首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Soft tissue artefacts (STA) introduce errors in joint kinematics when using cutaneous markers, especially on the scapula. Both segmental optimisation and multibody kinematics optimisation (MKO) algorithms have been developed to improve kinematics estimates. MKO based on a chain model with joint constraints avoids apparent joint dislocation but is sensitive to the biofidelity of chosen joint constraints. Since no recommendation exists for the scapula, our objective was to determine the best models to accurately estimate its kinematics. One participant was equipped with skin markers and with an intracortical pin screwed in the scapula. Segmental optimisation and MKO for 24-chain models (including four variations of the scapulothoracic joint) were compared against the pin-derived kinematics using root mean square error (RMSE) on Cardan angles. Segmental optimisation led to an accurate scapula kinematics (1.1°  RMSE  3.3°) even for high arm elevation angles. When MKO was applied, no clinically significant difference was found between the different scapulothoracic models (0.9°  RMSE  4.1°) except when a free scapulothoracic joint was modelled (1.9°  RMSE  9.6°). To conclude, using MKO as a STA correction method was not more accurate than segmental optimisation for estimating scapula kinematics.  相似文献   

2.
Estimating joint kinematics from skin-marker trajectories recorded using stereophotogrammetry is complicated by soft tissue artefact (STA), an inexorable source of error. One solution is to use a bone pose estimator based on multi-body kinematics optimisation (MKO) embedding joint constraints to compensate for STA. However, there is some debate over the effectiveness of this method. The present study aimed to quantitatively assess the degree of agreement between reference (i.e., artefact-free) knee joint kinematics and the same kinematics estimated using MKO embedding six different knee joint models. The following motor tasks were assessed: level walking, hopping, cutting, running, sit-to-stand, and step-up. Reference knee kinematics was taken from pin-marker or biplane fluoroscopic data acquired concurrently with skin-marker data, made available by the respective authors. For each motor task, Bland-Altman analysis revealed that the performance of MKO varied according to the joint model used, with a wide discrepancy in results across degrees of freedom (DoFs), models and motor tasks (with a bias between −10.2° and 13.2° and between −10.2 mm and 7.2 mm, and with a confidence interval up to ±14.8° and ±11.1 mm, for rotation and displacement, respectively). It can be concluded that, while MKO might occasionally improve kinematics estimation, as implemented to date it does not represent a reliable solution to the STA issue.  相似文献   

3.
Soft tissue artefact (STA), i.e. the motion of the skin, fat and muscles gliding on the underlying bone, may lead to a marker position error reaching up to 8.7 cm for the particular case of the scapula. Multibody kinematics optimisation (MKO) is one of the most efficient approaches used to reduce STA. It consists in minimising the distance between the positions of experimental markers on a subject skin and the simulated positions of the same markers embedded on a kinematic model. However, the efficiency of MKO directly relies on the chosen kinematic model. This paper proposes an overview of the different upper limb models available in the literature and a discussion about their applicability to MKO.The advantages of each joint model with respect to its biofidelity to functional anatomy are detailed both for the shoulder and the forearm areas. Models capabilities of personalisation and of adaptation to pathological cases are also discussed. Concerning model efficiency in terms of STA reduction in MKO algorithms, a lack of quantitative assessment in the literature is noted. In priority, future studies should concern the evaluation and quantification of STA reduction depending on upper limb joint constraints.  相似文献   

4.
This paper presents a method for real-time estimation of the kinematics and kinetics of a human body performing a sagittal symmetric motor task, which would minimize the impact of the stereophotogrammetric soft tissue artefacts (STA). The method is based on a bi-dimensional mechanical model of the locomotor apparatus the state variables of which (joint angles, velocities and accelerations, and the segments lengths and inertial parameters) are estimated by a constrained extended Kalman filter (CEKF) that fuses input information made of both stereophotogrammetric and dynamometric measurement data. Filter gains are made to saturate in order to obtain plausible state variables and the measurement covariance matrix of the filter accounts for the expected STA maximal amplitudes. We hypothesised that the ensemble of constraints and input redundant information would allow the method to attenuate the STA propagation to the end results. The method was evaluated in ten human subjects performing a squat exercise. The CEKF estimated and measured skin marker trajectories exhibited a RMS difference lower than 4 mm, thus in the range of STAs. The RMS differences between the measured ground reaction force and moment and those estimated using the proposed method (9 N and 10 N m) were much lower than obtained using a classical inverse dynamics approach (22 N and 30 N m). From the latter results it may be inferred that the presented method allows for a significant improvement of the accuracy with which kinematic variables and relevant time derivatives, model parameters and, therefore, intersegmental moments are estimated.  相似文献   

