首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
This study was carried out to provide information on the taxonomic classification and analysis of mitochondrial genomes of Spirometra theileri. One strobila of S. theileri was collected from the intestine of an African leopard (Panthera pardus) in the Maswa Game Reserve, Tanzania. The complete mtDNA sequence of S. theileri was 13,685 bp encoding 36 genes including 12 protein genes, 22 tRNAs and 2 rRNAs with absence of atp8. Divergences of 12 protein-coding genes were as follow: 14.9% between S. theileri and S. erinaceieuropaei, 14.7% between S. theileri and S. decipiens, and 14.5% between S. theileri with S. ranarum. Divergences of 12 proteins of S. theileri and S. erinaceieuropaei ranged from 2.3% in cox1 to 15.7% in nad5, while S. theileri varied from S. decipiens and S. ranarum by 1.3% in cox1 to 15.7% in nad3. Phylogenetic relationship of S. theileri with eucestodes inferred using the maximum likelihood and Bayesian inferences exhibited identical tree topologies. A clade composed of S. decipiens and S. ranarum formed a sister species to S. erinaceieuropaei, and S. theileri formed a sister species to all species in this clade. Within the diphyllobothridean clade, Dibothriocephalus, Diphyllobothrium and Spirometra formed a monophyletic group, and sister genera were well supported.  相似文献   

2.
Tapeworms of the genus Spirometra are pseudophyllidean cestodes endemic in Korea. At present, it is unclear which Spirometra species are responsible for causing human infections, and little information is available on the epidemiological profiles of Spirometra species infecting humans in Korea. Between 1979 and 2009, a total of 50 spargana from human patients and 2 adult specimens obtained from experimentally infected carnivorous animals were analyzed according to genetic and taxonomic criteria and classified as Spirometra erinaceieuropaei or Spirometra decipiens depending on the morphology. Morphologically, S. erinaceieuropaei and S. decipiens are different in that the spirally coiled uterus in S. erinaceieuropaei has 5-7 complete coils, while in S. decipiens it has only 4.5 coils. In addition, there is a 9.3% (146/1,566) sequence different between S. erinaceieuropaei and S. decipiens in the cox1 gene. Partial cox1 sequences (390 bp) from 35 Korean isolates showed 99.4% (388/390) similarity with the reference sequence of S. erinaceieuropaei from Korea (G1724; GenBank KJ599680) and an additional 15 Korean isolates revealed 99.2% (387/390) similarity with the reference sequences of S. decipiens from Korea (G1657; GenBank KJ599679). Based on morphologic and molecular databases, the estimated population ratio of S. erinaceieuropaei to S. decipiens was 35: 15. Our results indicate that both S. erinaceieuropaei and S. decipiens found in Korea infect humans, with S. erinaceieuropaei being 2 times more prevalent than S. decipiens. This study is the first to report human sparganosis caused by S. decipiens in humans in Korea.  相似文献   

3.
Despite considerable controversy concerning the taxonomy of species within the genus Spirometra, human sparganosis and spirometrosis mainly in Asia and Europe has long been confidently ascribed to Spirometra erinaceieuropaei. Recently, the mitochondrial genomes of purported “S. erinaceieuropaei”, “Spirometra decipiens” and “Spirometra ranarum” from Asia have been determined. However, it has been pointed out that the morphological criteria used for identifying these species are unsuitable and thus these identifications are questionable. In the present study, therefore, Spirometra samples from Asia were re-examined based on mitochondrial cytochrome c oxidase subunit 1 gene sequences and the identification of these species was discussed. Haplotype network and phylogenetic analyses revealed that: i) two distinct Spirometra species, Type I and Type II, are present in Asia and neither of which is close to likely European “S. erinaceieuropaei”; ii) Type I is genetically diverse and widely distributed, however Type II is known so far from Japan and Korea; iii) “S. decipiens” and “S. ranarum” reported from Asia are conspecific with Type I; iv) Type I is probably conspecific with Spirometra mansoni, and Type II may represent an undescribed species.  相似文献   

