首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Proteus mirabilis and Proteus vulgaris expressed a combination of superoxide dismutase (Sod) activities, which was assigned to FeSod1, FeSod2 and MnSod for P. mirabilis, and FeSod, MnSod and CuZnSod for P. vulgaris. Production of the Sod proteins was dependent on the availability of iron, whether cells were grown under anaerobiosis or aerobiosis and growth phase. Nalidixic acid and chloramphenicol inhibited cell growth and the iron- and dioxygen-dependent production of Sod. These results support the involvement of metal ions and redox status in the production of Proteus Sods.  相似文献   

2.
Bacterial lipases from family I.1 and I.2 catalyze the hydrolysis of triacylglycerol between 25–45°C and are used extensively as biocatalysts. The lipase from Proteus mirabilis belongs to the Proteus/psychrophilic subfamily of lipase family I.1 and is a promising catalyst for biodiesel production because it can tolerate high amounts of water in the reaction. Here we present the crystal structure of the Proteus mirabilis lipase, a member of the Proteus/psychrophilic subfamily of I.1lipases. The structure of the Proteus mirabilis lipase was solved in the absence and presence of a bound phosphonate inhibitor. Unexpectedly, both the apo and inhibitor bound forms of P. mirabilis lipase were found to be in a closed conformation. The structure reveals a unique oxyanion hole and a wide active site that is solvent accessible even in the closed conformation. A distinct mechanism for Ca2+ coordination may explain how these lipases can fold without specific chaperones.  相似文献   

3.
A SYBR Green real-time polymerase chain reaction (PCR) method for rapid detection of Proteus species was developed and evaluated. Of 322 clinical and food samples tested, 75 samples were positive for Proteus species by using conventional PCR and real-time PCR assays. The results were consistent with standard culture methods and the Vitek auto-microbe system, indicating a 100 % specificity obtained by both PCR assays. For the real-time PCR method, the minimum detectable level was 10 colony forming units (CFU) /ml, which was a 103 multiple higher than the conventional PCR method. Correlation coefficients of standard curves which were constructed using the threshold cycle (Ct) versus copy numbers of Proteus showed good linearity (R 2?=?0.997). In conclusion, several significant advantages such as higher sensitivity and rapidness were observed by using the SYBR Green real-time PCR method for identifying Proteus species.  相似文献   

4.
Proteus mirabilis is an opportunistic pathogen that can cause urinary tract infection in human beings. The accurate and rapid identification and quantification of P. mirabilis is necessary for early treatment. In this study, a pair of specific primers according to the conserved ureR sequence of P. mirabilis was designed and novel systems which consisted of a polymerase chain reaction (PCR) and a real-time PCR to identify and quantify P. mirabilis were developed. For the qualitative identification by ordinary PCR, a 225-bp DNA product was amplified from P. mirabilis and separated on an agarose gel. The corresponding DNA product is present in three P. mirabilis strains isolated from different geographical locations, but is absent in 20 strains representing 18 different species, including the ureR homolog contained Providencia stuartii and Escherichia coli strains, the other common pathogens Klebsiella sp., Edwarsiella sp., Vibrio sp., Enterobacter sp., and Escherichia sp., and other environmental bacteria Pseudomonas sp. and Acinetobacter sp. Proteus mirabilis at concentrations higher than 1.0?×?103 CFU ml?1 was detectable by ordinary PCR; P. mirabilis at concentrations higher than 10 CFU ml?1 was quantified by real-time PCR. The specific, sensitive and time-efficient PCR methods were demonstrated to be applicable to rapid identification and quantification of P. mirabilis.  相似文献   

