首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The calcaneus bone is formed of extensive trabecular bone and is therefore well suited to be used as an example of loaded bone to establish the ability of combining microfinite element (microFE) technique with high-resolution peripheral quantitative computed tomography (HR-pQCT) in determining its mechanical properties. HR-pQCT is increasingly used as a tool for in vivo bone clinical research, but its use has been limited to the distal radius and tibia. The goal of this study was to determine the applicability of HR-pQCT-derived microFE models of the calcaneus trabecular bone with 82 μm voxel size with reference to higher-resolution microCT-based models taken as gold standard. By comparing the outputs of microFE models generated from both HR-pQCT and microCT images of the trabecular bone of five calcaneus cadaveric specimens, it was found that the HR-pQCT-based models predicted mechanical properties for fracture load, total reaction force and von Mises stress are considerably different from microCT-based counterparts by 33, 64 and 70%, respectively. Also, the morphological analysis showed a comprehensive geometrical difference between HR-pQCT-based microFE models and their microCT-based equivalents. The results of the HR-pQCT-based models were found to have strong dependency on the threshold value chosen to binarise the images prior to finite element modelling. In addition, it was found that the voxel size has a strong impact on accuracy of imaged-based microFE models compared to other factors such as the presence of soft tissue and image scanning integration time. Therefore, although HR-pQCT has shown to be useful to predict overall structural and biomechanical changes, it is limited in providing local accurate biomechanical properties of trabecular bone and therefore should be used with caution when assessing bone remodelling through local changes of trabecular bone apposition and resorption in disease treatment monitoring.  相似文献   

2.
Until recently, detailed analyses of the architecture of nonhuman primate cancellous bone have not been possible due to a combination of methodological constraints, including poor resolution imaging or destructive protocols. The development of micro-computed tomography (microCT) and morphometric methods associated with this imaging modality offers anthropologists a new means to study the comparative architecture of cancellous bone. Specifically, microCT will allow anthropologists to investigate the relationship between locomotor behavior and trabecular structure. We conducted a preliminary study on the trabecular patterns in the proximal humerus and femur of Hylobates lar, Ateles paniscus, Macaca mulatta, and Papio anubis to investigate the quantitative differences in their trabecular architecture and evaluate the potential of microCT in anthropological inquiry. MicroCT allows the researcher to evaluate variables beyond simple two-dimensional orientations and radiographic densities. For example, this methodology facilitates the study of trabecular thickness and bone volume fraction using three-dimensional data. Results suggest that density-related parameters do not reliably differentiate suspensory-climbing species from quadrupedal species. However, preliminary results indicate that measurements of the degree of anisotropy, a measure of trabecular orientation uniformity, do distinguish suspensory-climbing taxa from more quadrupedal species. The microCT method is an advance over conventional radiography and medical CT because it can accurately resolve micron-sized struts that make up cancellous bone, and from these images a wide array of parameters that have been demonstrated to be related to cancellous bone mechanical properties can be measured. Methodological problems pertinent to any comparative microCT study of primate trabecular architecture are discussed.  相似文献   

3.
Although adult skeletal morphological variation is best understood within the framework of age-related processes, relatively little research has been directed towards the structure of and variation in trabecular bone during ontogeny. We report here new quantitative and structural data on trabecular bone microarchitecture in the proximal tibia during growth and development, as demonstrated in a subadult archaeological skeletal sample from the Late Prehistoric Ohio Valley. These data characterize the temporal sequence and variation in trabecular bone structure and structural parameters during ontogeny as related to the acquisition of normal functional activities and changing body mass. The skeletal sample from the Fort Ancient Period site of SunWatch Village is composed of 33 subadult and three young adult proximal tibiae. Nondestructive microCT scanning of the proximal metaphyseal and epiphyseal tibia captures the microarchitectural trabecular structure, allowing quantitative structural analyses measuring bone volume fraction, degree of anisotropy, trabecular thickness, and trabecular number. The microCT resolution effects on structural parameters were analyzed. Bone volume fraction and degree of anisotropy are highest at birth, decreasing to low values at 1 year of age, and then gradually increasing to the adult range around 6-8 years of age. Trabecular number is highest at birth and lowest at skeletal maturity; trabecular thickness is lowest at birth and highest at skeletal maturity. The results of this study highlight the dynamic sequential relationships between growth/development, general functional activities, and trabecular distribution and architecture, providing a reference for comparative studies.  相似文献   

4.

