共查询到20条相似文献,搜索用时 0 毫秒
1.
Many species of birds show distinctive seasonal breeding and nonbreeding plumages. A number of hypotheses have been proposed for the evolution of this seasonal dichromatism, specifically related to the idea that birds may experience variable levels of sexual selection relative to natural selection throughout the year. However, these hypotheses have not addressed the selective forces that have shaped molt, the underlying mechanism of plumage change. Here, we examined relationships between life‐history variation, the evolution of a seasonal molt, and seasonal plumage dichromatism in the New World warblers (Aves: Parulidae), a family with a remarkable diversity of plumage, molt, and life‐history strategies. We used phylogenetic comparative methods and path analysis to understand how and why distinctive breeding and nonbreeding plumages evolve in this family. We found that color change alone poorly explains the evolution of patterns of biannual molt evolution in warblers. Instead, molt evolution is better explained by a combination of other life‐history factors, especially migration distance and foraging stratum. We found that the evolution of biannual molt and seasonal dichromatism is decoupled, with a biannual molt appearing earlier on the tree, more dispersed across taxa and body regions, and correlating with separate life‐history factors than seasonal dichromatism. This result helps explain the apparent paradox of birds that molt biannually but show breeding plumages that are identical to the nonbreeding plumage. We find support for a two‐step process for the evolution of distinctive breeding and nonbreeding plumages: That prealternate molt evolves primarily under selection for feather renewal, with seasonal color change sometimes following later. These results reveal how life‐history strategies and a birds' environment act upon multiple and separate feather functions to drive the evolution of feather replacement patterns and bird coloration. 相似文献
2.
Phylogenetic comparative methods (PCMs) can be used to study evolutionary relationships and trade-offs among species traits. Analysts using PCM may want to (1) include latent variables, (2) estimate complex trait interdependencies, (3) predict missing trait values, (4) condition predicted traits upon phylogenetic correlations and (5) estimate relationships as slope parameters that can be compared with alternative regression methods. The Comprehensive R Archive Network (CRAN) includes well-documented software for phylogenetic linear models (phylolm), phylogenetic path analysis (phylopath), phylogenetic trait imputation (Rphylopars) and structural equation models (sem), but none of these can simultaneously accomplish all five analytical goals. We therefore introduce a new package phylosem for phylogenetic structural equation models (PSEM) and summarize features and interface. We also describe new analytical options, where users can specify any combination of Ornstein-Uhlenbeck, Pagel's-δ and Pagel's-λ transformations for species covariance. For the first time, we show that PSEM exactly reproduces estimates (and standard errors) for simplified cases that are feasible in sem, phylopath, phylolm and Rphylopars and demonstrate the approach by replicating a well-known case study involving trade-offs in plant energy budgets. 相似文献
3.
Gustavo Burin;Laura C. E. Campbell;Susanne S. Renner;E. Toby Kiers;Guillaume Chomicki; 《Ecology letters》2024,27(2):e14379
Mutualisms have driven the evolution of extraordinary structures and behavioural traits, but their impact on traits beyond those directly involved in the interaction remains unclear. We addressed this gap using a highly evolutionarily replicated system – epiphytes in the Rubiaceae forming symbioses with ants. We employed models that allow us to test the influence of discrete mutualistic traits on continuous non-mutualistic traits. Our findings are consistent with mutualism shaping the pace of morphological evolution, strength of selection and long-term mean of non-mutualistic traits in function of mutualistic dependency. While specialised and obligate mutualisms are associated with slower trait change, less intimate, facultative and generalist mutualistic interactions – which are the most common – have a greater impact on non-mutualistic trait evolution. These results challenge the prevailing notion that mutualisms solely affect the evolution of interaction-related traits via stabilizing selection and instead demonstrate a broader role for mutualisms in shaping trait evolution. 相似文献
4.
