共查询到20条相似文献,搜索用时 15 毫秒
1.
Voloshenyuk TG Hart AD Khoutorova E Gardner JD 《Biochemical and biophysical research communications》2011,(2):370-375
TNF-α is a proinflammatory cytokine that is upregulated in many cardiac diseases. The increase of TNF-α expression affects both heart function and the structure of the extracellular matrix. Lysyl oxidase (LOX) is a key enzyme responsible for the maturation of extracellular matrix proteins, including collagens type I and III. In this study, we investigated the regulation of LOX expression and activity by TNF-α using adult rat cardiac fibroblasts. Our results indicate that TNF-α has a dichotomous effect on LOX expression by cardiac fibroblasts. Low dose TNF-α (1–5 ng/ml) decreased LOX expression, whereas higher doses (10–30 ng/ml) increased expression. The higher dose TNF-α effect on LOX expression was attenuated by the inhibition of PI3Kinase/Akt pathway. TGF-β1 signaling played a significant role in mediating the TNF-α effect. TNF-α increased the expression of TGF-β, and TGF-β receptors type I and II, and also stimulated Smad3 phosphorylation. Inhibition of TGF-β receptor I or Smad3 prevented increased LOX expression by TNF-α. These findings indicate that TNF-α stimulated LOX expression may play an important role in progressive cardiac fibrosis. 相似文献
2.
Mithieux SM Wise SG Raftery MJ Starcher B Weiss AS 《Journal of structural biology》2005,149(3):282-289
Tropoelastin is encoded by a single human gene that spans 36 exons and is oxidized in vivo by mammalian lysyl oxidase at the epsilon amino group of available lysines to give the adipic semialdehyde, which then facilitates covalent cross-link formation in an enzyme-free process involving tropoelastin association. We demonstrate here that this process is effectively modeled by a two protein component system using purified lysyl oxidase from the yeast Pichia pastoris to facilitate the oxidation and subsequent cross-linking of recombinant human tropoelastin. The oxidized human tropoelastin forms an elastin-like polymer (EL) that is elastic, shows hydrogel behavior and contains typical elastin cross-links including lysinonorleucine, allysine aldol, and desmosine. Protease digestion and subsequent mass-spectrometry analysis of multiple ELs allowed for the identification of specific intra- and inter-molecular cross-links, leading to a model of the molecular architecture of elastin assembly in vitro. Specific intra-molecular cross-links were confined to the region of tropoelastin encoded by exons 6-15. Inter-molecular cross-links were prevalent between the regions encoded by exons 19-25. We find that assembly of tropoelastin molecules in ELs are highly enriched for a defined subset of cross-links. 相似文献
3.
Lysyl oxidase like-2 (LOXL2) belongs to the lysyl oxidase (LOX) family, which comprises Cu2+- and lysine tyrosylquinone (LTQ)-dependent amine oxidases. LOXL2 is proposed to function similarly to LOX in the extracellular matrix (ECM) by promoting crosslinking of collagen and elastin. LOXL2 has also been proposed to regulate extracellular and intracellular cell signaling pathways. Dysregulation of LOXL2 has been linked to many diseases, including cancer, pro-oncogenic angiogenesis, fibrosis and heart diseases. In this review, we will give an overview of the current understandings and hypotheses regarding the molecular functions of LOXL2. 相似文献
4.
5.
M Sgarioto P Vigneron J Patterson F Malherbe MD Nagel C Egles 《Comptes rendus biologies》2012,335(8):520-528
Endothelialization of vascular implants is limited by the inability of cells to retain adhesion when exposed to flow. Extracellular matrix proteins, including fibronectin and collagen, enhance cell adherence on materials. This study investigated the behaviour of Human Umbilical Vein Endothelial Cells (HUVEC) on extracellular matrix coated polystyrene. Collagen and fibronectin were coated as single and double layers to analyse differences in cell proliferation, morphology, and cell-protein interactions. Significantly higher endothelial cell proliferation and migration rates were observed on the collagen and collagen+fibronectin coating compared to the uncoated or fibronectin-coated sample. Immmunofluorescent microscopy showed evidence of extracellular matrix remodelling in the double, collagen+fibronectin coating. These results strongly suggest that a double coating of collagen+fibronectin provides a better support structure for endothelial cell growth and contributes to improve the ability of vascular implants to become and remain endothelialized. 相似文献
6.
