenty-four men and 24 women completed the study. Biceps femoris and semitendinosus total reaction time, pre-motor time and motor time measured during eccentric isokinetic contractions were recorded on three different occasions. Inter-session reliability was examined through typical percentage error (CVTE), percentage change in the mean (CM) and intraclass correlations (ICC). For both biceps femoris and semitendinosus, total reaction time, pre-motor time and motor time measures demonstrated moderate inter-session reliability (CVTE < 10%; CM < 3%; ICC > 0.7). The results also indicated that, although not statistically significant, women reported consistently longer hamstrings total reaction time (23.5 ms), pre-motor time (12.7 ms) and motor time (7.5 ms) values than men. Therefore, an observed change larger than 5%, 9% and 8% for total reaction time, pre-motor time and motor time respectively from baseline scores after performing a training program would indicate that a real change was likely. Furthermore, while not statistically significant, sex differences were noted in the hamstrings reaction time profile which may play a role in the greater incidence of ACL injuries in women.  相似文献   

7.
The purpose of the study was to determine whether peroneal reaction time is influenced by ankle’s impairment in subjects with ankle injury assessed by surface electromyography. The studies were identified by electronic research by two independent reviewers at the following databases: MEDLINE (1966–2009), EMBASE (1980–2009), LILACS (1982–2009), CINAHL (1982–2009) and, SPORTDiscus (1975–2009). Studies were divided into following groups: I – subjects with injury (paired by the opposite limb); II – subjects with or without injury (paired by limbs from different subjects) and III – subjects with or without injury (other situations). Studies that used the sudden ankle inversion test were selected. As result, 25 articles were included. The comparison of the reaction time paired by the opposite limb, showed a statistically significant difference in favor of the injured ankles (standardized mean difference – SMD = 0.40; IC 95% [0.01; 0.79], P = 0.05). The comparison paired by limbs from different subjects presented a statistically significant difference, in favor of the injured ankles (SMD = 3.49; IC 95% [1.26; 5.71], P = 0.002). The effect size measured was 0.54 and 1.61, respectively. The greater reaction time delay showed in the subjects with ankle injury compared to that of asymptomatic subjects should be taken into consideration.  相似文献   

8.
Previous studies have identified differences in gait kinetics between healthy older and young adults. However, the underlying factors that cause these changes are not well understood. The objective of this study was to assess the effects of age and speed on the activation of lower-extremity muscles during human walking. We recorded electromyography (EMG) signals of the soleus, gastrocnemius, biceps femoris, medial hamstrings, tibialis anterior, vastus lateralis, and rectus femoris as healthy young and older adults walked over ground at slow, preferred and fast walking speeds. Nineteen healthy older adults (age, 73 ± 5 years) and 18 healthy young adults (age, 26 ± 3 years) participated. Rectified EMG signals were normalized to mean activities over a gait cycle at the preferred speed, allowing for an assessment of how the activity was distributed over the gait cycle and modulated with speed. Compared to the young adults, the older adults exhibited greater activation of the tibialis anterior and soleus during mid-stance at all walking speeds and greater activation of the vastus lateralis and medial hamstrings during loading and mid-stance at the fast walking speed, suggesting increased coactivation across the ankle and knee. In addition, older adults depend less on soleus muscle activation to push off at faster walking speeds. We conclude that age-related changes in neuromuscular activity reflect a strategy of stiffening the limb during single support and likely contribute to reduced push off power at fast walking speeds.  相似文献   

9.
This study aims to quantify the biomechanical properties of murine temporomandibular joint (TMJ) articular disc and condyle cartilage using AFM-nanoindentation. For skeletally mature, 3-month old mice, the surface of condyle cartilage was found to be significantly stiffer (306 ± 84 kPa, mean ± 95% CI) than those of the superior (85 ± 23 kPa) and inferior (45 ± 12 kPa) sides of the articular disc. On the disc surface, significant heterogeneity was also detected across multiple anatomical sites, with the posterior end being the stiffest and central region being the softest. Using SEM, this study also found that the surfaces of disc are composed of anteroposteriorly oriented collagen fibers, which are sporadically covered by thinner random fibrils. Such fibrous nature results in both an F-D3/2 indentation response, which is a typical Hertzian response for soft continuum tissue under a spherical tip, and a linear F-D response, which is typical for fibrous tissues, further signifying the high degree of tissue heterogeneity. In comparison, the surface of condyle cartilage is dominated by thinner, randomly oriented collagen fibrils, leading to Hertzian-dominated indentation responses. As the first biomechanical study of murine TMJ, this work will provide a basis for future investigations of TMJ tissue development and osteoarthritis in various murine TMJ models.  相似文献   