5.
《Genomics》2022,114(1):38-44
Proteus phage vB_PvuS_Pm34 (Pm34) isolated from the sewage, is a novel virus specific to Proteus vulgaris. Pm34 belonged to the family Siphovirodae with an icosahedron capsid head and a non-contractile tail. Its genome was 39,558 bp in length with a G + C content of 41.4%. Similarity analysis showed that Pm34 shared low identities of 27.6%–38.4% with any other Proteus phages, but had the 96% high identity with Proteus mirabilis AOUC-001. In the genome of Pm34, 70 open reading frames was deduced and 32 had putative functions including integrase and host lysis proteins. No tRNAs, antibiotic resistance and virulence genes were detected. Pm 34 presented a broad pH (4–8) and good temperature tolerance (<40 °C). This is the first report of the bacteriophage specific to P. vulgaris, which can enrich the knowledge of bacteriophages of Prouteus bacteria and provide the possibility for the alternative treatment of P. vulgaris infection.  相似文献   

6.
Structures of five new O-specific polysaccharides of Proteus bacteria were established. Four of them, Proteus penneri 4 (O72), Proteus vulgaris 63/57 (O37), Proteus mirabilis TG 277 (O69), and Proteus penneri 20 (O17), contain O-acetyl groups in non-stoichiometric quantities, and the polysaccharide of P. penneri 1 is structurally related to that of P. penneri 4. The structures were elucidated using NMR spectroscopy, including one dimensional 1H- and 13C-NMR spectroscopy, two-dimensional 1H, 1H correlation (COSY, TOCSY), H-detected 1H, 13C heteronuclear multiple-quantum coherence (HMQC), heteronuclear multiple-bond correlation (HMBC), and nuclear Overhauser effect spectroscopy (NOESY or ROESY), along with chemical methods. The structural data obtained are useful as the chemical basis for the creation of the classification scheme for Proteus strains.  相似文献   

7.
Cultures of coliform and Proteus bacteria, mostly from foods, were tested for their effect on growth of Staphylococcus aureus in Trypticase Soy Broth. Inhibition of the staphylococcus by these competitors increased with increasing proportions of inhibiting (effector) bacteria in the inoculum and decreasing incubation temperatures (37 to 10 C). Time required for 2 × 104 staphylococci to increase to 5 × 106 cells per milliliter, the minimal number assumed to be necessary for food poisoning, varied with the species of effector, the original ratio of effector bacteria to staphylococci in the medium, and the incubation temperature. When the original ratio was 100:1, the staphylococci did not reach 5 × 106 cells per milliliter at 10, 15, 22, or 30 C (with one exception), when growing with cultures representing six species of coliform bacteria and two of Proteus. When the ratio was 1:1, all effectors either greatly delayed the staphylococcus or prevented it from reaching hazardous numbers at 15 C, six of the eight caused a delay of 2 to 3 hr at 22 C, and only Escherichia coli delayed the coccus at 30 C. All effectors were ineffective at 22 and 30 C when original numbers of effectors and staphylococci were in the ratio 1:100. Greatest overall inhibition was by E. coli, E. freundii, and Proteus vulgaris, and these species were more effective than the others at 22 and 30 C. Aerobacter cloacae and Paracolobactrum aerogenoides were more effective at 15 C. In general, results were similar with different strains of a species. Except for Aerobacter aerogenes, Klebsiella sp., and P. aerogenoides, which apparently did not compete for nutrients, inhibition of the staphylococcus was by a combination of antibiotic substances and competition for nutrients.  相似文献   

8.
Isolation of Phenylalanine-Negative Proteus vulgaris   总被引:1,自引:1,他引:0       下载免费PDF全文
Three phenylalanine-negative Proteus vulgaris strains were isolated from three different sources. The significance of these Proteus strains has not been fully recognized.  相似文献   

