共查询到20条相似文献,搜索用时 0 毫秒
1.
Eishi Hirasaki Yasuo Higurashi Hiroo Kumakura 《American journal of physical anthropology》2010,142(1):149-156
2.
3.
Positive and negative work are generated at the lower limb joints in order to locomote over various terrains. Joint work quantifies the changes in energy that are necessary to adapt gait to environmental demands. The aim of this study was to quantify 3D joint work at the hip, knee, and ankle during slope walking. Work was calculated for ten males (23.9 ± 1.1 years) walking at a self-selected speed on inclines and declines (−20, −12, −6, 0, 6, 12, 20 degrees). Sagittal positive work significantly increased at the hip, knee, and ankle for incline walking (for example, hip positive work increased 153%, 280%, and 453% for 6, 12, and 20 degrees, respectively; knee and ankle positive work also increased) (p ≤ 0.05), in order to raise and propel the body forward. Sagittal negative work increased significantly at the hip, knee and ankle for decline walking (for example, knee negative work increased 193%, 355%, and 496% for −6, −12, and −20 degrees, respectively; hip and ankle negative work also increased) (p ≤ 0.05), in order to control body descent. These substantial changes in work will be especially challenging for people with compromised strength due to age and disease. Furthermore, changes in work were not limited to the sagittal plane: 46% of the total hip joint work occurred in the frontal and transverse planes for six degree decline walking. Thus, decline walking placed greater demands on the hip ab/adductors and rotators, and this may be related to the greater risk of falls observed for descent versus ascent. 相似文献
4.
目的:揭示人体在主动和被动两种行走模式下的步态特征与下肢主要肌群的肌电信号变化规律.方法:选取12名在校男大学生,通过Greenjog履带式自发力跑台和h/p/cosmos电动跑台建立主动式和被动式行走模型,先后在两种模式下以3种递增速度即慢速(2 km/h)、常速(4 km/h)、和快速(6 km/h)进行一次性步行... 相似文献
5.
6.
Lei Ren David Howard Laurence Kenney 《仿生工程学报(英文版)》2006,3(3):127-138
The synthesis of human walking is of great interest in biomechanics and biomimetic engineering due to its predictive capabilities and potential applications in clinical biomechanics, rehabilitation engineering and biomimetic robotics. In this paper, the various methods that have been used to synthesize humanwalking are reviewed from an engineering viewpoint. This involves a wide spectrum of approaches, from simple passive walking theories to large-scale computational models integrating the nervous, muscular and skeletal systems. These methods are roughly categorized under four headings: models inspired by the concept of a CPG (Central Pattern Generator), methods based on the principles of control engineering, predictive gait simulation using optimisation, and models inspired by passive walking theory. The shortcomings and advantages of these methods are examined, and future directions are discussed in the context of providing insights into the neural control objectives driving gait and improving the stability of the predicted gaits. Future advancements are likely to be motivated by improved understanding of neural control strategies and the subtle complexities of the musculoskeletal system during human locomotion. It is only a matter of time before predictive gait models become a practical and valuable tool in clinical diagnosis, rehabilitation engineering and robotics. 相似文献
7.
Ongoing animal preclinical studies on transcutaneous bone-anchored prostheses have aimed to improve biomechanics of prosthetic locomotion in people with limb loss. It is much less common to translate successful developments in human biomechanics and prosthetic research to veterinary medicine to treat animals with limb loss. Current standard of care in veterinary medicine is amputation of the whole limb if a distal segment cannot be salvaged. Bone-anchored transcutaneous prostheses, developed for people with limb loss, could be beneficial for veterinary practice. The aim of this study was to examined if and how cats utilize the limb with a bone-anchored passive transtibial prosthesis during level and slope walking. Four cats were implanted with a porous titanium implant into the right distal tibia. Ground reaction forces and full-body kinematics were recorded during level and slope (±50%) walking before and 4–6 months after implantation and prosthesis attachment. The duty factor of the prosthetic limb exceeded zero in all cats and slope conditions (p < 0.05) and was in the range of 45.0–60.6%. Thus, cats utilized the prosthetic leg for locomotion instead of walking on three legs. Ground reaction forces, power and work of the prosthetic limb were reduced compared to intact locomotion, whereas those of the contralateral hind- and forelimbs increased (p < 0.05). This asymmetry was likely caused by insufficient energy generation for propulsion by the prosthetic leg, as no signs of pain or discomfort were observed in the animals. We concluded that cats could utilize a unilateral bone-anchored transtibial prosthesis for quadrupedal level and slope locomotion. 相似文献
8.