New treatments for bone diseases require testing in animal models before clinical translation, and the mouse tibia is among the most common models. In vivo micro-Computed Tomography (microCT)-based micro-Finite Element (microFE) models can be used for predicting the bone strength non-invasively, after proper validation against experimental data. Different modelling techniques can be used to estimate the bone properties, and the accuracy associated with each is unclear. The aim of this study was to evaluate the ability of different microCT-based microFE models to predict the mechanical properties of the mouse tibia under compressive load. Twenty tibiae were microCT scanned at 10.4 µm voxel size and subsequently compressed at 0.03 mm/s until failure. Stiffness and failure load were measured from the load–displacement curves. Different microFE models were generated from each microCT image, with hexahedral or tetrahedral mesh, and homogeneous or heterogeneous material properties. Prediction accuracy was comparable among models. The best correlations between experimental and predicted mechanical properties, as well as lower errors, were obtained for hexahedral models with homogeneous material properties. Experimental stiffness and predicted stiffness were reasonably well correlated (R2 = 0.53–0.65, average error of 13–17%). A lower correlation was found for failure load (R2 = 0.21–0.48, average error of 9–15%). Experimental and predicted mechanical properties normalized by the total bone mass were strongly correlated (R2 = 0.75–0.80 for stiffness, R2 = 0.55–0.81 for failure load). In conclusion, hexahedral models with homogeneous material properties based on in vivo microCT images were shown to best predict the mechanical properties of the mouse tibia.

  相似文献   

5.
Disuse induces a rapid bone loss in adults; sedentarity is now recognized as a risk factor for osteoporosis. Hypoactivity or confinement also decrease bone mass in adults but their effects are largely unknown and only few animal models have been described. We have used 10 chickens of the rapidly growing strain 857K bred in a large enclosure (FREE group); 10 others were confined in small cages with little space to move around (HYPO group). They were sacrificed at 53 days and femurs and tibias were evaluated by texture analysis, dual energy X-ray densitometry, microcomputed tomography (microCT) and histomorphometry. Hypoactivity had no effect on the length and diameter of the bones. Bone mineral density (BMD), microCT (trabecular bone volume and trabecular microarchitecture) and texture analysis were always found significantly reduced in the animals of the HYPO group. BMD was reduced at both femur and tibia diaphysises; BMD of the metaphysis was significantly reduced in the femur but not in the tibia. An increase in osteoid volume and surfaces was noted in the HYPO group. However, there was no alteration of the mineral phase as the osteoid thickness did not differ from control animals. Bone loss was much more pronounced at the lower femur metaphysis than at the upper metaphysis of the tibia. At the tibia, only microarchitectural changes of trabecular bone could be evidenced. The confined chicken represents a new method for the study of hypodynamia since these animals do not have surgical lesions.  相似文献   

6.
Recent research has confirmed that Panax ginseng (P. ginseng) has effect on cultured osteoblast of the mouse. In this study we aim to validate the usefulness of tibia quantification by correlating micro-computed tomographic (microCT) images with histology analysis in the aged male rats. A total of thirty – old male WISTAR rats were used and divided into ten 8?weeks rats and ten 112?weeks aged rats with vehicle and ten 112?weeks aged rats with P. ginseng (300?mg/kg/day). Daily oral administration of P. ginseng lasted for 8?weeks. Bone histomorphometric parameters and the trabecular bone microarchitectural properties of tibia were determined by microCT scan. MicroCT analysis showed significantly lower bone mineral density (BMD) and trabecular bone number in the aged group. Ginseng prevented total BMD decrease in the tibia induced by natural aging, which was accompanied by a significant decrease in skeletal remodeling. Furthermore, the aged group with ginseng was found to have a significantly higher osteoblast. In the blood biochemistry results, serum phosphorus, calcium, osteocalcin, T3, and T4 remained unchanged. The present study indicated that P. ginseng might be a potential alternative medicine for the prevention and treatment of natural aging-induced osteoporosis in human.  相似文献   