森林群落的构建过程及其内在机制是生态学研究的热点问题。植物功能性状是指能够代表植物的生活史策略,反映植物对环境变化响应的一系列植物属性。通过植物功能性状的分布格局及其对环境因素的响应有助于推测群落的构建过程及其内在作用机制。以吉林蛟河21.12hm2温带针阔混交林样地为研究对象,采集并测量了样地内34种木本植物的6种不同的功能性状。以20m×20m的样方为研究单元,通过计算平均成对性状距离指数(mean pairwise trait distance;PW)和平均最近邻体性状距离指数(mean nearest neighbor trait distance;NN)来探讨群落中单个性状和综合性状的分布格局。同时结合地形因子采用回归分析探讨功能性状的分布格局对局域生境变化的响应。基于PW的结果显示:单个性状中除叶面积外,其余性状的分布格局均为聚集分布多于离散分布;基于NN的结果显示:除叶面积和最大树高外,其余性状的分布格局为聚集分布多于离散分布。此外,由6种单个性状组成的综合性状的分布格局同样为聚集分布多于离散分布。基于回归分析的结果显示:森林群落中功能性状的分布格局受到海拔、坡度和坡向等因素的显著影响,而凹凸度的影响则不显著。研究结果表明包括环境过滤和生物相互作用的非随机过程能够影响温带针阔混交林的群落构建过程,中性过程对该区域群落构建过程的影响不显著。 相似文献
5.
David M. Grossnickle 《Evolution; international journal of organic evolution》2020,74(3):610-628
Ecological specialization is a central driver of adaptive evolution. However, selective pressures may uniquely affect different ecomorphological traits (e.g., size and shape), complicating efforts to investigate the role of ecology in generating phenotypic diversity. Comparative studies can help remedy this issue by identifying specific relationships between ecologies and morphologies, thus elucidating functionally relevant traits. Jaw shape is a dietary correlate that offers considerable insight on mammalian evolution, but few studies have examined the influence of diet on jaw morphology across mammals. To this end, I apply phylogenetic comparative methods to mandibular measurements and dietary data for a diverse sample of mammals. Especially powerful predictors of diet are metrics that capture either the size of the angular process, which increases with greater herbivory, or the length of the posterior portion of the jaw, which decreases with greater herbivory. The size of the angular process likely reflects sizes of attached muscles that produce jaw movements needed to grind plant material. Further, I examine the impact of feeding ecology on body mass, an oft-used ecological surrogate in macroevolutionary studies. Although body mass commonly increases with evolutionary shifts to herbivory, it is outperformed by functional jaw morphology as a predictor of diet. Body mass is influenced by numerous factors beyond diet, and it may be evolutionarily labile relative to functional morphologies. This suggests that ecological diversification events may initially facilitate body mass diversification at smaller taxonomic and temporal scales, but sustained selective pressures will subsequently drive greater trait partitioning in functional morphologies. 相似文献
6.
The global extinction crisis demands immediate action to conserve species at risk. However, if entire clades such as superfamilies are at risk due to shared evolutionary history, a shift towards conserving clades rather than individual species may be needed. Using phylogenetic autocorrelation analysis, we demonstrate that multiple kinds of extinction threat clump within the amphibian tree of life. Our study provides insight into how these threats may collectively influence the extinction risk of whole clades, consistent with the supposition that related species, with similar traits, share an intrinsic vulnerability to common kinds of threat. Most strikingly, we find a significant concentration of 'enigmatic' decline and critically endangered status within families of the hyloid frogs. This phylogenetic clumping of risk is also geographically concentrated, with most threats found in Central and South America, and Australia, coinciding with reported outbreaks of chytridiomycosis. We speculate that the phylogenetic clumping of threat represents, in part, shared extinction proneness due to shared evolutionary history. However, even if the phylogenetic clumping of threat were simply a by-product of shared geography, this concordance between phylogenetic and geographical patterns represents a prime opportunity. Where practical, we should implement conservation plans that focus on biogeographical regions where threatened clades occur, thereby improving our ability to conserve species. This approach could outperform the usual triage approach of saving individual species after they have become critically endangered. 相似文献
7.
A fundamental issue in understanding human diversity is whether or not there are regular patterns and processes involved in cultural change. Theoretical and mathematical models of cultural evolution have been developed and are increasingly being used and assessed in empirical analyses. Here, we test the hypothesis that the rates of change of features of human socio-cultural organization are governed by general rules. One prediction of this hypothesis is that different cultural traits will tend to evolve at similar relative rates in different world regions, despite the unique historical backgrounds of groups inhabiting these regions. We used phylogenetic comparative methods and systematic cross-cultural data to assess how different socio-cultural traits changed in (i) island southeast Asia and the Pacific, and (ii) sub-Saharan Africa. The relative rates of change in these two regions are significantly correlated. Furthermore, cultural traits that are more directly related to external environmental conditions evolve more slowly than traits related to social structures. This is consistent with the idea that a form of purifying selection is acting with greater strength on these more environmentally linked traits. These results suggest that despite contingent historical events and the role of humans as active agents in the historical process, culture does indeed evolve in ways that can be predicted from general principles 相似文献
8.