9.
Urinary tract infection (UTI) is one of the bacterial infections frequently documented in humans. Proteus mirabilis is associated with UTI mainly in individuals with urinary tract abnormality or related with vesicular catheterism and it can be difficult to treat because of the formation of stones in the bladder and kidneys. These stones are formed due to the presence of urease synthesized by the bacteria. Another important factor is that P. mirabilis produces hemolysin HpmA, used by the bacteria to damage the kidney tissues. Proteus spp. samples can also express HlyA hemolysin, similar to that found in Escherichia coli. A total of 211 uropathogenic P. mirabilis isolates were analyzed to detect the presence of the hpmA and hpmB genes by the techniques of polymerase chain reaction (PCR) and dot blot and hlyA by PCR. The hpmA and hpmB genes were expressed by the RT-PCR technique and two P. mirabilis isolates were sequenced for the hpmA and hpmB genes. The presence of the hpmA and hpmB genes was confirmed by PCR in 205 (97.15 %) of the 211 isolates. The dot blot confirmed the presence of the hpmA and hpmB genes in the isolates that did not amplify in the PCR. None of the isolates studied presented the hlyA gene. The hpmA and hpmB genes that were sequenced presented 98 % identity with the same genes of the HI4320 P. mirabilis sample. This study showed that the PCR technique has good sensitivity for detecting the hpmA and hpmB genes of P. mirabilis.  相似文献   

10.
Proteus species are well-characterized opportunistic pathogens primarily associated with urinary tract infections (UTI) of humans. The Proteus O antigen is one of the most variable constituents of the cell surface, and O antigen heterogeneity is used for serological classification of Proteus isolates. Even though most Proteus O antigen structures have been identified, the O antigen locus has not been well characterized. In this study, we identified the putative Proteus O antigen locus and demonstrated this region''s high degree of heterogeneity by comparing sequences of 40 Proteus isolates using PCR-restriction fragment length polymorphism (RFLP). This analysis identified five putative Proteus O antigen gene clusters, and the probable functions of these O antigen-related genes were proposed, based on their similarity to genes in the available databases. Finally, Proteus-specific genes from these five serogroups were identified by screening 79 strains belonging to the 68 Proteus O antigen serogroups. To our knowledge, this is the first molecular characterization of the putative Proteus O antigen locus, and we describe a novel molecular classification method for the identification of different Proteus serogroups.Proteus species are usually found in soil, water, and sewage and are well-known opportunistic pathogens that most commonly cause urinary tract infections (UTIs) in persons with anatomical and physiological defects of their urinary tracts (15, 28). This genus includes the five named species P. mirabilis, P. vulgaris, P. myxofaciens, P. penneri, and P. hauseri and the three unnamed Proteus genomospecies 4, 5, and 6 (20, 21). Among these, P. mirabilis, P. vulgaris, and P. penneri are the most common human pathogens (28). Among Proteus species, P. mirabilis is most frequently associated with UTIs and is a common cause of catheter-associated UTIs (12).Potential virulence factors and bacterial behaviors associated with the infection processes and disease, including swarming, growth rates, fimbria expression, flagella, and the production of hemolysins, ureases, proteases, and amino acid deaminases, in addition to the expression of lipopolysaccharide (LPS) antigens and capsular polysaccharides (CPSs), have been described in many studies (11, 18, 28). Both LPSs and CPSs have been considered to play an important role in the progression of UTIs, in addition to affecting both kidney and bladder stone formation (7, 25, 35). Furthermore, the LPS O antigen confers protection against serum-mediated bactericidal activity (13, 27), and bacterial LPS released from bacteria is a biologically active endotoxin that causes a broad spectrum of pathophysiological conditions, including septic shock (26). Recently, two additional virulence factors with cytotoxic and agglutination properties, the high-affinity phosphate transporter (Pst) and the autotransporter (Pta), have been described (1, 11).The O antigen located on the cell surface of Gram-negative bacteria consists of oligosaccharide repeats (O unit) that normally contain 2 to 8 sugar residues. The O antigen is one of the most variable constituents on the cell surface, due to variations in the types of sugars present and their arrangements and respective linkages, and is subject to intense selection by the host immune system and bacteriophages. The serological classification scheme established by Kauffman and Perch defines 49 different P. mirabilis and P. vulgaris O serogroups (10), and an additional 11 serogroups were later proposed (23). In the case of P. penneri, an additional 15 O antigen serogroups were described (16, 42; Z. Sidorczyk, K. Zych, K. Kolodziejska, D. Drzewiecka, and A. Zablotni, presented at the Second German-Polish-Russian Meeting on Bacterial Carbohydrates, Moscow, Russia, 10 to 12 September 2002). To date, the O antigen structures of 78 Proteus species have been described (unpublished data), and uronic acid, which can sometimes be substituted for amino acids, was identified as a component of the Proteus O antigen. Although acidic O-specific polysaccharides have been identified in most Proteus O antigens, a study of the genetic locus associated with Proteus O antigens has never been carried out.The genome sequence of P. mirabilis was published for the first time in 2008 (22). In this study, we characterized the putative O antigen locus by analyzing genomic sequences and confirming the locus heterogeneity by carrying out PCR-restriction fragment length polymorphism (RFLP) on 40 strains. Four putative O antigen gene clusters were sequenced and analyzed, and specific primers were identified for Proteus species by screening 79 Proteus strains, confirming that the identified loci were specific to particular serogroups.  相似文献   