7.
In longitudinal studies, three-dimensional (3D) bone images are acquired at sequential time points essentially resulting in four-dimensional (4D) data for an individual. Based on the 4D data, we propose to calculate temporal trends and project these trends to estimate future bone architecture. Multiple consecutive deformation fields, calculated with Demons deformable image registration algorithm, were extrapolated on a voxel-by-voxel basis. Test data were from in vivo micro-computed tomography (microCT) scans of the proximal tibia of Wistar rats that were either ovariectomized (OVX; N=5) or sham operated (SHAM; N=6). Measurements performed at baseline, 4 and 8 weeks were the basis to predict the 12 week data. Predicted and actual 12 week data were compared using qualitative (3D rendering) and quantitative (geometry, morphology and micro-finite element, microFE) methods. The results indicated a voxel-based linear extrapolation scheme yielded mean geometric errors that were smaller than the voxel size of 15 microm. Key morphological parameters that were estimated included bone volume ratio (BV/TV; mean error 0.4%, maximum error 9%), trabecular thickness (Tb.Th; -1.1%, 11%), connectivity density (Conn.D; 9.0%, 18.5%) and the apparent Young's modulus (E(1); 6.0%, 32%). These data demonstrated a promising and novel approach for quantitatively capturing in vivo bone dynamics at the local trabecular level. The method does not require an a priori understanding of the diseases state, and can provide information about the trends of the bone remodeling process that may be used for better monitoring and treatment of diseases such as osteoporosis.  相似文献   

8.
A computational simulation method for three-dimensional trabecular surface remodeling was proposed, using voxel finite element models of cancellous bone, and was applied to the experimental data. In the simulation, the trabecular microstructure was modeled based on digital images, and its morphological changes due to surface movement at the trabecular level were directly expressed by removing/adding the voxel elements from/to the trabecular surface. A remodeling simulation at the single trabecular level under uniaxial compressive loading demonstrated smooth morphological changes even though the trabeculae were modeled with discrete voxel elements. Moreover, the trabecular axis rotated toward the loading direction with increasing stiffness, simulating functional adaptation to the applied load. In the remodeling simulation at the trabecular structural level, a cancellous bone cube was modeled using a digital image obtained by microcomputed tomography (microCT), and was uniaxially compressed. As a result, the apparent stiffness against the applied load increased by remodeling, in which the trabeculae reoriented to the loading direction. In addition, changes in the structural indices of the trabecular architecture coincided qualitatively with previously published experimental observations. Through these studies, it was demonstrated that the newly proposed voxel simulation technique enables us to simulate the trabecular surface remodeling and to compare the results obtained using this technique with the in vivo experimental data in the investigation of the adaptive bone remodeling phenomenon.  相似文献   

9.
Assessment of the mechanical properties of trabecular bone is of major biological and clinical importance for the investigation of bone diseases, fractures and their treatments. Finite element (FE) methods are getting increasingly popular for quantifying the elastic and failure properties of trabecular bone. In particular, voxel-based FE methods have been previously used to calculate the effective elastic properties of trabecular microstructures. However, in most studies, bone tissue moduli were assumed or back-calculated to match the apparent elastic moduli from experiments, which often lead to surprisingly low values when compared to nanoindentation results. In this study, voxel-based FE analysis of trabecular bone is combined with physical measures of volume fraction, micro-CT (microCT) reconstructions, uniaxial mechanical tests and specimen-specific nanoindentation tests for proper validation of the method. Cylindrical specimens of cancellous bone were extracted from human femurs and their volume fraction determined with Archimede's method. Uniaxial apparent modulus of the specimens was measured with an improved tension-compression testing protocol that minimizes boundary artefacts. Their microCT reconstructions were segmented to match the measured bone volume fraction and used to create full-size voxel models with 30-45 microm element size. For each specimen, linear isotropic elastic material properties were defined based on specific nanoindentation measurements of its embedded bone tissue. Linear FE analyses were finally performed to simulate the uniaxial mechanical tests. Additional parametric analyses were performed to evaluate the potential errors on the predicted apparent modulus arising from variations in segmentation threshold, tissue modulus, and the use of 125-mm(3) cubic sub-regions. The results demonstrate an excellent correspondence between experimental measures and FE predictions of uniaxial apparent modulus. In conclusion, the adopted voxel-based FE approach is found to be a robust method to predict the linear elastic properties of human cancellous bone, provided segmentation of the microCT reconstructions is carefully calibrated, tissue modulus is known a priori and the entire region of interest is included in the analysis.  相似文献   