Danielle L. Edwards Luciano J. Avila Lorena Martinez Jack W. Sites Jr Mariana Morando 《Ecology and evolution》2022,12(6)
Evolutionary correlations between phenotypic and environmental traits characterize adaptive radiations. However, the lizard genus Liolaemus, one of the most ecologically diverse terrestrial vertebrate radiations on earth, has so far shown limited or mixed evidence of adaptive diversification in phenotype. Restricted use of comprehensive environmental data, incomplete taxonomic representation and not considering phylogenetic uncertainty may have led to contradictory evidence. We compiled a 26‐taxon dataset for the Liolaemus gracilis species group, representing much of the ecological diversity represented within Liolaemus and used environmental data to characterize how environments occupied by species'' relate to phenotypic evolution. Our analyses, explicitly accounting for phylogenetic uncertainty, suggest diversification in phenotypic traits toward the present, with body shape evolution rapidly evolving in this group. Body shape evolution correlates with the occupation of different structural habitats indicated by vegetation axes suggesting species have adapted for maximal locomotory performance in these habitats. Our results also imply that the effects of phylogenetic uncertainty and model misspecification may be more extensive on univariate, relative to multivariate analyses of evolutionary correlations, which is an important consideration in analyzing data from rapidly radiating adaptive radiations. 相似文献
9.
Phylogenetic signal is the tendency for closely related species to display similar trait values as a consequence of their phylogenetic proximity. Ecologists and evolutionary biologists are becoming increasingly interested in studying the phylogenetic signal and the processes which drive patterns of trait values in the phylogeny. Here, we present a new R package, phylosignal which provides a collection of tools to explore the phylogenetic signal for continuous biological traits. These tools are mainly based on the concept of autocorrelation and have been first developed in the field of spatial statistics. To illustrate the use of the package, we analyze the phylogenetic signal in pollution sensitivity for 17 species of diatoms. 相似文献
10.
Joo Filipe Riva Tonini Diogo B. Provete Natan M. Maciel Alessandro Ribeiro Morais Sandra Goutte Luís Felipe Toledo Robert Alexander Pyron 《Ecology and evolution》2020,10(8):3686-3695
Allometric constraint is a product of natural selection and physical laws, particularly with respect to body size and traits constrained by properties thereof, such as metabolism, longevity, and vocal frequency. Allometric relationships are often conserved across lineages, indicating that physical constraints dictate scaling patterns in deep time, despite substantial genetic and ecological divergence among organisms. In particular, acoustic allometry (sound frequency ~ body size) is conserved across frogs, in defiance of massive variation in both body size and frequency. Here, we ask how many instances of allometric escape have occurred across the frog tree of life using a Bayesian framework that estimates the location, number, and magnitude of shifts in the adaptive landscape of acoustic allometry. Moreover, we test whether ecology in terms of calling site could affect these relationships. We find that calling site has a major influence on acoustic allometry. Despite this, we identify only four major instances of allometric escape, potentially deriving from ecomorphological adaptations to new signal modalities. In these instances of allometric escape, the optima and strength of the scaling relationship are different than expected for most other frog species, representing new adaptive regimes of body size ~ call frequency. Allometric constraints on frog calls are highly conserved and have rarely allowed escape, despite frequent invasions of new adaptive regimes and dramatic ecomorphological divergence. Our results highlight the rare instances in which natural and sexual selection combined can overcome physical constraints on sound production. 相似文献
11.
12.
Macroevolution, encompassing the deep-time patterns of the origins of modern biodiversity, has been discussed in many contexts. Non-Darwinian models such as macromutations have been proposed as a means of bridging seemingly large gaps in knowledge, or as a means to explain the origin of exquisitely adapted body plans. However, such gaps can be spanned by new fossil finds, and complex, integrated organisms can be shown to have evolved piecemeal. For example, the fossil record between dinosaurs and Archaeopteryx has now filled up with astonishing fossil intermediates that show how the unique plexus of avian adaptations emerged step by step over 60 Myr. New numerical approaches to morphometrics and phylogenetic comparative methods allow palaeontologists and biologists to work together on deep-time questions of evolution, to explore how diversity, morphology and function have changed through time. Patterns are more complex than sometimes expected, with frequent decoupling of species diversity and morphological diversity, pointing to the need for some new generalizations about the processes that lie behind such patterns. 相似文献
13.