4.
Human sparganosis is a zoonotic disease caused by infection with larval forms (procercoid/plerocercoid) of Spirometra spp. The purpose of this study was to identify Spirometra spp. of infected snakes using a multiplex PCR assay and phylogenetic analysis of mitochondrial DNA sequence data from the spargana of terrestrial snakes obtained from Korea and China. A total of 283 snakes were obtained that included 4 species of Colubridae comprising Rhabdophis tigrinus tigrinus (n=150), Dinodon rufozonatum rufozonatum (n=64), Elaphe davidi (n=2), and Elaphe schrenkii (n=7), and 1 species of Viperidae, Agkistrodon saxatilis (n=60). The snakes were collected from the provinces of Chungbuk, Chungnam, and Gyeongbuk in Korea (n=161), and from China (n=122). The overall infection rate with spargana was 83% (235/283). The highest was recorded for D. rufozonatum rufozonatum (100%), followed by A. saxatilis (85%) and R. tigrinus tigrinus (80%), with a negative result for E. davidi (0%) and E. schrenkii (0%). The sequence identities between the spargana from snakes (n=50) and Spirometra erinaceieuropaei (KJ599680) or S. decipiens (KJ599679) control specimens were 90.8% and 99.2%, respectively. Pairwise genetic distances between spargana (n=50) and S. decipiens ranged from 0.0080 to 0.0107, while those between spargana and S. erinaceieuropaei ranged from 0.1070 to 0.1096. In this study, all of the 904 spargana analyzed were identified as S. decipiens either by a multiplex PCR assay (n=854) or mitochondrial cox1 sequence analysis (n=50).  相似文献   

5.

Background

The importance of wildlife as reservoirs of African trypanosomes pathogenic to man and livestock is well recognised. While new species of trypanosomes and their variants have been identified in tsetse populations, our knowledge of trypanosome species that are circulating in wildlife populations and their genetic diversity is limited.

Methodology/Principal Findings

Molecular phylogenetic methods were used to examine the genetic diversity and species composition of trypanosomes circulating in wildlife from two ecosystems that exhibit high host species diversity: the Serengeti in Tanzania and the Luangwa Valley in Zambia. Phylogenetic relationships were assessed by alignment of partial 18S, 5.8S and 28S trypanosomal nuclear ribosomal DNA array sequences within the Trypanosomatidae and using ITS1, 5.8S and ITS2 for more detailed analysis of the T. vivax clade. In addition to Trypanosoma brucei, T. congolense, T. simiae, T. simiae (Tsavo), T. godfreyi and T. theileri, three variants of T. vivax were identified from three different wildlife species within one ecosystem, including sequences from trypanosomes from a giraffe and a waterbuck that differed from all published sequences and from each other, and did not amplify with conventional primers for T. vivax.

Conclusions/Significance

Wildlife carries a wide range of trypanosome species. The failure of the diverse T. vivax in this study to amplify with conventional primers suggests that T. vivax may have been under-diagnosed in Tanzania. Since conventional species-specific primers may not amplify all trypanosomes of interest, the use of ITS PCR primers followed by sequencing is a valuable approach to investigate diversity of trypanosome infections in wildlife; amplification of sequences outside the T. brucei clade raises concerns regarding ITS primer specificity for wildlife samples if sequence confirmation is not also undertaken.  相似文献   

6.
Human sparganosis is a food-borne parasitic disease caused by the plerocercoids of Spirometra species. Clinical diagnosis of sparganosis is crucial for effective treatment, thus it is important to identify sensitive and specific antigens of plerocercoids. The aim of the current study was to identify and characterize the immunogenic proteins of Spirometra erinaceieuropaei plerocercoids that were recognized by patient sera. Crude soluble extract of the plerocercoids were separated using 2-dimensional gel electrophoresis coupled with immunoblot and mass spectrometry analysis. Based on immunoblotting patterns and mass spectrometry results, 8 antigenic proteins were identified from the plerocercoid. Among the proteins, cysteine protease protein might be developed as an antigen for diagnosis of sparganosis.  相似文献   