10.
Decoy receptor 3 (DcR3), a soluble receptor for FasL, LIGHT, and TL1A, induces osteoclast formation from monocyte, macrophage, and bone stromal marrow cells. However, the function of DcR3 on bone formation remains largely unknown. To understand the function of DcR3 in bone formation in vivo, transgenic mice overexpressing DcR3 were generated. Bone mineral density (BMD) and bone mineral content (BMC) of total body were significantly lower in DcR3 transgenic mice as compared with wild-type controls. The difference in BMD and BMC between DcR3 transgenic and control mice was confirmed by histomorphometric analysis, which showed a 35.7% decrease in trabecular bone volume in DcR3 transgenic mice in comparison with wild-type controls. The number of osteoclasts increased in DcR3 transgenic mice. In addition, local administration of DcR3 (30 microg/ml, 10 microl, once/day) into the metaphysis of the tibia via the implantation of a needle cannula significantly decreased the BMD, BMC, and bone volume of secondary spongiosa in tibia. Local injection of DcR3 also increased osteoclast numbers around trabecular bone in tibia. Furthermore, coadminstration of soluble tumor necrosis factor receptor inhibitor/Fc chimera (TNFRSF1A) but not osteoprotegerin inhibited the action of DcR3. In addition, in an assay of osteoclast activity on substrate plates, DcR3 significantly increased the resorption activity of mature osteoclasts. Treatment with higher concentrations of DcR3 slightly increased nodule formation and alkaline phosphatase activity of primary cultured osteoblasts. These results indicate that DcR3 may play an important role in osteoporosis or other bone diseases.  相似文献   

11.
Astronauts on exploratory missions will experience a complex environment, including microgravity and radiation. While the deleterious effects of unloading on bone are well established, fewer studies have focused on the effects of radiation. We previously demonstrated that 2 Gy of ionizing radiation has deleterious effects on trabecular bone in mice 4 months after exposure. The present study investigated the skeletal response after total doses of proton radiation that astronauts may be exposed to during a solar particle event. We exposed mice to 0.5, 1 or 2 Gy of whole-body proton radiation and killed them humanely 117 days later. Tibiae and femora were analyzed using microcomputed tomography, mechanical testing, mineral composition and quantitative histomorphometry. Relative to control mice, mice exposed to 2 Gy had significant differences in trabecular bone volume fraction (-20%), trabecular separation (+11%), and trabecular volumetric bone mineral density (-19%). Exposure to 1 Gy radiation induced a nonsignificant trend in trabecular bone volume fraction (-13%), while exposure to 0.5 Gy resulted in no differences. No response was detected in cortical bone. Further analysis of the 1-Gy mice using synchrotron microCT revealed a significantly lower trabecular bone volume fraction (-13%) than in control mice. Trabecular bone loss 4 months after exposure to 1 Gy highlights the importance of further examination of how space radiation affects bone.  相似文献   

12.
Effect of low-dose radiation on repair of DNA and chromosome damage   总被引:1,自引:0,他引:1  
In this report results of studies on the effect of different doses of low LET (linear energy transfer) radiations on the unscheduled DNA synthesis (UDS) and DNA polymerase activity as well as the induction of adaptive response in bone marrow cells (BMC) by low dose radiation were presented. It was found that whole-body irradiation (WBI) with X-ray doses above 0.5 Gy caused a dose-dependent depression of both UD5 and DNA polymerase activity, while low dose radiation below 250 mGy could stimulate the DNA repair synthesis and the enzyme activity. WBI of mice with low doses of X-rays in the range of 2-100 mGy at a dose rate of 57.3 mGy per minute induced an adaptive response in the BMC expressed as a reduction of chromosome aberrations following a second exposure to a larger dose (0.65 mGy). It was demonstrated that the magnitude of the adaptive response seemed to be inversely related to the induction dose. The possibility of induction of adaptive response in GO phase of the cell cycle and the possibility of a second induction of the adaptive response were discussed.  相似文献   