5.
6.
The aim of this study was to evaluate the accuracy with which mobile biplane X-ray imaging can be used to measure patellofemoral kinematics of the intact knee during overground gait. A unique mobile X-ray imaging system tracked and recorded biplane fluoroscopic images of two human cadaver knees during simulated overground walking at a speed of 0.7 m/s. Six-degree-of-freedom patellofemoral kinematics were calculated using a bone volumetric model-based method and the results then compared against those derived from a gold-standard bead-based method. RMS errors for patellar anterior translation, superior translation and lateral shift were 0.19 mm, 0.34 mm and 0.37 mm, respectively. RMS errors for patellar flexion, lateral tilt and lateral rotation were 1.08°, 1.15° and 1.46°, respectively. The maximum RMS error for patellofemoral translations was approximately one-half that reported previously for tibiofemoral translations using the same mobile X-ray imaging system while the maximum RMS error for patellofemoral rotations was nearly two times larger than corresponding errors reported for tibiofemoral rotations. The lower accuracy in measuring patellofemoral rotational motion is likely explained by the symmetric nature of the patellar geometry and the smaller size of the patella compared to the tibia.  相似文献   

7.
Markers put on the arm undergo large soft tissue artefact (STA). Using markers on the forearm, multibody kinematics optimization (MKO) helps improve the accuracy of the arm kinematics especially its longitudinal rotation. However deleterious effect of STA may persist and affect other segment estimate. The objective was to present an innovative multibody kinematics optimization algorithm with projection of markers onto a requested axis of the local system of coordinates, to cancel their deleterious effect on this degree-of-freedom. Four subjects equipped with markers put on intracortical pins inserted into the humerus, on skin (scapula, arm and forearm) and subsequently on rigid cuffs (arm and forearm) performed analytic, daily-living, sports and range-of-motion tasks. Scapulohumeral kinematics was estimated using 1) pin markers (reference), 2) single-body optimization, 3) MKO, 4) MKO with projection of all arm markers and 5) MKO with projection of a selection of arm markers. Approaches 2–4 were applied to markers put on the skin and the cuff. The main findings were that multibody kinematics optimization improved the accuracy of 40–50% and the projection algorithm added an extra 20% when applied to cuff markers or a selection of skin markers (all but the medial epicondyle). Therefore, the projection algorithm performed better than multibody and single-body optimizations, especially when using markers put on a cuff. Error of humerus orientation was reduced by half to finally be less than 5°. To conclude, this innovative algorithm is a promising approach for estimating accurate upper-limb kinematics.  相似文献   

8.
This study described the three-dimensional shoulder motion during the arm elevation in individuals with isolated acromioclavicular osteoarthritis (ACO) and ACO associated with rotator cuff disease (RCD), as compared to controls. Seventy-four participants (ACO = 23, ACO + RCD = 25, Controls = 26) took part of this study. Disability was assessed with the DASH, three-dimensional kinematics were collected during arm elevation in the sagittal and scapular planes, and pain was assessed with the 11-point numeric pain rating scale. For each kinematic variable and demographic variables, separate linear mixed-model 2-way ANOVAs were performed to compare groups. Both ACO groups had higher DASH and pain scores. At the scapulothoracic joint, the isolated ACO group had greater internal rotation than control, and the ACO + RCD group had greater upward rotation than both other groups. At the sternoclavicular joint, both groups with ACO had less retraction, and the isolated ACO group had less elevation and posterior rotation. At the acromioclavicular joint, the isolated ACO group had greater upward rotation, and both ACO groups had greater posterior tilting. Patients with ACO had altered shoulder kinematics, which may represent compensatory responses to reduce pain and facilitate arm motion during arm elevation and lowering.  相似文献   