7.
The systematics of tapeworms in the genus Spirometra has been progressing with the accumulation of molecular genetics data, but the taxonomic status of many nominal species remains under debate. We report morphological and molecular-phylogenetic data for a Spirometra species collected from a domestic cat (Felis silvestris catus) in Chiloé Island, Chile. The Spirometra species was shown to be genetically conspecific with Spirometra decipiens complex 1 found in a Pampas fox (Lycalopex gymnocercus) from Argentina, and was closely related to a Hoary fox (Lycalopex vetulus) and rattlesnake (Crotalus durissus) from Brazil. Therefore, the presence of S. decipiens complex 1 was molecularly confirmed for the first time in Chile. The findings of the present study add useful information for the systematics of poorly known Spirometra species in South America.  相似文献   

8.
A 52-year-old woman presented with lower back pain, progressive symmetrical paraparesis with sensory impairment, and sphincter disturbance. Magnetic resonance imaging (MRI) of the whole spine revealed multiple intradural extramedullary serpiginous-mass lesions in the subarachnoid space continuously from the prepontine to the anterior part of the medulla oblongata levels, C7, T2-T8, and T12 vertebral levels distally until the end of the theca sac and filling-in the right S1 neural foramen. Sparganosis was diagnosed by demonstration of the sparganum in histopathological sections of surgically resected tissues and also by the presence of serum IgG antibodies by ELISA. DNA was extracted from unstained tissue sections, and a partial fragment of mitochondrial cytochrome c oxidase subunit 1 (cox1) gene was amplified using a primer set specific for Spirometra spp. cox1. After sequencing of the PCR-amplicon and alignment of the nucleotide sequence data, the causative agent was identified as the larva of Spirometra erinaceieuropaei.  相似文献   

9.
《Gene》1997,184(2):221-227
The nucleotide (nt) sequence of a small subunit (18S) ribosomal RNA gene from the plerocercoid of Spirometra erinaceieuropaei (SEP) was determined. The gene with 2182 bp in length is larger than that of most eukaryotes. Extra nt sequences occur in regions known to be variable (V4 and V7). The predicted secondary structure of the nt positions 679–933 (V4) revealed different helices from that of other eukaryotes. The region between nt positions 1540 and 1749 (V7) was different from that of other eukaryotes, but the secondary structure prediction by computer analysis demonstrated that this part of 18S rRNA sequence from S. erinaceieuropaei may form a single extended helix. Nt that were aligned with those of nine other parasites were used to estimate phylogenetic relationships. The data presented here clearly indicate that S. erinaceieuropaei is closely related to Echinococcus granulosus.  相似文献   

10.
The genus Seuratascaris Sprent, 1985 is a group of obligate nematode parasites of amphibians. In the present study, a new species of Seuratascaris, S. physalis sp. n. was described using light and scanning electron microscopy based on specimens collected from Quasipaa exilispinosa (Liu & Hu) (Amphibia: Anura) in China. The new species differs from S. numidica (Seurat, 1917) by the cuticle of the cervical region distinctly inflated to form a cephalic vesicle-like structure and the absence of single medio-ventral precloacal papilla. The molecular characterization of the nuclear large ribosomal DNA (28S) and internal transcribed spacer (ITS) and the mitochondrial cytochrome c oxidase subunit 1 (cox1), cytochrome c oxidase subunit 2 (cox2) and 12S small subunit ribosomal RNA gene of S. physalis sp. n., together with the 28S, cox2 and 12S of S. numidica are provided for the first time. Molecular analysis revealed the presence of high level of interspecific genetic variation between the two species in the ITS (5.50%), cox1 (13.3%), cox2 (10.6%) and 12S regions (10.5%), which strongly supported that S. physalis sp. n. represented a different species from S. numidica. Angusticaecum ranae Wang, Zhao & Chen, 1978 reported from the frog Quasipaa spinosa (David) (Anura: Dicroglossidae) in China was transferred into the genus Seuratascaris as S. ranae (Wang, Zhao & Chen, 1978) comb. n. based on the morphology of lips and the presence of very short and robust spicules without alae and small numbers of precloacal papillae. The present study provided useful genetic data for molecular identification of species of Seuratascaris and provides the foundation for being able to determine if S. numidica represents a species complex of some sibling species or a single species.  相似文献   