13.
Quantitative assessment of three-dimensional (3D) trabecular structural characteristics may improve our ability to understand the pathophysiology of osteoporosis, to test the efficacy of pharmaceutical intervention, and to estimate bone biomechanical properties. Considerable progress has been made in advanced imaging techniques for noninvasive and/or nondestructive assessment of 3D trabecular structure and connectivity. Micro computed tomography (microCT) has been used to measure 3D trabecular bone structure in rats, both in vivo and in vitro. It can directly quantify 3D trabecular bone structure such as trabecular volume, trabecular thickness, number, separation, structure model index, degree of anisotropy, and connectivity, in a model-independent manner. We have used microCT to study ovariectomy (OVX) induced osteopenia in rats and its treatment with agents such as estrogen, and sodium fluoride. We have demonstrated that 3D microCT can quantify mouse trabecular and cortical bone structure with an isotropic resolution of 9 microm(3). It is also useful for studying osteoporosis in mice and in phenotypes of transgenic mice or gene knockout mice. MicroCT can be used to quantify osteogenesis in mouse Ilizarov leg lengthening procedures, to quantify osteoconduction in a rat cranial defect model, and to quantify cortical bone porosity. Recently, microCT using high intensity and tight collimation synchrotron radiation to achieve spatial resolution of 1-2 microm has provided the capability to assess additional features such as resorption cavities. Unlike microCT, micro magnetic resonance imaging (IMRI) is nonionizing. Recently, the ability of microMRI to assess osteoporosis in animal models has been explored. Using a small, high-efficiency coil in a high-field imager, microMRI can give resolutions sufficient to discriminate individual trabeculae. We have shown that, with appropriate settings, it is possible to image trabecular bone in rats in vivo and in vitro. In our study of OVX rats, analysis of microMR images can demonstrate differences in rat trabecular bone that are not detected by DXA measurements. In a rabbit OA model, with the OA induced by meniscectomy or anterior cruciate ligament transection, MRI shows decreased cartilage thickness, subchondral osteosclerosis and osteophytes, while radiographs can only show subchondral osteosclerosis and osteophytes could not be found. Advanced imaging methods are able to measure 3D trabecular structure and connectivity in arbitrary orientations in a highly automated, objective, non-user-specific manner, allowing greater numbers of samples for unbiased comparisons between controls and the disordered or treated. They can be utilized on a large sample leading to fewer sampling errors. They are non-destructive allowing multiple tests such as biomechanical testing and chemical analysis on the same sample; and non-invasive permitting longitudinal studies and reducing the number of animals needed.  相似文献   

14.
15.
Growth hormone (GH) is important for skeletal growth as well as for a normal bone metabolism in adults. The skeletal growth and adult bone metabolism was studied in mice with an inactivated growth hormone receptor (GHR) gene. The lengths of femur, tibia, and crown-rump were, as expected, decreased in GHR-/- mice. Unexpectedly, GHR-/- mice displayed disproportional skeletal growth reflected by decreased femur/crown-rump and femur/tibia ratios. GHR-/- mice demonstrated decreased width of the growth plates in the long bones and disturbed ossification of the proximal tibial epiphysis. Furthermore, the area bone mineral density (BMD) as well as the bone mineral content (BMC)/body weight were markedly decreased in GHR-/- mice. The decrease in BMC in GHR-/- mice was not due to decreased trabecular volumetric BMD but to a decreased cross-sectional cortical bone area In conclusion, GHR-/- mice demonstrate disproportional skeletal growth and markedly decreased bone mineral content.  相似文献   