Vereecke E D'Août K De Clercq D Van Elsacker L Aerts P 《American journal of physical anthropology》2003,120(4):373-383
We collected high-resolution plantar pressure distributions of seven bonobos during terrestrial bipedal and quadrupedal locomotion (N = 146). Functional foot length, degree of hallux abduction, and total contact time were determined, and plots, showing pressure as a function of time for six different foot regions, were generated. We also studied five adult humans for comparison (N = 13). Both locomotion types of the bonobo show a large variation in plantar pressure distributions, which could be due to the interference of instantaneous behavior with locomotion and differences in walking speed and body dimensions. The heel and the lateral midfoot typically touch down simultaneously at initial ground contact in bipedal and quadrupedal walking of bonobos, in contrast with the typical heel-strike of human bipedalism. The center of pressure follows a curved course during quadrupedalism, as a consequence of the medial weight transfer during mid-stance. Bipedal locomotion of bonobos is characterized by a more plantar positioning of the feet and by a shorter contact time than during quadrupedal walking, according to a smaller stride and step length at a higher frequency. We observed a varus position of the foot with an abducted hallux, which likely possesses an important sustaining and stabilizing function during terrestrial locomotion. 相似文献
9.
K. Ben Mansour N. Rezzoug P. Gorce 《Computer methods in biomechanics and biomedical engineering》2015,18(13):1996-1997
10.
11.
Tracy L. Kivell Rebecca Davenport Jean‐Jacques Hublin J. Francis Thackeray Matthew M. Skinner 《American journal of physical anthropology》2018,167(2):348-365
Objectives
Several studies have investigated potential functional signals in the trabecular structure of the primate proximal humerus but with varied success. Here, we apply for the first time a “whole‐epiphyses” approach to analysing trabecular bone in the humeral head with the aim of providing a more holistic interpretation of trabecular variation in relation to habitual locomotor or manipulative behaviors in several extant primates and Australopithecus africanus.Materials and methods
We use a “whole‐epiphysis” methodology in comparison to the traditional volume of interest (VOI) approach to investigate variation in trabecular structure and joint loading in the proximal humerus of extant hominoids, Ateles and A. africanus (StW 328).Results
There are important differences in the quantification of trabecular parameters using a “whole‐epiphysis” versus a VOI‐based approach. Variation in trabecular structure across knuckle‐walking African apes, suspensory taxa, and modern humans was generally consistent with predictions of load magnitude and inferred joint posture during habitual behaviors. Higher relative trabecular bone volume and more isotropic trabeculae in StW 328 suggest A. africanus may have still used its forelimbs for arboreal locomotion.Discussion
A whole‐epiphysis approach to analysing trabecular structure of the proximal humerus can help distinguish functional signals of joint loading across extant primates and can provide novel insight into habitual behaviors of fossil hominins.12.
Nagano A Umberger BR Marzke MW Gerritsen KG 《American journal of physical anthropology》2005,126(1):2-13
The skeleton of Australopithecus afarensis (A.L. 288-1, better known as \"Lucy\") is by far the most complete record of locomotor morphology of early hominids currently available. Even though researchers agree that the postcranial skeleton of Lucy shows morphological features indicative of bipedality, only a few studies have investigated Lucy's bipedal locomotion itself. Lucy's energy expenditure during locomotion has been the topic of much speculation, but has not been investigated, except for several estimates derived from experimental data collected on other animals. To gain further insights into how Lucy may have walked, we generated a full three-dimensional (3D) reconstruction and forward-dynamic simulation of upright bipedal locomotion of this ancient human ancestor. Laser-scanned 3D bone geometries were combined with state-of-the-art neuromusculoskeletal modeling and simulation techniques from computational biomechanics. A detailed full 3D neuromusculoskeletal model was developed that encompassed all major bones, joints (10), and muscles (52) of the lower extremity. A model of muscle force and heat production was used to actuate the musculoskeletal system, and to estimate total energy expenditure during locomotion. Neural activation profiles for each of the 52 muscles that produced a single step of locomotion, while at the same time minimizing the energy consumed per meter traveled, were searched through numerical optimization. The numerical optimization resulted in smooth locomotor kinematics, and the predicted energy expenditure was appropriate for upright bipedal walking in an individual of Lucy's body size. 相似文献
13.