10.
Anti-pronation orthoses, like medially posted insoles (MPI), have traditionally been used to treat various of lower limb problems. Yet, we know surprisingly little about their effects on overall foot motion and lower limb mechanics across walking and running, which represent highly different loading conditions. To address this issue, multi-segment foot and lower limb mechanics was examined among 11 overpronating men with normal (NORM) and MPI insoles during walking (self-selected speed 1.70 ± 0.19 m/s vs 1.72 ± 0.20 m/s, respectively) and running (4.04 ± 0.17 m/s vs 4.10 ± 0.13 m/s, respectively). The kinematic results showed that MPI reduced the peak forefoot eversion movement in respect to both hindfoot and tibia across walking and running when compared to NORM (p < 0.05–0.01). No differences were found in hindfoot eversion between conditions. The kinetic results showed no insole effects in walking, but during running MPI shifted center of pressure medially under the foot (p < 0.01) leading to an increase in frontal plane moments at the hip (p < 0.05) and knee (p < 0.05) joints and a reduction at the ankle joint (p < 0.05). These findings indicate that MPI primarily controlled the forefoot motion across walking and running. While kinetic response to MPI was more pronounced in running than walking, kinematic effects were essentially similar across both modes. This suggests that despite higher loads placed upon lower limb during running, there is no need to have a stiffer insoles to achieve similar reduction in the forefoot motion than in walking.  相似文献   

11.
The design, construction, and fitting of artificial limbs remain to this day an art, dependent on the accumulated expertise of the practitioner/prosthetist. Socket fitting is cost ineffective, time consuming, and a source of inconvenience for the amputee. Stump–skin slippage within the socket can cause discomfort, internal limb pain, and eventually skin ulcers as a result of excessive pressure and shear within the socket. This study presents a new method of assessment of three-dimensional (3D) socket–stump kinematics/slippage of strenuous activities using Biplane Dynamic Roentgen Stereogrammetric Analysis instrumentation. Ten below knee amputees participated in the study. A more holistic representation of the downward slippage trend of all proximal side skin markers with respect to the socket, and an even more characteristic and of higher magnitude downward-and anterioposterior slippage (maximum slippage: 151 mm for the fast-stop task and 19 mm for the step-down task) between the distal markers after impact, was possible for both tasks for all amputees. Displacement between skin-to-skin marker pairs reached maximum values of approximately 10 mm for the step-down trials and up to 24 mm for the fast stop trials. Maximum skin strain was dependent on the position of the skin markers. Distally positioned skin marker pairs demonstrated mainly anterioposterior displacement between each other (maximum relative strain: 13–14%). Maximum relative strain for the proximal markers was 8–10%. This highly accurate, in-vivo, patient-specific, unobtrusive dynamic information, presented using 3D visualization tools that were up to now unavailable to the clinician-prosthetist, can significantly impact the iterative cycle of socket fitting and evaluation.  相似文献   

12.
Although the possibility that the vastus intermedius (VI) muscle contributes to flexion of the knee joint has been suggested previously, the detail of its functional role in knee flexion is not well understood. The purpose of this study was to examine the antagonist coactivation of VI during isometric knee flexion. Thirteen men performed 25–100% of maximal voluntary contraction (MVC) at 90°, 120°, and 150° knee joint angles. Surface electromyography (EMG) of the four individual muscles in the quadriceps femoris (QF) was recorded and normalized by the EMG signals during isometric knee extension at MVC. Cross-talk on VI EMG signal was assessed based on the median frequency response to selective cooling of hamstring muscles. Normalized EMG of the VI was significantly higher than that of the other synergistic QF muscles at each knee joint angle (all P < 0.05) with minimum cross-talk from the hamstrings to VI. There were significant correlations between the EMG signal of the hamstrings and VI (r = 0.55–0.85, P < 0.001). These results suggest that VI acts as a primary antagonistic muscle of QF during knee flexion, and that VI is presumably a main contributor to knee joint stabilization.  相似文献   