Hurtado PA Vora S Sume SS Yang D St Hilaire C Guo Y Palamakumbura AH Schreiber BM Ravid K Trackman PC 《Biochemical and biophysical research communications》2008,366(1):156-161
Lysyl oxidase is required for the normal biosynthesis and maturation of collagen and elastin. It is expressed by vascular smooth muscle cells, and its increased expression has been previously found in atherosclerosis and in models of balloon angioplasty. The lysyl oxidase propeptide (LOX-PP) has more recently been found to have biological activity as a tumor suppressor, and it inhibits Erk1/2 Map kinase activation. We reasoned that LOX-PP may have functions in normal non-transformed cells. We, therefore, investigated its effects on smooth muscle cells, focusing on important biological processes mediated by Erk1/2-dependent signaling pathways including proliferation and matrix metalloproteinase-9 (MMP-9) expression. In addition, we investigated whether evidence for accumulation of LOX-PP could be found in vivo in a femoral artery injury model. Recombinant LOX-PP was expressed and purified, and was found to inhibit primary rat aorta smooth muscle cell proliferation and DNA synthesis by more than 50%. TNF-α-stimulated MMP-9 expression and Erk1/2 activation were both significantly inhibited by LOX-PP. Immunohistochemistry studies carried out with affinity purified anti-LOX-PP antibody showed that LOX-PP epitopes were expressed at elevated levels in vascular lesions of injured arteries. These novel data suggest that LOX-PP may provide a feedback control mechanism that serves to inhibit properties associated with the development of vascular pathology. 相似文献
7.
8.
Atsawasuwan P Mochida Y Parisuthiman D Yamauchi M 《Biochemical and biophysical research communications》2005,327(4):1042-1046
Covalent intermolecular cross-linking of collagen is initiated by the action of lysyl oxidase (LOX) on the telopeptidyl lysine and hydroxylysine residues. Recently, several LOX isoforms, i.e., LOX-like proteins 1-4 (LOXL1-4), have been identified but their specific tissue distribution and functions are still largely unknown. In this study, mRNA expression of LOX and LOXL1-4 in MC3T3-E1 osteoblastic cells was screened by RT-PCR and quantitatively analyzed by real-time PCR during cell differentiation and matrix mineralization. The results demonstrated that LOX and all LOXLs, except LOXL2, were expressed in this cell line and that the expression pattern during cell differentiation and matrix mineralization was distinct from one another. This indicates that the expression of LOX and its isoforms is highly regulated during osteoblast differentiation, suggesting their distinct roles in collagen matrix stabilization and subsequent mineralization. 相似文献
9.
Kaku M Mochida Y Atsawasuwan P Parisuthiman D Yamauchi M 《Biochemical and biophysical research communications》2007,359(3):463-468
The pattern of collagen cross-linking is tissue specific primarily determined by the extent of hydroxylation and oxidation of specific lysine residues in the molecule. In this study, murine pre-myoblast cell line, C2C12 cells, were transdifferentiated into osteoblastic cells by bone morphogenetic protein (BMP)-2 treatment, and the gene expression of lysyl hydroxylases (LH1, 2a/b, and 3) and lysyl oxidase (LOX)/lysyl oxidase-like proteins (LOXL1-4), and the extent of hydroxylysine were analyzed. After 24 h of treatment, the expression of most isoforms were upregulated up to 96 h whereas LH2a and LOXL2 decreased with time. In the treated cells, both hydroxyproline and hydroxylysine were detected at day 7 and increased at day 14. The ratio of hydroxylysine to hydroxyproline was significantly increased at day 14. The results indicate that LHs and LOX/LOXLs are differentially responsive to BMP-induced osteoblast differentiation that may eventually lead to the specific collagen cross-linking pattern seen in bone. 相似文献
10.