11.
The nematode genera Anisakis s.l. and Pseudoterranova (Anisakidae) include causative agents of anisakiasis and pseudoterranovosis, parasitic diseases resulting from eating undercooked or raw fish or squid. Species in both genera have thus attracted considerable attention especially in public health and taxonomic studies. The phylogenetic relationships of these genera within the subfamily Anisakinae, however, remain to be investigated with dense taxonomic sampling. In this study, we collected an anisakid third-stage larva, and identified it morphologically and molecularly as Pseudoterranova ceticola. Phylogeny of 15 anisakine species, including the newly collected specimen of Ps. ceticola, was reconstructed based on sequences of three mitochondrial (cox1, cox2, and 12S rRNA) and two nuclear (ITS and 28S rRNA) regions. The obtained tree suggested the non-monophyly of Anisakis s.l. and Pseudoterranova. Anisakis s.l. was divided into two groups, which are distinguished from each other by the shape of the ventriculus. Based on phylogenetic relationships and morphology, three species with a shorter ventriculus (“A.brevispiculata, “A.paggiae, and “A.physeteris) were assigned to the genus Skrjabinisakis, as recently proposed. Pseudoterranova ceticola was distantly related to the monophyletic Ps. decipiens species complex. Although the phylogenetic position of the type species Ps. kogiae has not been investigated due to a lack of sequence data, this species may morphologically and ecologically resemble Ps. ceticola, inferring a close kinship between the two species.  相似文献   

12.
13.
Everted cystacanths of Sphaerirostris lanceoides (Petrochenko, 1949) Golvan 1956 are reported from the Asiatic toad Bufo gargarizans Cantor (Amphibia: Anura) for the first time. The prevalence was 1.96% and the intensity ranged between 1.0–3.0 acanthocephalans. SEM observations revealed the morphology of the gonopore and the presence of a flat, bare region on the apical part of the proboscis. Moreover, S. lanceoides was characterised using molecular approaches by sequencing the ribosomal ITS1-5.8S-ITS2 region and the mitochondrial cox1 gene. The resulting ITS sequences were identical and the cox1 sequences showed a divergence of 0–0.75%. Sphaerirostris lanceoides is the first species of the genus for which the ITS1-5.8S-ITS2 and cox1 loci have been sequenced to aid species identification.  相似文献   

14.
Metacercariae of two species of Posthodiplostomum Dubois, 1936 (Digenea: Diplostomidae) were subjected to morphological and molecular studies: P. brevicaudatum (von Nordmann, 1832) from Gasterosteus aculeatus (L.) (Gasterosteiformes: Gasterosteidae), Bulgaria (morphology, cox1 and ITS1-5.8S-ITS2) and Perca fluviatilis L. (Perciformes: Percidae), Czech Republic (morphology, cox1, ITS1-5.8S-ITS2 and 28S); and P. centrarchi Hoffman, 1958 from Lepomis gibbosus (L.) (Perciformes: Centrarchidae), Bulgaria (morphology, cox1 and ITS1-5.8S-ITS2) and Slovakia (cox1 and ITS1-5.8S-ITS2). In addition, cercariae of P. cuticola (von Nordmann, 1832) from Planorbis planorbis (L.) (Mollusca: Planorbidae), Lithuania (morphology and cox1) and metacercariae of Ornithodiplostomum scardinii (Schulman in Dubinin, 1952) from Scardinius erythrophthalmus (L.) (Cypriniformes: Cyprinidae), Czech Republic, were examined (morphology, cox1, ITS1-5.8S-ITS2 and 28S). These represent the first molecular data for species of Posthodiplostomum and Ornithodiplostomum Dubois, 1936 from the Palaearctic. Phylogenetic analyses based on cox1 and ITS1-5.8S-ITS2, using O. scardinii as the outgroup and including the three newly-sequenced Posthodiplostomum spp. from Europe and eight published unidentified (presumably species-level) lineages of Posthodiplostomum from Canada confirmed the distinct status of the three European species (contrary to the generally accepted opinion that only P. brevicaudatum and P. cuticola occur in the Palaearctic). The subspecies Posthodiplostomum minimum centrarchi Hoffmann, 1958, originally described from North America, is elevated to the species level as Posthodiplostomum centrarchi Hoffman, 1958. The undescribed “Posthodiplostomum sp. 3” of Locke et al. (2010) from centrarchid fishes in Canada has identical sequences with the European isolates of P. centrarchi and is recognised as belonging to the same species. The latter parasite, occurring in the alien pumpkinseed sunfish Lepomis gibbosus in Europe, is also supposed to be alien for this continent. It is speculated that it colonised Europe long ago and is currently widespread (recorded in Bulgaria, Slovakia and Spain); based on the cox1 sequence of an adult digenean isolate from the Ebro Delta, Spain, only the grey heron (Ardea cinerea L.) (Ciconiiformes: Ardeidae) is known to be its definitive host in Europe.  相似文献   