Daniel L. Rabosky 《Evolution; international journal of organic evolution》2015,69(12):3207-3216
The statistical estimation of phylogenies is always associated with uncertainty, and accommodating this uncertainty is an important component of modern phylogenetic comparative analysis. The birth–death polytomy resolver is a method of accounting for phylogenetic uncertainty that places missing (unsampled) taxa onto phylogenetic trees, using taxonomic information alone. Recent studies of birds and mammals have used this approach to generate pseudoposterior distributions of phylogenetic trees that are complete at the species level, even in the absence of genetic data for many species. Many researchers have used these distributions of phylogenies for downstream evolutionary analyses that involve inferences on phenotypic evolution, geography, and community assembly. I demonstrate that the use of phylogenies constructed in this fashion is inappropriate for many questions involving traits. Because species are placed on trees at random with respect to trait values, the birth–death polytomy resolver breaks down natural patterns of trait phylogenetic structure. Inferences based on these trees are predictably and often drastically biased in a direction that depends on the underlying (true) pattern of phylogenetic structure in traits. I illustrate the severity of the phenomenon for both continuous and discrete traits using examples from a global bird phylogeny. 相似文献
14.
Dean C. Adams Michael L. Collyer 《Evolution; international journal of organic evolution》2018,72(6):1204-1215
Phylogenetic regression is frequently used in macroevolutionary studies, and its statistical properties have been thoroughly investigated. By contrast, phylogenetic ANOVA has received relatively less attention, and the conditions leading to incorrect statistical and biological inferences when comparing multivariate phenotypes among groups remain underexplored. Here, we propose a refined method of randomizing residuals in a permutation procedure (RRPP) for evaluating phenotypic differences among groups while conditioning the data on the phylogeny. We show that RRPP displays appropriate statistical properties for both phylogenetic ANOVA and regression models, and for univariate and multivariate datasets. For ANOVA, we find that RRPP exhibits higher statistical power than methods utilizing phylogenetic simulation. Additionally, we investigate how group dispersion across the phylogeny affects inferences, and reveal that highly aggregated groups generate strong and significant correlations with the phylogeny, which reduce statistical power and subsequently affect biological interpretations. We discuss the broader implications of this phylogenetic group aggregation, and its relation to challenges encountered with other comparative methods where one or a few transitions in discrete traits are observed on the phylogeny. Finally, we recommend that phylogenetic comparative studies of continuous trait data use RRPP for assessing the significance of indicator variables as sources of trait variation. 相似文献
15.
Danon Clemes Cardoso;Maykon Passos Cristiano; 《Ecology and evolution》2024,14(11):e70602
Trait evolution has become a central focus in evolutionary biology, with phylogenetic comparative methods offering a framework to study how and why traits vary among species. Identifying variations in trait evolution rates within phylogenies is important for uncovering the mechanisms behind these differences. Karyotype variation, which is substantial across eukaryotic organisms, plays an essential role in species diversification. This study investigates karyotype variation within the leafcutting ant clade, focusing on chromosome number and morphology. We aim to determine whether karyotypic traits are phylogenetically dependent and how different evolutionary models explain karyotype diversity. Previous models have been insufficient in explaining these variations. To address these gaps, we employ modern phylogenetic methods to assess the impact of chromosomal fissions and fusions on karyotype evolution. By evaluating various evolutionary models—particularly the Brownian motion model, which suggests neutral chromosomal changes—we pursue for the further understanding the mode and tempo of karyotype evolution in ants. Our research examines how shifts in chromosomal change rates contribute to divergence among leafcutting ant species and assesses the role of chromosomal changes in the clade's evolutionary trajectory. Comparative analysis of leafcutting ant ideograms suggests that shared karyotype traits are strongly related to species relationships. This implies that karyotype diversification in leafcutting ants follows a phylogenetic trajectory at varying rates, with differences in karyotype traits reflecting the evolutionary distance between lineages. Particularly, the increase in the chromosome number of Acromyrmex is likely due to fission rearrangements rather than demi or polyploidization. We discuss and provide insights into the mechanisms driving karyotype variation and its implications for leafcutting ant diversification. 相似文献
16.