11.
Proteus mirabilis is a dimorphic motile bacterium well known for its flagellum-dependent swarming motility over surfaces. In liquid, P. mirabilis cells are 1.5- to 2.0-μm swimmer cells with 4 to 6 flagella. When P. mirabilis encounters a solid surface, where flagellar rotation is limited, swimmer cells differentiate into elongated (10- to 80-μm), highly flagellated swarmer cells. In order for P. mirabilis to swarm, it first needs to detect a surface. The ubiquitous but functionally enigmatic flagellar basal body protein FliL is involved in P. mirabilis surface sensing. Previous studies have suggested that FliL is essential for swarming through its involvement in viscosity-dependent monitoring of flagellar rotation. In this study, we constructed and characterized ΔfliL mutants of P. mirabilis and Escherichia coli. Unexpectedly and unlike other fliL mutants, both P. mirabilis and E. coli ΔfliL cells swarm (Swr+). Further analysis revealed that P. mirabilis ΔfliL cells also exhibit an alteration in their ability to sense a surface: e.g., ΔfliL P. mirabilis cells swarm precociously over surfaces with low viscosity that normally impede wild-type swarming. Precocious swarming is due to an increase in the number of elongated swarmer cells in the population. Loss of fliL also results in an inhibition of swarming at <30°C. E. coli ΔfliL cells also exhibit temperature-sensitive swarming. These results suggest an involvement of FliL in the energetics and function of the flagellar motor.  相似文献   

12.
The O-specific polysaccharide chains (O-antigens) of the lipopolysaccharides of five Proteus strains, P. vulgaris O17, P. mirabilis O16 and O33, and P. penneri 31 and 103, were found to contain phosphate groups that link the non sugar components, e.g., ethanolamine and ribitol. The polysaccharides of P. mirabilis O16 and P. penneri 103 include ribitol phosphate in the main chain and thus resemble ribitol teichoic acids of Gram-positive bacteria. The structures of the polysaccharides were elucidated using NMR spectroscopy, including two-dimensional 1H, 1H correlation spectroscopy (COSY and TOCSY), nuclear Overhauser effect spectroscopy (NOESY or ROESY), and H-detected 1H, 13C and 1H, 31P heteronuclear multiple-quantum coherence spectroscopy (HMQC), along with chemical methods. The structures determined are unique among the bacterial polysaccharides and, together with the data obtained earlier, represent the chemical basic for classification of Proteus strains. Based on structural similarities of the O-specific polysaccharides and serological relationships between the O-antigens, we propose to extend Proteus serogroups O17 and O19 by including P. penneri strains 16 and 31, respectively.  相似文献   