Lysyl oxidase (LOX) is an extracellular copper dependent enzyme catalyzing lysine-derived cross-links in extracellular matrix proteins. Recent molecular cloning has revealed the existence of a LOX family consisting of LOX and four lysyl oxidase-like proteins (LOXLs; LOXL, LOXL2, LOXL3, and LOXL4). Each member of the LOX family contains a copper-binding domain, residues for lysyl-tyrosyl quinone, and a cytokine receptor-like domain. Very recently, novel functions, such as tumor suppression, cellular senescence, and chemotaxis, have been attributed to this family of amine oxidases, but functional differences among the family members have yet to be determined. For efficient expression and purification, we cloned the cDNAs corresponding to proteolytically processed forms of LOX (LOX-p) and LOXL (LOXL-p1 and LOXL-p2) into a bacterial expression vector pET21a with six continuous histidine codons attached to the 3′ of the gene. The recombinant proteins were purified with nickel-chelating affinity chromatography and converted into enzymatically active forms by stepwise dialysis in the presence of N-lauroylsarcosinate and Cu2+. The purified LOX-p, LOXL-p1, and LOXL-p2 proteins showed specific amine oxidase activity of 0.097, 0.054, and 0.150 U/mg, respectively, which was inhibited by β-aminopropionitrile (BAPN), a specific inhibitor of LOX. Availability of these pure and active forms of LOX and LOXLs will be significantly helpful in functional studies related to substrate specificity and crystal structures of this family of amine oxidases. 相似文献
11.
Fujimoto N Terlizzi J Brittingham R Fertala A McGrath JA Uitto J 《Biochemical and biophysical research communications》2005,333(4):1327-1333
Extracellular matrix protein 1 (ECM1), a widely expressed glycoprotein, has been shown to harbor mutations in lipoid proteinosis (LP), an autosomal recessive disorder characterized by profound alterations in the extracellular matrix of connective tissue. The biological function of ECM1 and its role in the pathomechanisms of LP are unknown. Fibulins comprise a family of extracellular matrix components, and the prototype of this family, fibulin-1, is expressed in various connective tissues and plays a role in developmental and pathologic processes. In this study, we demonstrate that ECM1, and specifically the second tandem repeat domain which is alternatively spliced, interacts with the C-terminal segments of fibulins 1C and 1D splice variants which differ in their C-terminal domain III. The interactions were detected by yeast two-hybrid genetic system and confirmed by co-immunoprecipitations. Kinetics of the binding between ECM1 and fibulin-1D, measured by biosensor assay, revealed a K(d) of 5.71 x 10(-8) M, indicating a strong protein-protein interaction. Since distinct splice variants of ECM1 and fibulin-1 have been shown to be co-expressed in tissues affected in LP, we propose that altered ECM1/fibulin-1 interactions may play a role in the pathogenesis of this disease as well as in a number of processes involving the extracellular matrix of connective tissues. 相似文献
12.