Lindenfors P Dalèn L Angerbjörn A 《Evolution; international journal of organic evolution》2003,57(8):1952-1956
Abstract. In several carnivores a newly fertilized egg enters diapause instead of being directly implanted into the uterus, a phenomenon called delayed implantation. Several hypotheses have been forwarded to explain the utility of this prolonged gestation period, but all of these depend on several independent origins of the character. Here, we conduct a phylogenetic reconstruction of the evolution of delayed implantation in the Carnivora that reveals one basal origin, with additional transitions all having occurred within the Mustelidae. Hence, previous hypotheses relating to its evolution become untestable. Further analyses revealed that the presence or absence of delayed implantation is unrelated to the timing of mating season and birth season. Instead, mustelids with direct implantation are smaller than those with delayed implantation. We therefore suggest that delayed implantation has been selected against in small species due to the relatively higher fecundity costs of a prolonged gestation period. 相似文献
17.
Thomas J. Near Peter. C. Wainwright 《Evolution; international journal of organic evolution》2013,67(2):417-428
The relationship between habitat complexity and species richness is well established but comparatively little is known about the evolution of morphological diversity in complex habitats. Reefs are structurally complex, highly productive shallow‐water marine ecosystems found in tropical (coral reefs) and temperate zones (rocky reefs) that harbor exceptional levels of biodiversity. We investigated whether reef habitats promote the evolution of morphological diversity in the feeding and locomotion systems of grunts (Haemulidae), a group of predominantly nocturnal fishes that live on both temperate and tropical reefs. Using phylogenetic comparative methods and statistical analyses that take into account uncertainty in phylogeny and the evolutionary history of reef living, we demonstrate that rates of morphological evolution are faster in reef‐dwelling haemulids. The magnitude of this effect depends on the type of trait; on average, traits involved in the functional systems for prey capture and processing evolve twice as fast on reefs as locomotor traits. This result, along with the observation that haemulids do not exploit unique feeding niches on reefs, suggests that fine‐scale trophic niche partitioning and character displacement may be driving higher rates of morphological evolution. Whatever the cause, there is growing evidence that reef habitats stimulate morphological and functional diversification in teleost fishes. 相似文献
18.
The relationship between the form and function of the skull has been the subject of a great deal of research, much of which has concentrated on the impact of feeding on skull shape. However, there are a number of other behaviours that can influence craniodental morphology. Previous work has shown that subterranean rodents that use their incisors to dig (chisel‐tooth digging) have a constrained cranial shape, which is probably driven by a necessity to create high bite forces at wide gapes. Chisel‐tooth‐digging rodents also have an upper incisor root that is displaced further back into the cranium compared with other rodents. This study quantified cranial shape and upper incisors of a phylogenetically diverse sample of rodents to determine if chisel‐tooth‐digging rodents differ in craniodental morphology. The study showed that the crania of chisel‐tooth‐digging rodents shared a similar place in morphospace, but a strong phylogenetic signal within the sample meant that this grouping was nonsignificant. It was also found that the curvature of the upper incisor in chisel‐tooth diggers was significantly larger than in other rodents. Interestingly, most subterranean rodents in the sample (both chisel‐tooth and scratch diggers) had upper incisors that were better able to resist bending than those of terrestrial rodents, presumably due to their similar diets of tough plant materials. Finally, the incisor variables and cranial shape were not found to covary consistently in this sample, highlighting the complex relationship between a species’ evolutionary history and functional morphology. 相似文献
19.
The analysis of functional diversity (FD) has gained increasing importance due to its generality and utility in ecology. In particular, patterns in the spatial distribution and temporal change of FD are being used to predict locations and functional groups that are immediately vulnerable to global changes. A major impediment to the accurate measurement of FD is the pervasiveness of missing data in trait datasets. While such prevalent data gaps can engender misleading inferences in FD analyses, we currently lack any practical guide to handle missing data in trait datasets. Here, we identify significant mismatches between true FD and values derived from datasets that contain missing data. We demonstrate that imputing missing data with a phylogeny‐informed approach reduces the risk of misinterpretation of FD patterns, and provides baseline information against which central questions in ecology can be evaluated. 相似文献
20.