13.
To identify distinguishing characteristics for knee surgery patients who experience a protracted recovery process, we sought to determine if there is an association between the neuromuscular stretch reflex and psychological factors of pain perception and anxiety on the range of motion (ROM) recovery rate of post-operative anterior cruciate ligament reconstruction (ACLR) rehabilitation patients. The ACLR participants were categorized into a slow recovery group (SRG: >6 weeks to recover 0–125° knee flexion [n = 10]) and a normal recovery group (NRG: <6 weeks to recovery 0–125° knee flexion [n = 12]). Control participants (n = 22) were age, gender and activity-level matched to the surgical participants. Neuromuscular testing consisted of sagittal plane video kinematics of the Wartenberg Pendulum Test for determining lower limb stiffness indices and electromyography-monitored patellar tendon tap reflex responses. Psychological and health status assessments consisted of the State–Trait Anxiety Inventory and SF-36? Health Survey. Data revealed that neuromuscular reflex profiles, lower limb stiffness indices, pain, anxiety and SF-36? indices of function were not significantly different between the two surgical groups (SRG and NRG). The surgical groups exhibited significantly greater pain (2.67 ± 2.27 SRG, 1.49 ± 1.15 NRG) than the control group (p ? .05). SF-36? indices were significantly lower for the surgical groups for total score (546.55 ± 94.70 SRG, 577.57 ± 125.58 NRG), function 69.00 ± 20.24 SRG, 67.08 ± 19.12 NRG), role physical (53.75 ± 22.85 SRG, 53.12 ± 23.15 NRG), social (76.24 ± 25.31 SRG, 65.62 ± 27.24 NRG), and emotional (82.49 ± 19.81 SRG, 81.38 ± 23.02 NRG) subscales (p ? .05). These results suggest that neuromuscular reflex responses, visual analogue scale (VAS) pain, and anxiety are not distinguishing factors for ROM recovery rate between the SRG and NRG. Decreased SF-36? indices, including pain as it influences function, though clinically relevant factors, were not statistically associated with post-operative ROM recovery rate.  相似文献   

14.
Planting density influence on fibrous root reinforcement of soils   总被引:2,自引:0,他引:2  
Reinforcement of soil by fibrous roots is crucial for preventing soil erosion and degradation, yet the underlying mechanisms are poorly understood. We investigated soil reinforcement by roots of barley (Hordeum vulgare) planted at different densities in a controlled glasshouse and a separate field study. Soil shear strength increased with planting density (0–950 m?2) at 5 weeks with an average 6.7 ± 1.40 kPa increase in strength over the fallow (7.5 ± 0.47 kPa). At 20 weeks, planting density had less of an effect, with on average a 29% increase in strength contributed by roots. In the glasshouse study, roots increased shear strength by an average of 53%, with a positive effect found for the eight planting densities tested ranging from 0 to 1130 plants/m2. Detailed measures of root tensile strength, and diameter distributions at the shear plane, allowed us to apply and test two existing root reinforcement models of Wu et al. [Wu, T.H., Mckinnell, W.P., Swanston, D.N., 1979. Strength of tree roots and landslides on Prince-Of-Wales-Island, Alaska. Canadian Geotechnical Journal 16, 19–33] and Pollen and Simon [Pollen, N., Simon, A., 2005. Estimating the mechanical effects of riparian vegetation on stream bank stability using a fiber bundle model. Water Resources Research, 41]. A progressive failure Fibre Bundle Model, developed by Pollen and Simon [Pollen, N., Simon, A., 2005. Estimating the mechanical effects of riparian vegetation on stream bank stability using a fiber bundle model. Water Resources Research, 41], predicted reinforcement better than the catastrophic failure model by Wu et al. [Wu, T.H., Mckinnell, W.P., Swanston, D.N., 1979. Strength of tree roots and landslides on Prince-Of-Wales-Island, Alaska. Canadian Geotechnical Journal 16, 19–33], but neither described reinforcement well for field-grown plants near maturity at 20 weeks.  相似文献   