Kozel BA Knutsen RH Ye L Ciliberto CH Broekelmann TJ Mecham RP 《The Journal of biological chemistry》2011,286(52):44926-44936
Elastin haploinsufficiency causes the cardiovascular complications associated with Williams-Beuren syndrome and isolated supravalvular aortic stenosis. Significant variability exists in the vascular pathology in these individuals. Using the Eln(+/-) mouse, we sought to identify the source of this variability. Following outcrossing of C57Bl/6J Eln(+/-), two backgrounds were identified whose cardiovascular parameters deviated significantly from the parental strain. F1 progeny of the C57Bl/6J; Eln(+/-)x129X1/SvJ were more hypertensive and their arteries less compliant. In contrast, Eln(+/-) animals crossed to DBA/2J were protected from the pathologic changes associated with elastin insufficiency. Among the crosses, aortic elastin and collagen content did not correlate with quantitative vasculopathy traits. Quantitative trait locus analysis performed on F2 C57; Eln(+/-)x129 intercrosses identified highly significant peaks on chromosome 1 (LOD 9.7) for systolic blood pressure and on chromosome 9 (LOD 8.7) for aortic diameter. Additional peaks were identified that affect only Eln(+/-), including a region upstream of Eln on chromosome 5 (LOD 4.5). Bioinformatic analysis of the quantitative trait locus peaks revealed several interesting candidates, including Ren1, Ncf1, and Nos1; genes whose functions are unrelated to elastic fiber assembly, but whose effects may synergize with elastin insufficiency to predispose to hypertension and stiffer blood vessels. Real time RT-PCR studies show background-specific increased expression of Ncf1 (a subunit of the NOX2 NAPDH oxidase) that parallel the presence of increased oxidative stress in Eln(+/-) aortas. This finding raises the possibility that polymorphisms in genes affecting the generation of reactive oxygen species alter cardiovascular function in individuals with elastin haploinsufficiency through extrinsic noncomplementation. 相似文献
13.
Bovine collagen alpha-1 is a naturally occurring extracellular matrix protein found in tendons and other connective tissues. It playsa vital role in cell growth, differentiation, attachment, and migration. Recent findings have established that collagen alpha-1 isinvolved in osteogenesis imperfecta phenotype in cattle but deep information about other members of this large family is notavailable so far. So with a view to finding a new edge and attempt to figure out a correlation among the well attributed Bovinealpha-1 collagen sequences are executed and analyzed. To do so, comparative analysis among the 28 members of collagen familyhas been carried out using Computational tools. Consequently, based on the physico-chemical, secondary structural, functionaland phylogenetic classifications, we have selected collagen 12, 14 and 20 as targets for pathological conditions. These proteinsbelong to the FACIT family and significantly showed low glycine and proline content, high instability and aliphatic index.Moreover, FACIT family collagens contain multiple triple helical domains and being members of the FACIT family, bovinecollagen 12, 14, 20 do not form fibrils by themselves but they are associated to collagen 1 associated fibrils. These collagenmolecules might be crucial candidates to detect and understand the process of matrix remodeling in diseases especially in the arenaof cellular compartments. 相似文献
14.
Yves Giudicelli Daniele Lacasa Brigitte Agli 《Biochimica et Biophysica Acta (BBA)/General Subjects》1982,715(1):105-115
The binding characteristics of the β-adrenergic agonist to rat adipocyte membranes were studied. Binding was rapid, reaching equilibrium within 10 min at 37°C (second order rate constant k1=1.37·107·M?1·min?1). Dissociation of specific binding by 0.5 mM (?)-isoproterenol suggested dissociation from two different sites with respective dissociation rate constants k2 of 0.106·min?1 and 0.011·min?1.[3H]Hydroxybenzylisoproterenol binding was saturable (Bmax=690±107 fmol/mg protein), yielding curvilinear Scatchard plots. Computer modeling of these data were consistent with the existence of two classes of [3H]hydroxybenzylisoproterenol binding sites, one having high affinity (KD=3.5±0.7 nM) but low binding capacity (10% of the total sites) and one haveing low affinity (KD=101±20 nM) but high binding capacity (90% of the sites). Adrenergic ligands competed with [3H]hydroxybenzylisoproterenol binding with the following order of potency=(?)-propranolol>(?)-isoproterenol>(?)-norepinephrine≈ (?)-epinephrine>>(+)-isoproterenol=(+)-propranolo, which is consistent with binding to β1-adrenergic receptors. Competition curves of [3H]hydroxybenzylisoproterenol binding by the β-agonist (?)-isoproterenol were shallow and modeled to two affinity states of binding, whereas, competition curves by β-antagonist (?)-propranolol were steeper with Hill number near to one. Gpp[NH]p severely reduced [3H]hydroxybenzyl-isoproterenol binding, an effect which apparently resulted from the reduction of the number of both the high and low affinity sites. In membranes which had been previously exposed to (?)-isoproterenol, then number of [3H]hydroxybenzylisoproterenol binding sites was reduced by 50%, an effect which apparently resulted from the loss of part of both the high and low affinity state binding sites. Finally, the ability of (?)-isoproterenol to stimulate adenylate cyclase correlate closely with the ability of (?)-isoproterenol to displace [3H]hydroxybenzylisoproterenol binding. Comparison of these findings with the binding characteristics of the β-antagonist [3H]dihydroalprenolol to rat adipocyte membranes, led to conclude that [3H]hydroxybenzylisoproterenol can be successfully used to label the β-adrenergic receptors of rat fat cells and suggests that it might be a better ligand than [3H]dihydroalprenolol in these cells. 相似文献
15.