15.
It is well accepted that the freshwater sponges (Porifera; Haplosclerida; Spongillina) currently comprise six extant families: Spongillidae, Lubomirskiidae, Malawispongiidae, Metaniidae, Metschnikowiidae and Potamolepidae, but the phylogeny of this group is poorly understood. Family Malawispongiidae includes five genera: Malawispongia, Spinospongilla, Cortispongilla, Ochridaspongia, Pachydictyum, which inhabit ancient lakes: Malawi and Tanganyika (African Rift Valley), Kinneret (Middle East), Ohrid (Europe) and Poso (Central Sulawesi). We show via nuclear and mitochondrial markers (cox 1, 28S rRNA and ribosomal ITS regions) that both endemic species Cortispongilla barroisi and Ephydatia syriaca from Lake Kinneret are synonymous with the cosmopolitian species Ephydatia fluviatilis, which also supports suggestions that the family Malawispongiidae is polyphyletic. Our findings also suggest that Nudospongilla is a synthetic taxon and that the number of endemic freshwater sponge species is overestimated.  相似文献   

16.
Total DNA was isolated from individual nematodes of the species Longidorus helveticus, L. macrosoma, L. arthensis, L. profundorum, L. elongatus, and L. raskii collected in Switzerland. The ITS region and D1-D2 expansion segments of the 26S rDNA were amplified and cloned. The sequences obtained were aligned in order to investigate sequence diversity and to infer the phylogenetic relationships among the six Longidorus species. D1-D2 sequences were more conserved than the ITS sequences that varied widely in primary structure and length, and no consensus was observed. Phylogenetic analyses using the neighbor-joining, maximum parsimony and maximum likelihood methods were performed with three different sequence data sets: ITS1-ITS2, 5.8S-D1-D2, and combining ITS1-ITS2+5.8S-D1-D2 sequences. All multiple alignments yielded similar basic trees supporting the existence of the six species established using morphological characters. These sequence data also provided evidence that the different regions of the rDNA are characterized by different evolution rates and by different factors associated with the generation of extreme size variation.  相似文献   

17.
A significant heterogeneity of the species Zygowilliopsis californica was revealed using RFLP-analysis of the PCR-amplified rDNA fragment spanning the 5.8S rRNA gene and the internal transcribed spacers ITS1 and ITS2. Phylogenetic analysis of the nucleotide sequences of ITS1 and ITS2 rDNA differentiated three varieties: Z. californica var. californica, Z. californica var. dimennae, and Z. californica var. fukushimae. The most variable was the ITS2 region, where 7–26 nucleotide substitutions were revealed. The varieties formed semisterile hybrids with meiotic segregation of control markers. The limits of the phylogenetic species concept are discussed.  相似文献   