9.
The iliotibial band (ITB) has an important role in knee mechanics and tightness can cause patellofemoral maltracking. This study investigated the effects of increasing ITB tension on knee kinematics. Nine fresh-frozen cadaveric knees had the components of the quadriceps loaded with 175 N. A Polaris optical tracking system was used to acquire joint kinematics during extension from 100° to 0° flexion. This was repeated after the following ITB loads: 30, 60 and 90 N. There was no change with 30 N load for patellar translation. On average, at 60 and 90 N, the patella translated laterally by 0.8 and 1.4 mm in the mid flexion range compared to the ITB unloaded condition. The patella became more laterally tilted with increasing ITB loads by 0.7°, 1.2° and 1.5° for 30, 60 and 90 N, respectively. There were comparable increases in patellar lateral rotation (distal patella moves laterally) towards the end of the flexion cycle. Increased external rotation of the tibia occurred from early flexion onwards and was maximal between 60° and 75° flexion. The increase was 5.2°, 9.5° and 13° in this range for 30, 60 and 90 N, respectively. Increased tibial abduction with ITB loads was not observed. The combination of increased patellar lateral translation and tilt suggests increased lateral cartilage pressure. Additionally, the increased tibial external rotation would increase the Q angle. The clinical consequences and their relationship to lateral retinacular releases may be examined, now that the effects of a tight ITB are known.  相似文献   

10.
In order to decrease the amount of time that it takes the catcher to throw the ball, a catcher may chose to throw from the knees. Upper extremity kinematics may play a significant role in the kinetics about the elbow observed in catchers throwing from the knees. If relationships between kinematics and kinetics exist then the development of training and coaching instruction may help in reduced upper extremity injury risk. Twenty-two baseball and softball catchers (14.36 ± 3.86 years; 165.11 ± 17.54 cm; 65.67 ± 20.60 kg) volunteered. The catchers exhibited a less trunk rotation (5.6 ± 16.2°), greater elbow flexion (87.9 ± 21.4°) and decreased humeral elevation (71.1 ± 12.3°) at the event of maximum shoulder external rotation as compared to what has previously reported in catchers. These variables are important, as they have previously been established as potential injury risk factors in pitchers, however it is not yet clear the role these variables play in catchers’ risk of injury. A positive relationship between elbow varus torque during the deceleration phase and elbow flexion at MIR was observed (r = 0.609; p = 0.003). Throwing from the knees reduces a catcher’s ability to utilize the proximal kinetic chain and this may help to explain why their kinematics and kinetics differ from what has previously been presented in the literature.  相似文献   

11.
We compared predicted passive finger joint torques from a biomechanical model that includes the exponential passive muscle force–length relationship documented in the literature with finger joint torques estimated from measures in ten adult volunteers. The estimated finger joint torques were calculated from measured right index fingertip force, joint postures, and anthropometry across 18 finger and wrist postures with the forearm muscles relaxed. The biomechanical model predicting passive finger joint torques included three extrinsic and three intrinsic finger muscles. The values for the predicted passive joint torques were much larger than the values calculated from the fingertip force and posture measures with an average RMS error of 7.6 N cm. Sensitivity analysis indicated that the predicted joint torques were most sensitive to passive force–length model parameters compared to anthropometric and postural parameters. Using Monte Carlo simulation, we determined a new set of values for the passive force–length model parameters that reduced the differences between the joint torques calculated from the two methods to an average RMS value of 0.5 N cm, a 94% average improvement of error from the torques predicted using the existing data. These new parameter values did vary across individuals; however, using an average set for the parameter values across subjects still reduced the average RMS difference to 0.8 N cm. These new parameters may improve dynamic modeling of the finger during sub-maximal force activities and are based on in vivo data rather than traditional in vitro data.  相似文献   