Adaptive Changes in Cardiac Fibroblast Morphology and Collagen Organization as a Result of Mechanical Environment 总被引:1,自引:0,他引:1
There is a growing body of work in the literature that demonstrates the significant differences between 2D versus 3D environments in cell morphologies, spatial organization, cell-ECM interactions, and cell signaling. The 3D environments are generally considered more realistic tissue models both because they offer cells a surrounding environment rather than just a planar surface with which to interact, and because they provide the potential for more diverse mechanical environments. Many studies have examined cellular-mediated contraction of 3D matrices; however, because the 3D environment is much more complex and the scale more difficult to study, little is known regarding how mechanical environment, cell and collagen architecture, and collagen remodeling are linked. In the current work, we examine the spatial arrangement of neonatal cardiac fibroblasts and the associated collagen organization in constrained and unconstrained collagen gels over a 24 h period. Collagen gels that are constrained by their physical attachment to a mold and similar gels, which have been detached (unconstrained) from the mold and subsequently contract, offer two simple mechanical models by which the mechanisms of tissue homeostasis and wound repair might be examined. Our observations suggest the presence of two mechanical regimes in the unconstrained gels: an outer ring where cells orient circumferentially and local collagen aligns with the elongated cells; and a central region where unaligned stellate/bipolar cells are radially surrounded by collagen, similar to that seen throughout constrained gels. The evolving organization of cell alignment and surrounding collagen organization suggests that cellular response may be due to the cellular perception of the apparent stiffness of local physical environment. 相似文献
16.
《Matrix biology》2020
Lysyl oxidases are major actors of microenvironment and extracellular matrix (ECM) remodeling. These cross-linking enzymes are thus involved in many aspects of physiopathology, including tumor progression, fibrosis and cardiovascular diseases. We have already shown that Lysyl Oxidase-Like 2 (LOXL2) regulates collagen IV deposition by endothelial cells and angiogenesis. We here provide evidence that LOXL2 also affects deposition of other ECM components, including fibronectin, thus altering structural and mechanical properties of the matrix generated by endothelial cells. LOXL2 interacts intracellularly and directly with collagen IV and fibronectin before incorporation into ECM fibrillar structures upon exocytosis, as demonstrated by TIRF time-lapse microscopy. Furthermore, surface plasmon resonance experiments using recombinant scavenger receptor cysteine-rich (SRCR) domains truncated for the catalytic domain demonstrated their direct binding to collagen IV. We thus used directed mutagenesis to investigate the role of LOXL2 catalytic domain. Neither enzyme activity nor catalytic domain were necessary for collagen IV deposition and angiogenesis, whereas the SRCR domains were effective for these processes. Finally, surface coating with recombinant SRCR domains restored deposition of collagen IV by LOXL2-depleted cells. We thus propose that LOXL2 SRCR domains orchestrate scaffolding of the vascular basement membrane and angiogenesis through interactions with collagen IV and fibronectin, independently of the enzymatic cross-linking activity. 相似文献
17.