15.
《Endocrine practice》2019,25(8):830-835
Objective: This study investigated the characteristics of the adrenal limbs of primary aldosteronism (PA) patients and evaluated the value of the adrenal limb width measurement for the differentiation of unilateral PA from bilateral PA.Methods: A total of 122 PA patients (93 unilateral PA, ages ranged from 23 to 72 years; 29 bilateral PA, ages ranged from 30 to 68 years) who had undergone successful adrenal venous sampling (AVS) and adrenal gland computed tomography (CT) scan were retrospectively included. The maximum width of each adrenal gland limb (normal area on CT images) was measured, the left adrenal limb width to right adrenal limb width ratio (L/Rw) was calculated, and its potential value in the differentiation of unilateral PA and bilateral PA was analyzed.Results: The mean widths of the left adrenal limbs and the right adrenal limbs were 0.52 ± 0.10 cm and 0.43 ± 0.09 cm in unilateral PA patients, versus 0.52 ± 0.10 cm and 0.49 ± 0.12 cm in bilateral PA patients. The L/Rw ratio was 1.22 ± 0.24 in unilateral PA patients and 1.11 ± 0.23 in bilateral PA patients (P<.05). In the subgroup of PA patients over 55 years of age, compared with AVS, the sensitivity and specificity of the L/Rw ratio at 1.06 for subtype classification were 75% and 82%, respectively.Conclusion: A lower L/Rw ratio, referring to the ratio of the left adrenal limb width to the right adrenal limb width, may be a predictor of bilateral PA, especially in PA patients over 55 years of age.Abbreviations: APA = aldosterone-producing adenoma; AVS = adrenal venous sampling; BAH = bilateral adrenal hyperplasia; BMI = body mass index; CT = computed tomography; L/Rw = ratio of left adrenal limb width to right adrenal limb width; PA = primary aldosteronism  相似文献   

16.
Individuals with unilateral transtibial amputations have greater prevalence of osteoarthritis in the intact knee joint relative to the residual leg and non-amputees, but the cause of this greater prevalence is unclear. The purpose of this study was to compare knee joint contact forces and the muscles contributing to these forces between amputees and non-amputees during walking using forward dynamics simulations. We predicted that the intact knee contact forces would be higher than those of the residual leg and non-amputees. In the axial and mediolateral directions, the intact and non-amputee legs had greater peak tibio-femoral contact forces and impulses relative to the residual leg. The peak axial contact force was greater in the intact leg relative to the non-amputee leg, but the stance phase impulse was greater in the non-amputee leg. The vasti and hamstrings muscles in early stance and gastrocnemius in late stance were the largest contributors to the joint contact forces in the non-amputee and intact legs. Through dynamic coupling, the soleus and gluteus medius also had large contributions, even though they do not span the knee joint. In the residual leg, the prosthesis had large contributions to the joint forces, similar to the soleus in the intact and non-amputee legs. These results identify the muscles that contribute to knee joint contact forces during transtibial amputee walking and suggest that the peak knee contact forces may be more important than the knee contact impulses in explaining the high prevalence of intact leg osteoarthritis.  相似文献   

17.
A rupture-prone carotid plaque can potentially be identified by calculating the peak cap stress (PCS). For these calculations, plaque geometry from MRI is often used. Unfortunately, MRI is hampered by a low resolution, leading to an overestimation of cap thickness and an underestimation of PCS. We developed a model to reconstruct the cap based on plaque geometry to better predict cap thickness and PCS.We used histological stained plaques from 34 patients. These plaques were segmented and served as the ground truth. Sections of these plaques contained 93 necrotic cores with a cap thickness <0.62 mm which were used to generate a geometry-based model. The histological data was used to simulate in vivo MRI images, which were manually delineated by three experienced MRI readers. Caps below the MRI resolution (n = 31) were (digitally removed and) reconstructed according to the geometry-based model. Cap thickness and PCS were determined for the ground truth, readers, and reconstructed geometries.Cap thickness was 0.07 mm for the ground truth, 0.23 mm for the readers, and 0.12 mm for the reconstructed geometries. The model predicts cap thickness significantly better than the readers. PCS was 464 kPa for the ground truth, 262 kPa for the readers and 384 kPa for the reconstructed geometries. The model did not predict the PCS significantly better than the readers.The geometry-based model provided a significant improvement for cap thickness estimation and can potentially help in rupture-risk prediction, solely based on cap thickness. Estimation of PCS estimation did not improve, probably due to the complex shape of the plaques.  相似文献   