12.
Total ankle replacement (TAR) is an alternative to fusion, replacing the degenerated joint with a mechanical motion-preserving alternative. Minimal pre-clinical testing has been reported to date and existing wear testing standards lack definition. Ankle gait is complex, therefore the aim of this study was to investigate the effect on wear of a range of different ankle gait kinematic inputs. Five Zenith (Corin Group) TARs were tested in a modified knee simulator for twelve million cycles (Mc). Different combinations of IR rotation and AP displacement were applied every 2Mc to understand the effects of the individual kinematics. Wear was assessed gravimetrically every Mc and surface profilometry undertaken after each condition. With the initial unidirectional input with no AP displacement the wear rate measured 1.2±0.6 mm3/Mc. The addition of 11° rotation and 9 mm of AP displacement caused a statistically significant increase in the wear rate to 25.8±3.1 mm3/Mc. These inputs seen a significant decrease in the surface roughness at the tibial articulation. Following polishing three displacement values were tested; 0, 4 and 9 mm with no significant difference in wear rate ranging 11.8–15.2 mm3/Mc. TAR wear rates were shown to be highly dependent on the addition of internal/external rotation within the gait profile with multidirectional kinematics proving vital in the accurate wear testing of TARs. Prior to surface polishing wear rates were significantly higher but once in a steady state the AP displacement had no significant effect on the wear.  相似文献   

13.
Kinematic data from 3D gait analysis together with musculoskeletal modeling techniques allow the derivation of muscle-tendon lengths during walking. However, kinematic data are subject to soft tissue artifacts (STA), referring to skin marker displacements during movement. STA are known to significantly affect the computation of joint kinematics, and would therefore also have an effect on muscle-tendon lengths which are derived from the segmental positions. The present study aimed to introduce an analytical approach to calculate the error propagation from STA to modeled muscle-tendon lengths. Skin marker coordinates were assigned uncorrelated, isotropic error functions with given standard deviations accounting for STA. Two different musculoskeletal models were specified; one with the joints moving freely in all directions, and one with the joints constrained to rotation but no translation. Using reference kinematic data from two healthy boys (mean age 9 y 5 m), the propagation of STA to muscle-tendon lengths was quantified for semimembranosus, gastrocnemius and soleus. The resulting average SD ranged from 6% to 50% of the normalized muscle-tendon lengths during gait depending on the muscle, the STA magnitudes and the musculoskeletal model. These results highlight the potential impact STA has on the biomechanical analysis of modeled muscle-tendon lengths during walking, and suggest the need for caution in the clinical interpretation of muscle-tendon lengths derived from joint kinematics.  相似文献   

14.
Scapular kinematics in healthy adults is well described in the literature but little is known on typical children. This study aimed to compare the three-dimensional (3-D) scapular kinematics and scapulohumeral rhythm during the elevation and lowering of the arm in the scapular plane in typical children and healthy adults. Twenty-six healthy adults (35.34 ± 11.65 years, 1.70 ± 0.10 m, 70.00 ± 12.30 kg) and 33 typical children (9.12 ± 1.51 years, 1.40 ± 0.10 m, 35.40 ± 10.45 kg) participated in this study. 3-D scapular kinematics were obtained using an electromagnetic tracking device. The subjects were asked to elevate and lower their arm in the scapular plane. Children showed less scapular protraction compared to adults at 120° during arm elevation, more anterior tilt than adults in the elevation and also at 60°, 90° and 120° during lowering of the arm. Children also showed higher scapulohumeral rhythm during lowering of the arm compared to adults from 90° to 60°. It was also found a low to little correlation between scapular position and age. The study showed small but significant differences in scapular kinematics and scapulohumeral rhythm between children and adults. These results can help clinicians to improve diagnosis and treatment protocols directed to children with dysfunction, as reference values on scapular kinematics in healthy children are also provided in this study.  相似文献   