《Current biology : CB》2022,32(7):1635-1640.e4
- Download : Download high-res image (143KB)
- Download : Download full-size image
14.
The Froude number has been widely used in anthropology to adjust for size differences when comparing gait parameters or other nonmorphological locomotor variables (such as optimal walking speed or speed at gait transitions) among humans, nonhuman primates, and fossil hominins. However, the dynamic similarity hypothesis, which is the theoretical basis for Froude number corrections, was originally developed and tested at much higher taxonomic levels, for which the ranges of variation are much greater than in the intraspecific or intrageneric comparisons typical of anthropological studies. Here we present new experimental data on optimal walking speed and the mass-specific cost of transport at that speed from 19 adult humans walking on a treadmill, and evaluate the predictive power of the dynamic similarity hypothesis in this sample. Contrary to the predictions of the dynamic similarity hypothesis, we found that the mass-specific cost of transport at experimentally measured optimal walking speed and Froude number were not equal across individuals, but retained a significant correlation with body mass. Overall, the effect of lower limb length on optimal walking speed was weak. These results suggest that the Froude number may not be an effective way for anthropologists to correct for size differences across individuals, but more studies are needed. We suggest that researchers first determine whether geometric similarity characterizes their data before making inferences based on the dynamic similarity hypothesis, and then check the consistency of their results with and without Froude number corrections before drawing any firm conclusions. 相似文献
15.
Roy B Davis Author vitae 《Journal of electromyography and kinesiology》1997,7(4):251-257
Clinical gait analysis allows the measurement and assessment of walking biomechanics, which facilitates the identification of abnormal characteristics and the recommendation of treatment alternatives. The predominant methods for this analysis currently include the tracking of external markers placed on the patient, the monitoring of patient/ground interaction (e.g. ground reaction forces), and the recording of muscle electromyographic (EMG) activity, all during gait. These data allow the computation of stride and temporal parameters, joint/segment kinematics, joint kinetics, and EMG plots that are used to gain a better understanding of a patient's walking difficulties. Gait interpretation involves a systemic evaluation of each of these types of data, noting both corroborating and conflicting information while identifying functionally significant deviations from the normal. Understanding the etiology of these abnormalities allows the formulation of a treatment plan that may involve physical therapy, bracing, and/or surgery. This process is challenging because of the complexity of the motion, neuromuscular involvement of the patient (e.g. dynamic spasticity), variability of treatment outcome, and on occasion, uncertainty about the quality of the gait data. The experience of the interpretation team with respect to gait biomechanics, a particular patient population, and the effectiveness of different treatment modalities is the principal determinant of the success of this approach. The clinical gait analysis process continues to evolve positively. It has become more comprehensive and meaningful because of an improved understanding of normal gait biomechanics and more rigorous data collection/reduction protocols that complement accumulated clinically relevant experience. 相似文献
16.
Allison McNamara Noah T. Dunham Liza J. Shapiro Jesse W. Young 《American journal of primatology》2019,81(9)
Wild primates encounter complex matrices of substrates that differ in size, orientation, height, and compliance, and often move on multiple, discontinuous substrates within a single bout of locomotion. Our current understanding of primate gait is limited by artificial laboratory settings in which primate quadrupedal gait has primarily been studied. This study analyzes wild Saimiri sciureus (common squirrel monkey) gait on discontinuous substrates to capture the realistic effects of the complex arboreal habitat on walking kinematics. We collected high‐speed video footage at Tiputini Biodiversity Station, Ecuador between August and October 2017. Overall, the squirrel monkeys used more asymmetrical walking gaits than symmetrical gaits, and specifically asymmetrical lateral sequence walking gaits when moving across discontinuous substrates. When individuals used symmetrical gaits, they used diagonal sequence gaits more than lateral sequence gaits. In addition, individuals were more likely to change their footfall sequence during strides on discontinuous substrates. Squirrel monkeys increased the time lag between touchdowns both of ipsilaterally paired limbs (pair lag) and of the paired forelimbs (forelimb lag) when walking across discontinuous substrates compared to continuous substrates. Results indicate that gait flexibility and the ability to alter footfall patterns during quadrupedal walking may be critical for primates to safely move in their complex arboreal habitats. Notably, wild squirrel monkey quadrupedalism is diverse and flexible with high proportions of asymmetrical walking. Studying kinematics in the wild is critical for understanding the complexity of primate quadrupedalism. 相似文献
17.