18.
Molecular data from the cytochrome c oxidase subunit I (cox1) mitochondrial DNA gene and the second internal transcribed spacer (ITS2) nuclear rDNA region were used to test the current morphologically-based taxonomic hypothesis regarding species of Monorchiidae (Hurleytrematoides) from chaetodontid and tetraodontid fishes from six sites in the tropical Indo-West Pacific (TIWP): Heron and Lizard Islands off the Great Barrier Reef (GBR, Australia), Moorea (French Polynesia), New Caledonia, Ningaloo Reef (Australia) and Palau. The 16 morphospecies analysed differed from each other by a minimum of 55 bp (9.1%) over the mitochondrial cox1 and 8 bp (1.6%) over the ITS2 DNA regions. For two species, Hurleytrematoides loi and Hurleytrematoides sasali, specimens from the same host species in sympatry differed at levels comparable to those between pairs of distinct morphospecies for both cox1 and ITS2 sequences. We take this as evidence of the presence of combinations of cryptic species; however, we do not propose new species for these taxa because we lack identified morphological voucher specimens. For seven species, Hurleytrematoides coronatum, Hurleytrematoides deblocki, Hurleytrematoides faliexae, H. loi, Hurleytrematoides morandi, H. sasali and Hurleytrematoides sp. A, samples from some combinations of localities had base pair differences that were equal to or greater than differences between some pairs of distinct morphospecies for one or both cox1 and ITS2 sequences. For three species, H. coronatum, H. loi and H. morandi, one haplotype differed from every other haplotype by more than the morphospecies benchmark. In these cases morphological specimens could not be distinguished by morphology. These data suggest extensive cryptic richness in this genus. For the present we refrain from dividing any of the morphospecies. This is because there is a continuum of levels of intra- and interspecific genetic variation in this system, so that distinguishing the two would be largely arbitrary.  相似文献   

19.
Oomycetes are a diverse group of eukaryotes in terrestrial, limnic and marine habitats worldwide and include several devastating plant pathogens, for example Phytophthora infestans (potato late blight). The cytochrome c oxidase subunit 2 gene (cox2) has been widely used for identification, taxonomy and phylogeny of various oomycete groups. However, recently the cox1 gene was proposed as a DNA barcode marker instead, together with ITS rDNA. The cox1 locus has been used in some studies of Pythium and Phytophthora, but has rarely been used for other oomycetes, as amplification success of cox1 varies with different lineages and sample ages. To determine which out of cox1 or cox2 is best suited as a universal oomycete barcode, we compared these two genes in terms of (i) PCR efficiency for 31 representative genera, as well as for historic herbarium specimens, and (ii) sequence polymorphism, intra‐ and interspecific divergence. The primer sets for cox2 successfully amplified all oomycete genera tested, while cox1 failed to amplify three genera. In addition, cox2 exhibited higher PCR efficiency for historic herbarium specimens, providing easier access to barcoding‐type material. Sequence data for several historic type specimens exist for cox2, but there are none for cox1. In addition, cox2 yielded higher species identification success, with higher interspecific and lower intraspecific divergences than cox1. Therefore, cox2 is suggested as a partner DNA barcode along with ITS rDNA instead of cox1. The cox2‐1 spacer could be a useful marker below species level. Improved protocols and universal primers are presented for all genes to facilitate future barcoding efforts.  相似文献   

20.
Mayarhynchus n. g. (Acanthocephala: Neoechinorhynchidae) is erected for Mayarhynchus karlae n. g, n. sp. described from the intestine of four species of cichlid fishes distributed from southeastern Mexico. The new genus placed in the family Neoechinorhynchidae (Ward, 1917) Van Cleave, 1928, is readily distinguished from the other 17 genera in the family by having a small proboscis armed with 45–46 relatively weak rooted hooks arranged in nine longitudinal rows of five hooks each. In addition, Mayarhynchus n. g., n. sp. is diagnosed by the presence of a short trunk, body wall with five dorsal and one ventral giant hypodermal nuclei, proboscis receptacle nearly cylindrical with single layered wall, lemnisci broad and flat with large nuclei, testes in tandem, cement gland with eight large nuclei, and eggs elongate to oval. Partial sequences of the cytochrome c oxidase subunit 1 (cox1), internal transcribed spacers (ITS1 + 5.8S + ITS2), and the D2-D3 domains of the large subunit rRNA gene (28S) were obtained for five specimens of the new species and other species belonging to the Neoechinorhynchidae. Phylogenetic analyses confirmed that the new genus belongs to the Neoechynorhynchidae and indicated that the genus Neoechynorhynchus Stiles & Hassall, 1905 is not monophyletic. Comparison between three populations of the new species yielded nine variable sites for cox1, 11 for ITS and four for 28S.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号