15.
Diagnosing dysfunctional atlantoaxial motion is challenging given limitations of current diagnostic imaging techniques. Three-dimensional imaging during upright functional motion may be useful in identifying dynamic instability not apparent on static imaging. Abnormal atlantoaxial motion has been linked to numerous pathologies including whiplash, cervicogenic headaches, C2 fractures, and rheumatoid arthritis. However, normal C1/C2 rotational kinematics under dynamic physiologic loading have not been previously reported owing to imaging difficulties. The objective of this study was to determine dynamic three-dimensional in vivo C1/C2 kinematics during upright axial rotation. Twenty young healthy adults performed full head rotation while seated within a biplane X-ray system while radiographs were collected at 30 images per second. Six degree-of-freedom kinematics were determined for C1 and C2 via a validated volumetric model-based tracking process. The maximum global head rotation (to one side) was 73.6 ± 8.3°, whereas maximum C1 rotation relative to C2 was 36.8 ± 6.7°. The relationship between C1/C2 rotation and head rotation was linear through midrange motion (±20° head rotation from neutral) in a nearly 1:1 ratio. Coupled rotation between C1 and C2 included 4.5 ± 3.1° of flexion and 6.4 ± 8.2° of extension, and 9.8 ± 3.8° of contralateral bending. Translational motion of C1 relative to C2 was 7.8 ± 1.5 mm ipsilaterally, 2.2 ± 1.2 mm inferiorly, and 3.3 ± 1.0 mm posteriorly. We believe this is the first study describing 3D dynamic atlantoaxial kinematics under true physiologic conditions in healthy subjects. C1/C2 rotation accounts for approximately half of total head axial rotation. Additionally, C1 undergoes coupled flexion/extension and contralateral bending, in addition to inferior, lateral and posterior translation.  相似文献   

16.
Excessive knee joint laxity is often used as an indicator of joint disease or injury. Clinical assessment devices are currently limited to anterior–posterior drawer measurements, while tools used to measure movement in the remaining degrees of freedom are either invasive or prone to soft tissue artefact. The objective of this work was, therefore, to develop a methodology whereby in vivo knee joint kinematics could be measured in three dimensions under torsional loading while still maintaining a non-invasive procedure. A device designed to administer a subject-normalized torque in the transverse plane of the knee was securely fastened to the outer frame of an open magnetic resonance imaging (MRI) magnet. Low resolution 3D T1-weighted images (6.25 mm slice thickness) were generated by the 0.2 Tesla MRI scanner in less than 3 min while the joint was under load. The 3D image volume was then shape-matched to a high resolution image volume (1.56 mm slice thickness) scanned in a no-load position. Three-dimensional rotations and translations of the tibia with respect to the femur were calculated by comparing the transformation matrices before and after torque was applied. Results from six subjects showed that this technique was repeatable over five trials with the knee in extended and flexed positions. Differences in range of rotation were shown between subjects and between knee positions, suggesting that this methodology has sufficient utility for further application in clinical studies.  相似文献   

17.
The goal of this investigation was to investigate how walking patterns are affected following muscle-damaging exercise by quantifying both lower limb kinematics and kinetics. Fifteen young women conducted a maximal isokinetic eccentric exercise (EE) muscle damage protocol (5 × 15) of the knee extensors and flexors of both legs at 60°/s. Three-dimensional motion data and ground reaction forces (GRFs) were collected 24 h pre-EE while the participants walked at their preferred self-selected walking speed (SWS). Participants were asked to perform two gait conditions 48 h post-EE. The first condition (COND1) was to walk at their own speed and the second condition (COND2) to maintain the SWS (±5%) they had 24 h pre-EE. Walking speed during COND1 was significantly lower compared to pre-exercise values. When walking speed was controlled during COND2, significant effects of muscle damage were noticed, among other variables, for stride frequency, loading rate, lateral and vertical GRFs, as well as for specific knee kinematics and kinetics. These findings provide new insights into how walking patterns are adapted to compensate for the impaired function of the knee musculature following muscle damage. The importance to distinguish the findings caused by muscle damage from those exhibited in response to changes in stride frequency is highlighted.  相似文献   