Schmidt M 《American journal of physical anthropology》2005,128(2):359-370
Quadrupedal locomotion of squirrel monkeys on small-diameter support was analyzed kinematically and kinetically to specify the timing between limb movements and substrate reaction forces. Limb kinematics was studied cineradiographically, and substrate reaction forces were synchronously recorded. Squirrel monkeys resemble most other quadrupedal primates in that they utilize a diagonal sequence/diagonal couplets gait when walking on small branches. This gait pattern and the ratio between limb length and trunk length influence limb kinematics. Proximal pivots of forelimbs and hindlimbs are on the same horizontal plane, thus giving both limbs the same functional length. However, the hindlimbs are anatomically longer than the forelimbs. Therefore, hindlimb joints must be more strongly flexed during the step cycle compared to the forelimb joints. Because the timing of ipsilateral limb movements prevents an increasing amount of forelimb retraction, the forelimb must be more protracted during the initial stance phase. At this posture, gravity acts with long moment arms at proximal forelimb joints. Squirrel monkeys support most of their weight on their hindlimbs. The timing of limb movements and substrate reaction forces shows that the shift of support to the hindlimbs is mainly done to reduce the compressive load on the forelimb. The hypothesis of the posterior weight shift as a dynamic strategy to reduce load on forelimbs, proposed by Reynolds ([1985]) Am. J. Phys. Anthropol. 67:335-349; [1985] Am. J. Phys. Anthropol. 67:351-362), is supported by the high correlation of ratios between forelimb and hindlimb peak vertical forces and the range of motion of shoulder joint and scapula in primates. 相似文献
18.
Ryosuke Goto Kazunori Yamada Yoshihiko Nakano 《American journal of physical anthropology》2022,177(2):300-313
19.
G. Dubois P. Rouch D. Bonneau J. L. Gennisson W. Skalli 《Computer methods in biomechanics and biomedical engineering》2016,19(15):1592-1598
The evaluation of muscle and joint forces in vivo is still a challenge. Musculo-Skeletal (musculo-skeletal) models are used to compute forces based on movement analysis. Most of them are built from a scaled-generic model based on cadaver measurements, which provides a low level of personalization, or from Magnetic Resonance Images, which provide a personalized model in lying position. This study proposed an original two steps method to access a subject-specific musculo-skeletal model in 30 min, which is based solely on biplanar X-Rays. First, the subject-specific 3D geometry of bones and skin envelopes were reconstructed from biplanar X-Rays radiography. Then, 2200 corresponding control points were identified between a reference model and the subject-specific X-Rays model. Finally, the shape of 21 lower limb muscles was estimated using a non-linear transformation between the control points in order to fit the muscle shape of the reference model to the X-Rays model. Twelfth musculo-skeletal models were reconstructed and compared to their reference. The muscle volume was not accurately estimated with a standard deviation (SD) ranging from 10 to 68%. However, this method provided an accurate estimation the muscle line of action with a SD of the length difference lower than 2% and a positioning error lower than 20 mm. The moment arm was also well estimated with SD lower than 15% for most muscle, which was significantly better than scaled-generic model for most muscle. This method open the way to a quick modeling method for gait analysis based on biplanar radiography. 相似文献
20.
David Webb Russell H. Tuttle Michael Baksh 《American journal of physical anthropology》1994,93(4):477-489
When walking at normal and fast speeds, humans swing their upper limbs in alternation, each upper limb swinging in phase with the contralateral lower limb. However, at slow and very slow speeds, the upper limbs swing forward and back in unison, at twice the stride frequency of the lower limbs. The change from “single swinging” (in alternation) to “double swinging” (in unison) occurs consistently at a certain stride frequency for agiven individual, though different individuals may change at different stride frequencies. To explain this change in the way we use our upper limbs and individual variations in the occurrence of the change, the upper limb is modelled as a compound pendulum. Based on the kinematic properties of pendulums, we hypothesize that the stride frequency at which the change from “single swinging” to “double swinging” occurs will be at or slightly below the natural pendular frequency (NPF) of the upper limbs. Twenty-seven subjects were measured and then filmed while walking at various speeds. The mathematically derived NPF of each subject's upper limbs was compared to the stride frequency at which the subject changed from “single swinging” to “double swinging.” The results of the study conform very closely to the hypothesis, even when the NPF is artificially altered by adding weights to the subjects' hands. These results indicate that the pendulum model of the upper limb will be useful in further investigations of the function of the upper limbs in human walking. © 1994 Wiley-Liss, Inc. 相似文献