18.
We investigated the protective effects of magnolol, an active antioxidant and free radical scavenger extracted from Magnolia officinalis, in a hind limb ischemic-reperfusion animal model. Adult male Spraque-Dawley rats were subjected to hind limb ischemic insult for 2 hours and were intravenously treated with magnolol at 0.01 mg/kg (n=8), 0.3 mg/kg (n=8) mg/kg or 1 mg/kg (n=8) mg/kg, or vehicle (n=8). At 24 h post-insult, the levels of nitrite/nitrate (NOX), malondialdehyde (MDA) and myeloperoxidase (MPO), as well as the degree of muscle damage, were assessed. Relative to controls, animals treated with magnolol (0.3 and 1 mg/kg) had attenuated muscular inflammation, edema and damage. Magnolol (0.3–1 mg/kg) also effectively reduced postischemic rises in the MDA, NOx and MPO levels (p<0.05, respectively). Magnolol administrated at 0.01 mg/kg, however, failed to protect against the ischemic-perfusion limb injury. In addition, magnolol (0.01–1 mg/kg) did not affect local muscular blood reperfusion or other physiological parameters, including hematocrit, glucose, arterial blood gases and mean arterial blood pressure. Thus, intravenous administration with magnolol at 0.3–1 mg/kg protects against ischemic limb damage in rats. This cytoprotection may be attributed to its antioxidant, anti-nitrosative and anti-inflammatory actions.  相似文献   

19.
The aims of this study were to assess the effect of the pelvic compression belt on the electromyographic (EMG) activities of gluteus medius (GM), quadratus lumborum (QL), and lumbar multifidus (LM) during side-lying hip abduction. Thirty-one volunteers (15 men and 16 women) with no history of pathology volunteered for this study. Subjects were instructed to perform hip abduction in side-lying position with and without applying the pelvic compression belt. The pelvic compression belt was adjusted just below the anterior superior iliac spines with the stabilizing pressure using elastic compression bands. Surface EMG data were collected from the GM, QL, and LM of the dominant limb. Significantly decreased EMG activity in the QL (without the pelvic compression belt, 60.19 ± 23.66% maximal voluntary isometric contraction [MVIC]; with the pelvic compression belt, 51.44 ± 23.00% MVIC) and significantly increased EMG activity in the GM (without the pelvic compression belt, 26.71 ± 12.88% MVIC; with the pelvic compression belt, 35.02 ± 18.28% MVIC) and in the LM (without the pelvic compression belt, 30.28 ± 14.60% MVIC; with the pelvic compression belt, 37.47 ± 18.94% MVIC) were found when the pelvic compression belt was applied (p < 0.05). However, there were no significant differences of the EMG activity between male and female subjects. The findings suggest that the pelvic compression belt may be helpful to prevent unwanted substitution movement during side-lying hip abduction, through increasing the GM and LM and decreasing the QL.  相似文献   

20.
The Pacinian corpuscle (PC) is a cutaneous mechanoreceptor sensitive to high-frequency vibrations (20–1000 Hz). The PC is of importance due to its integral role in somatosensation and the critical need to understand PC function for haptic feedback system development. Previous theoretical and computational studies have modeled the physiological response of the PC to sustained or vibrating mechanical stimuli, but they have used estimates of the receptor’s mechanical properties, which remain largely unmeasured. In this study, we used micropipette aspiration (MPA) to determine an apparent Young’s modulus for PCs isolated from a cadaveric human hand. MPA was applied in increments of 5 mm H2O (49 Pa), and the change in protrusion length of the PC into the pipette was recorded. The protrusion length vs. suction pressure data were used to calculate the apparent Young’s modulus. Using 10 PCs with long-axis lengths of 2.99 ± 0.41 mm and short-axis lengths of 1.45 ± 0.22 mm, we calculated a Young’s modulus of 1.40 ± 0.86 kPa. Our measurement is on the same order of magnitude as those approximated in previous models, which estimated the PC to be on the same order of magnitude as skin or isolated cells, so we recommend that a modulus in the kPa range be used in future studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号