18.
Forces at different heights and orientations are often carried by hands while performing occupational tasks. Trunk muscle activity and spinal loads are likely dependent on not only moments but also the orientation and height of these forces. Here, we measured trunk kinematics and select superficial muscle activity of 12 asymptomatic subjects while supporting forces in hands in upright standing. Magnitude of forces in 5 orientations (−25°, 0°, 25°, 50° and 90°) and 2 heights (20 cm and 40 cm) were adjusted to generate flexion moments of 15, 30 and 45 N m at the L5-S1 disc centre. External forces were of much greater magnitude when applied at lower elevation or oriented upward at 25°. Spinal kinematics remained nearly unchanged in various tasks.Changes in orientation and elevation of external forces substantially influenced the recorded EMG, despite similar trunk posture and identical moments at the L5-S1. Greater EMG activity was overall recorded under larger forces albeit constant moment. Increases in the external moment at the L5-S1 substantially increased EMG in extensor muscles (p < 0.001) but had little effect on abdominals; e.g., mean longissimus EMG for all orientations increased by 38% and 75% as the moment level altered from 15 N m to 30 N m and to 45 N m while that in the rectus abdominus increased only by 2% and 4%, respectively. Under 45 N m moment and as the load orientation altered from 90° to 50°, 25°, 0° and −25°, mean EMG dropped by 3%, 12%, 12% and 1% in back muscles and by 17%, 17%, 19% and 13% in abdominals, respectively. As the load elevation increased from 20 cm to 40 cm, mean EMG under maximum moment decreased by 21% in back muscles and by 17% in abdominals.Due to the lack of EMG recording of deep lumbar muscles, changes in relative shear/compression components and different net moments at cranial discs despite identical moments at the caudal L5-S1 disc, complementary model studies are essential for a better comprehension of neuromuscular strategies in response to alterations in load height and orientation.  相似文献   

19.
BackgroundMechanisms of fibrin-specificity of tissue plasminogen activator (tPA) and recombinant staphylokinase (STA) are different, therefore we studied in vitro the possibility of the synergy of their combined thrombolytic action.MethodsThrombolytic effects of tPA, STA and their combinations were measured by lysis rate of human plasma clot and side effects were evaluated by decreasing in fibrinogen, plasminogen and α2-antiplasmin levels in the surrounding plasma at 37 °C in vitro.ResultsSTA and tPA induced dose- and time-dependent clot lysis: 50% lysis in 2 h was obtained with 30 nM tPA and 75 nM STA, respectively. At these concentrations, tPA produced greater degradation of plasma fibrinogen than STA. According to a mathematical analysis of dose–response curves by the isobole method, combinations of tPA and STA caused a considerable synergistic thrombolytic effect. The simultaneous and sequential combinations of tPA (< 4 nM) and STA (< 35 nM) induced a significant fibrin-specific synergistic thrombolysis, which was more pronounced in 2 h at simultaneous combinations than at sequential addition of STA after 30 min of tPA action. Simultaneous combination of 2.5 nM tPA and 15 nM STA showed a maximal 3-fold increase in thrombolytic effect compared to the expected total effect of the individual agents. Sequential combinations caused a lower depletion of plasma proteins compared to simultaneous combinations.ConclusionsThe simultaneous and sequential combinations of tPA and STA possessed synergistic fibrin-specific thrombolytic action on clot lysis in vitro.General significanceThe results show that combined thrombolysis may be more effective and safer than thrombolysis with each activator alone.  相似文献   

20.
Athletes with rotator cuff (RC) tendinopathy demonstrate an aberrant pattern of scapular motion which might relate to deficits in the scapular muscles. This study aimed to determine whether alteration in scapular kinematics is associated with deficits in the activity onset of scapular muscles. Forty-three male volleyball players (17 asymptomatic and 26 with RC tendinopathy) joined the study. Three-dimensional scapular kinematics was quantified using an acromial marker cluster method. The activity onset of the upper (UT), middle (MT), and lower trapezius (LT), and serratus anterior (SA) during arm abduction was assessed with electromyography. Athletes with RC tendinopathy demonstrated less scapular upward rotation (6.6 ± 2.3 vs. 8.2 ± 1.1°, p = 0.021) in the early phase of shoulder abduction from 0° to 30° when compared to asymptomatic athletes. The tendinopathy group had delayed activity onset of LT (14.1 ± 31.4 ms vs. 74.4 ± 45.1 ms, p < 0.001) and SA (−44.9 ± 26.0 ms vs. 23.0 ± 25.2 ms, p < 0.001) relative to UT when compared to the asymptomatic group. In asymptomatic athletes, earlier activity onset of MT and LT relative to UT was associated with more scapular upward rotation during 0–30° of abduction (r = 0.665, p = 0.021) and 30–60° of abduction (r = 0.680, p = 0.015), respectively. Our findings showed the control of the scapular upward rotation is related to the activity onset of the scapular muscles in athletes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号