16.
This work utilises advances in multi-tissue imaging, and incorporates new metrics which define in situ joint changes and individual tissue changes in osteoarthritis (OA). The aims are to (1) demonstrate a protocol for processing intact animal joints for microCT to visualise relevant joint, bone and cartilage structures for understanding OA in a preclinical rabbit model, and (2) introduce a comprehensive three-dimensional (3D) quantitative morphometric analysis (QMA), including an assessment of reproducibility. Sixteen rabbit joints with and without transection of the anterior cruciate ligament were scanned with microCT and contrast agents, and processed for histology. Semi-quantitative evaluation was performed on matching two-dimensional (2D) histology and microCT images. Subsequently, 3D QMA was performed; including measures of cartilage, subchondral cortical and epiphyseal bone, and novel tibio-femoral joint metrics. Reproducibility of the QMA was tested on seven additional joints. A significant correlation was observed in cartilage thickness from matching histology-microCT pairs. The lateral compartment of operated joints had larger joint space width, thicker femoral cartilage and reduced bone volume, while osteophytes could be detected quantitatively. Measures between the in situ tibia and femur indicated an altered loading scenario. High measurement reproducibility was observed for all new parameters; with ICC ranging from 0.754 to 0.998. In conclusion, this study provides a novel 3D QMA to quantify macro and micro tissue measures in the joint of a rabbit OA model. New metrics were established consisting of: an angle to quantitatively measure osteophytes (σ), an angle to indicate erosion between the lateral and medial femoral condyles (ρ), a vector defining altered angulation (λ, α, β, γ) and a twist angle (τ) measuring instability and tissue degeneration between the femur and tibia, a length measure of joint space width (JSW), and a slope and intercept (m, Χ) of joint contact to demonstrate altered loading with disease progression, as well as traditional bone and cartilage and histo-morphometry measures. We demonstrate correlation of microCT and histology, sensitive discrimination of OA change and robust reproducibility.  相似文献   

17.
《Bone and mineral》1988,5(1):35-58
The use of bone mineral content (BMC) measurements to assist in the management of osteoporosis has received increasing emphasis in recent years. Although the calcaneus, an essentially trabecular bone (90–95%), has been used extensively in the NASA experiments, few data relating to primary osteoporosis have appeared in the literature until recently. This paper is a review of the methods of measurement, their precision and methods of calibration, and the relationship of calcaneal mineral content to age, height, weight, other bone sites, degree of spinal osteoporosis, metabolic bone disease and the effects of therapeutic drugs. Prospectively, calcaneal BMC relates as well as spinal BMC to osteoporotic fracture risk. It is this use of BMC measurements which has the most promise for the future. The data indicate that osteoporosis is a systemic disease and trabecular bone losses are reflected in the calcaneus as well as in the spine itself.  相似文献   

18.
Micro-finite element (microFE) models based on high-resolution images have enabled the calculation of elastic properties of trabecular bone in vitro. Recently, techniques have been developed to image trabecular bone structure in vivo, albeit at a lesser resolution. The present work studies the usefulness of such in-vivo images for microFE analyses, by comparing their microFE results to those of models based on high-resolution micro-CT (microCT) images. Fifteen specimens obtained from human femoral heads were imaged first with a 3D-pQCT scanner at 165 microns resolution and a second time with a microCT scanner at 56 microns resolution. A third set of images with a resolution of 165 microns was created by downscaling the microCT measurements. The microFE models were created directly from these images. Orthotropic elastic properties and the average tissue von Mises stress of the specimens were calculated from six FE-analyses per specimen. The results of the 165 microns models were compared to those of the 56 microns model, which was taken as the reference model. The results calculated from the pQCT-based models, correlated excellent with those calculated from the reference model for both moduli (R2 > 0.95) and for the average tissue von Mises stress (R2 > 0.83). Results calculated from the downscaled micro-CT models correlated even better with those of the reference models (R2 > 0.99 for the moduli and R2 > 0.96 for the average von Mises stress). In the case of the 3D-pQCT based models, however, the slopes of the regression lines were less than one and had to be corrected. The prediction of the Poisson's ratios was less accurate (R2 > 0.45 and R2 > 0.67) for the models based on 3D-pQCT and downscaled microCT images respectively). The fact that the results from the downscaled and original microCT images were nearly identical indicates that the need for a correction in the case of the 3D-pQCT measurements was not due to the voxel size of the images but due to a higher noise level and a lower contrast in these images, in combination with the application of a filtering procedure at 165 micron images. In summary: the results of microFE models based on in-vivo images of the 3D-pQCT can closely resemble those obtained from microFE models based on higher resolution microCT system.  相似文献   