13.
The three strains of non-pathogenic Proteus species namely, Proteus vulgaris OX2, P. vulgaris OX19 and Proteus mirabilis OXK used in the Weil–Felix test are the group-specific cross-reactive antigens for Rickettsia and Orientia species. Earlier studies have revealed that the group specific and cross-reactive antigens responsible for the Weil–Felix test lie mostly in the lipopolysaccharide (LPS) moiety of the bacterial cell wall [Amano et al. (1993a) Infect Immun 61:4350–4355, (1993b) Microbiol Immunol 37:927–933, (1998) Infect Immun 66:923–926]. The three Proteus strains (OX2, OX19 and OXK) were used to raise murine monoclonal antibodies (MAbs) by hybridoma technology. Several MAb-producing hybridomas could be stabilized following limiting dilution. Affinity and specificity of these MAbs were checked by indirect ELISA using a battery of homologous and heterologous antigens including LPS. Amongst these, one MAb was found to be specific for P. vulgaris OX19 LPS. Since the Weil–Felix reaction is based on the cross-reactivity between the LPS based epitopes, this MAb could be of potential use in mapping of epitopes on the cross-reactive LPS and may also be useful as a potential diagnostic reagent.  相似文献   

14.
Pedalium murex L. is a medicinal herb that has been used for the treatment of diseases related to kidney in the traditional system of medicine. The current study aims to study the effect of ethyl acetate extract of P. murex (EAEP) and its fractionated compound pedalitin against urease production and UreC gene expression in Proteus mirabilis. The selected reference strain Proteus mirabilis (MTCC 425) and the isolates culture of Proteus mirabilis were subjected to study the antibacterial efficacy of P. murex. Expression analysis of P. mirabilis urease gene was successfully done by QPCR. The ethyl acetate extract effectively inhibit the reference Proteus mirabilis and bacterial isolates of Proteus mirabilis in the clinical samples studied. EAEP has showed more potent activity (56.7%) against urease enzyme and pedalitin also exhibited potent activity (30.1%). Using qPCR, the expression of UreC gene of P. mirabilis was controlled by EAEP and also its bioactive compound pedalitin. The present study clearly demonstrated the potency of P. murex in controlling the growth of pathogenic P. mirabilis and to control the expression of urease enzyme production as well as to restrict the urease gene expression in P. mirabilis.  相似文献   

15.
16.
《Genomics》2019,111(6):1283-1291
Proteus mirabilis is one of the most common causes of complicated urinary tract infections (UTI), especially in catheter-associated UTIs. The increased resistance to antibiotics, among P. mirabilis isolates has led us to search for alternative antibacterial agents. In this study, genome of a lytic Proteus phage VB_PmiS-Isfahan, isolated from wastewater, and active against planktonic and biofilms of P. mirabilis, isolated from UTI, was analyzed. Accordingly, the genome was sequenced and its similarity to other phages was assessed by the Mauve and EasyFig softwares. “One Click” was used for phylogenetic tree construction. The complete genome of VB_PmiS-Isfahan was 54,836 bp, dsDNA with a G+C content of 36.09%. Nighty-one open reading frames (ORFs) was deduced, among them, 23 were considered as functional genes, based on the homology to the previously characterized proteins. The BLASTn of VB_PmiS-Isfahan showed low similarity to complete genome of Salmonella phages VB_SenS_Sasha, 9NA, and VB_SenS-Sergei. A comparison of Nucleic acid and amino acid sequence, and phylogenetic analyses indicated that the phage is novel, significantly differs, and is distant from other genera, within Siphoviridae family. No virulence-associated and antibiotic resistance genes were detected. Thus, VB_PmiS-Isfahan phage is suggested as a potential novel candidate for the treatment of diseases, caused by P. mirabilis.  相似文献   