Artery bent buckling has been suggested as a possible mechanism that leads to artery tortuosity, which is associated with aging, hypertension, atherosclerosis, and other pathological conditions. It is necessary to understand the relationship between microscopic wall structural changes and macroscopic artery buckling behavior. To this end, the objectives of this study were to develop arterial buckling equations using a microstructure-based 4-fiber reinforced wall model, and to simulate the effects of vessel wall microstructural changes on artery buckling. Our results showed that the critical pressure increased nonlinearly with the axial stretch ratio, and the 4-fiber model predicted higher critical buckling pressures than what the Fung model predicted. The buckling equation using the 4-fiber model captured the experimentally observed reduction of critical pressure induced by elastin degradation and collagen fiber orientation changes in the arterial wall. These results improve our understanding of arterial stability and its relationship to microscopic wall remodeling, and the model provides a useful tool for further studies. 相似文献
18.
The purpose of this investigation is to support the novel hypothesis that collagenous matrices are intrinsically "smart" load-adapting biomaterials. This hypothesis is based fundamentally on the postulate that tensile strain directly modulates the susceptibility of collagen molecules to enzymatic degradation (i.e., protects molecules which are under load from cleavage). To test this postulate, collagenase (Clostridiopeptidase A) was applied to a uniaxially loaded, anisotropic, devitalized, collagenous matrix in which a subset of fibrils was loaded in tension while the remaining fibrils carried little or no load. The collagen degradation pattern (as assessed by polarization and transmission electron microscopy) was found to correspond inversely to the tensile stress field such that fibrils under lower tensile load were preferentially cleaved. These results have immediate implications for tissue engineering of load-bearing collagenous matrices in vitro and may contribute significantly to our understanding of synthesis, remodelling, and pathogenesis of collagen matrices in vivo. 相似文献
19.
Antti M. Salo Laura Sipil Raija Sormunen Heli Ruotsalainen Seppo Vainio Raili Myllyl 《Matrix biology》2006,25(8):475-483
Lysyl hydroxylase catalyzes the hydroxylation of lysine residues in collagenous sequences. Three isoforms (LH1, LH2 and LH3) of lysyl hydroxylase have been characterized, and LH2 is present as two alternatively spliced forms. In order to better understand the functional differences between the isoforms in vivo, the expression of the different isoforms was studied in mouse embryos and adult tissues. Our data indicate a widespread expression of all isoforms during embryogenesis, whereas the expression profiles become more specialized in adult tissues. The expression of LH2 was more tissue-specific, whereas a uniform and housekeeping like behavior was observed for LH3. Some cells express both LH2 and LH3, while a clear cell specificity was seen in some tissues. Moreover, immunoelectron microscopy revealed differences in the localization of LH2 and LH3. LH2 was localized intracellularly in the ER in all tissues studied, whereas the localization of LH3 was either intracellular or extracellular or both, depending on the tissue. Furthermore, our data indicate that the alternative splicing of LH2 is developmentally regulated. The short form of LH2 (LH2a) is the predominant form until E11.5; the long form (LH2b) dominates thereafter and is the major form in many adult tissues. Interestingly, however, adult mouse kidney and testis express exclusively the short form, LH2a. The results reveal a specific regulation for the expression of LH isoforms as well as for alternative splicing of LH2 during embryogenesis and in different tissues. 相似文献
20.
A. J. Bailey 《Amino acids》1991,1(3):293-306
Summary The cross-linking of protein molecules to form stable supramolecular aggregates capable of acting as protective and supporting structures is a common feature of organisms coping with the stresses of life. These new polymeric forms range from thick rigid structures to thin flexible membranes. The formation of such cross-links must be carefully controlled since more or less than optimal cross-linking could lead to malfunction or even death of the organism. The chemistry of the amino acids converted or directly involved in the formation of these cross-links is complex and a range of new amino acids has been identified. Di- and tri-tyrosines are formed by the action of peroxidases, quinones by catechol oxidases, glutamyl lysine iso-peptide bonds by glutamyl transferase and a complex series of lysine- aldehyde derived cross-links induced by lysyl oxidase. These cross-linking mechanisms provide an insight into the complex changes in tissue function during growth of the organism and their effects on the properties of foods. 相似文献