19.
The level of structural detail that can be acquired and incorporated in a finite element (FE) analysis might greatly influence the results of microcomputed tomography (microCT)-based FE simulations, especially when relatively large bones, such as whole vertebrae, are of concern. We evaluated the effect of scanning and reconstruction voxel size on the microCT-based FE analyses of human cancellous tissue samples for fixed- and free-end boundary conditions using different combinations of scan/reconstruction voxel size. We found that the bone volume fraction (BV/TV) did not differ considerably between images scanned at 21 and 50 microm and reconstructed at 21, 50, or 110 microm (-0.5% to 7.8% change from the 21/21 microm case). For the images scanned and reconstructed at 110 microm, however, there was a large increase in BV/TV compared to the 21/21 microm case (58.7%). Fixed-end boundary conditions resulted in 1.8% [coefficient of variation (COV)] to 14.6% (E) difference from the free-end case. Dependence of model output parameters on scanning and reconstruction voxel size was similar between free- and fixed-end simulations. Up to 26%, 30%, 17.8%, and 32.3% difference in modulus (E), and average (VMExp), standard deviation (VMSD) and coefficient of variation (COV) of von Mises stresses, respectively, was observed between the 21/21 microm case and other scan/reconstruction combinations within the same (free or fixed) simulation group. Observed differences were largely attributable to scanning resolution, although reconstruction resolution also contributed significantly at the largest voxel sizes. All 21/21 microm results (taken as the gold standard) could be predicted from the 21/50 (r2adj= 0.91-0.99;p<0.001), 21/110 (r2adj =0.58-0.99;p<0.02) and 50/50 results (r2adj=0.61-0.97;p<0.02). While BV/TV, VMSD, and VMExp/sigma(z) from the 21/21 could be predicted by those from the 50/110 (r2adj =0.63-0.93;p<0.02) and 110/110 (r2adj =0.41-0.77;p<0.05) simulations as well, prediction of E, VMExp, and COV became marginally significant (0.04相似文献   

20.
The current study was designed to compare the skeletal effects of comparable doses of rat parathyroid hormone 1-34 (rPTH) and bovine parathyroid hormone 1-34 (bPTH) in ovariectomized (OVX) rats. Female Sprague-Dawley rats were OVX or sham-operated at 6 months of age and maintained untreated for 28 days after surgery. Baseline control and OVX rats were sacrificed at the beginning of treatment. Beginning 28 days post-OVX, the remaining rats were subcutaneously injected daily with rPTH or bPTH at 0, 5, 25, or 50 microg/kg/d for 28 days. Bone area, bone mineral content (BMC), and bone mineral density (BMD) of the distal femoral metaphyses were determined ex vivo using dual energy X-ray absorptiometry. Quantitative bone histomorphometry was performed on undecalcified longitudinal sections of the proximal tibia from each rat. Baseline OVX rats exhibited osteopenia as demonstrated by their significantly reduced femoral BMD and proximal tibia cancellous bone volume compared with those of baseline sham controls. Both rPTH and bPTH restored bone in OVX rats by markedly stimulating bone formation in a dose-dependent manner. However, a difference in potency between the two forms of PTH was evident. The percentage increases of BMC, BMD, cancellous bone volume, trabecular thickness, mineralizing surface, and bone formation rate in the OVX rats treated with bPTH at 5 microg/kg/d were the same as or above those treated with rPTH at the 25 microg/kg/d dose level. A relative potency analysis showed that bPTH was approximately 4- to 6-fold relatively more potent than rPTH in increasing distal femoral BMD as well as cancellous bone volume, mineralizing surface, and bone formation rate of proximal tibial metaphyses at comparable dose levels and a given time. These results may serve as a reference for in vivo study design when rPTH or bPTH are to be the agents for studies on bone anabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号