17.
Escherichia coli and Proteus mirabilis are important urinary tract pathogens. The constant increase in the antibiotic resistance of clinical bacterial strains has become an important clinical problem. The aim of this study was to compare the antibiotic resistance of 141 clinical (Sweden and Poland) and 42 laboratory (Czech Republic) P. mirabilis strains and 129 clinical (Poland) uropathogenic E. coli strains. The proportion of unique versus diverse patterns in Swedish clinical and laboratory P. mirabilis strain collections was comparable. Notably, a similar proportion of unique versus diverse patterns was observed in Polish clinical P. mirabilis and E. coli strain collections. Mathematical models of the antibiotic resistance of E. coli and P. mirabilis strains based on Kohonen networks and association analysis are presented. In contrast to the three clinical strain collections, which revealed complex associations with the antibiotics tested, laboratory P. mirabilis strains provided simple antibiotic association diagrams. The monitoring of antibiotic resistance patterns of clinical E. coli and P. mirabilis strains plays an important role in the treatment procedures for urinary tract infections and is important in the context of the spreading drug resistance in uropathogenic strain populations. The adaptability and flexibility of the genomes of E. coli and P. mirabilis strains are discussed.  相似文献   

18.
Synanthropic flies have been implicated in the rapid dissemination of antibiotic-resistant bacteria and resistance determinants in the biosphere. These flies stably harbor a considerable number of bacteria that exhibit resistance to various antibiotics, but the mechanisms underlying this phenomenon remain unclear. In this study, we investigated the persistence of antibiotic-resistant bacteria in the digestive tract of houseflies and green bottle flies, using Proteus mirabilis as a model microorganism. One resistant strain carried the blaTEM and aphA1 genes, and another carried a plasmid containing qnrD gene. Quantitative PCR and 454 pyrosequencing were used to monitor the relative abundance of the Proteus strains, as well as potential changes in the overall structure of the whole bacterial community incurred by the artificial induction of Proteus cultures. Both antibiotic-resistant and -sensitive P. mirabilis strains persisted in the fly digestive tract for at least 3 days, and there was no significant difference in the relative abundance of resistant and sensitive strains despite the lower growth rate of resistant strains when cultured in vitro. Therefore, conditions in the fly digestive tract may allow resistant strains to survive the competition with sensitive strains in the absence of antibiotic selective pressure. The composition of the fly-associated bacterial community changed over time, but the contribution of the artificially introduced P. mirabilis strains to these changes was not clear. In order to explain these changes, it will be necessary to obtain more information about bacterial interspecies antagonism in the fly digestive tract.  相似文献   

19.
Summary Alkenyl and alkyl phosphatides were characterized in the lipids of Proteus mirabilis, grown in aerobic conditions. These classes of lipids are also present in the stable L-forms derived from Proteus. The amounts of alkenyl phosphatides are very low, compared to the other bacteria which contain this lipid. For alkyl phosphatides, the amounts are of the same order as that found in anaerobic bacteria.  相似文献   

20.
Buoyant density gradient centrifugation has been used to separate bacteria from complex food matrices, as well as to remove compounds that inhibit rapid detection methods, such as PCR, and to prevent false-positive results due to DNA originating from dead cells. Applying a principle of buoyant density gradient centrifugation, we developed a method for rapid separation and concentration following filtration and low- and high-speed centrifugation, as well as flotation and sedimentation buoyant density centrifugation, for 12 food-borne pathogens (Salmonella enterica, Escherichia coli, Yersinia enterocolitica, Campylobacter jejuni, Vibrio cholerae O139, Vibrio parahaemolyticus O3K6, Vibrio vulnificus, Providencia alcalifaciens, Aeromonas hydrophila, Bacillus cereus, Staphylococcus aureus, and Clostridium perfringens) in 13 different food homogenates. This method can be used prior to real-time quantitative PCR (RTi-qPCR) and viable-cell counting. Using this combined method, the target organisms in the food samples theoretically could be concentrated 250-fold and detected at cell concentrations as low as 101 to 103 CFU/g using the RTi-qPCR assay, and amounts as small as 100 to 101 CFU/g could be isolated using plate counting. The combined separation and concentration methods and RTi-qPCR confirmed within 3 h the presence of 101 to 102 CFU/g of Salmonella and C. jejuni directly in naturally contaminated chicken and the presence of S. aureus directly in remaining food items in a poisoning outbreak. These results illustrated the feasibility of using these assays for rapid inspection of bacterial food contamination during a real-world outbreak.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号