首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Quantitative T1rho magnetic resonance imaging (MRI) can potentially help identify early-stage osteoarthritis (OA) by non-invasively assessing proteoglycan concentration in articular cartilage. T1rho relaxation times are negatively correlated with proteoglycan concentration. Cartilage compresses in response to load, resulting in water exudation, a relative increase in proteoglycan concentration, and a decrease in the corresponding T1rho relaxation times. To date, there is limited information on changes in cartilage composition resulting from daily activity. Therefore, the objective of this study was to quantify changes in tibial cartilage T1rho relaxation times in healthy human subjects following activities of daily living. It was hypothesized that water exudation throughout the day would lead to decreased T1rho relaxation times. Subjects underwent MR imaging in the morning and afternoon on the same day and were free to go about their normal activities between scans. Our findings confirmed the hypothesis that tibial cartilage T1rho relaxation times significantly decreased (by 7%) over the course of the day with loading, which is indicative of a relative increase in proteoglycan concentration. Additionally, baseline T1rho values varied with position within the cartilage, supporting a need for site-specific measurements of T1rho relaxation times. Understanding how loading alters the proteoglycan concentration in healthy cartilage may hold clinical significance pertaining to cartilage homeostasis and potentially help to elucidate a mechanism for OA development. These results also indicate that future studies using T1rho relaxation times as an indicator of cartilage health should control the loading history prior to image acquisition to ensure the appropriate interpretation of the data.  相似文献   

2.

Introduction

Articular cartilage needs sulfated-glycosaminoglycans (sGAGs) to withstand high pressures while mechanically loaded. Chondrocyte sGAG synthesis is regulated by exposure to compressive forces. Moderate physical exercise is known to improve cartilage sGAG content and might protect against osteoarthritis (OA). This study investigated whether rat knee joints with sGAG depleted articular cartilage through papain injections might benefit from moderate exercise, or whether this increases the susceptibility for cartilage degeneration.

Methods

sGAGs were depleted from cartilage through intraarticular papain injections in the left knee joints of 40 Wistar rats; their contralateral joints served as healthy controls. Of the 40 rats included in the study, 20 rats remained sedentary, and the other 20 were subjected to a moderately intense running protocol. Animals were longitudinally monitored for 12 weeks with in vivo micro-computed tomography (μCT) to measure subchondral bone changes and single-photon emission computed tomography (SPECT)/CT to determine synovial macrophage activation. Articular cartilage was analyzed at 6 and 12 weeks with ex vivo contrast-enhanced μCT and histology to measure sGAG content and cartilage thickness.

Results

All outcome measures were unaffected by moderate exercise in healthy control joints of running animals compared with healthy control joints of sedentary animals. Papain injections in sedentary animals resulted in severe sGAG-depleted cartilage, slight loss of subchondral cortical bone, increased macrophage activation, and osteophyte formation. In running animals, papain-induced sGAG-depleted cartilage showed increased cartilage matrix degradation, sclerotic bone formation, increased macrophage activation, and more osteophyte formation.

Conclusions

Moderate exercise enhanced OA progression in papain-injected joints and did not protect against development of the disease. This was not restricted to more-extensive cartilage damage, but also resulted in pronounced subchondral sclerosis, synovial macrophage activation, and osteophyte formation.  相似文献   

3.
Synovial joints are elegant, critically important, and deceptively simple biomechanical structures. They are comprised of articular cartilage that covers each end of the opposing skeletal elements, synovial fluid that lubricates and nourishes the tissues, ligaments that hold the skeletal elements in check, and a fibrous capsule that insulates the joints from surrounding tissues. Joints also exhibit an exquisite arrays of shapes and sizes, best exemplified by the nearly spherical convex femoral head articulating into a nearly spherical concave hip acetabulum, or a phalangeal joint with two condyles on the distal side articulating in reciprocally-shaped sockets on the opposing proximal side. Though few in number, joint tissues are highly specialized in structure and function. This is illustrated by articular cartilage with its unique extracellular matrix, unique biomechanical resilience, its largely avascular nature, and its ability to persist through life with minimal turnover of its cells and components. The fact that interest in synovial joints has remained unabated for decades is a reflection of their fundamental importance for organism function and quality of life, and for their susceptibility to a variety of acquired and congenital conditions, most importantly arthritis. This has led to many advances in this field that encompass molecular genetics to biomechanics to medicine. Regrettably, what continues to be poorly understood are the mechanisms by which synovial joints actually form in the developing embryo. If available, this information would be not only of indisputable biological interest, but would also have significant biomedical ramifications, particularly in terms of designing novel tissue regeneration or reconstruction therapies. This review focuses on recent advances in understanding the mechanisms of synovial joint formation in the limbs, and places and discusses the information within the context of classic studies and the many mysteries and questions that remain unanswered.  相似文献   

4.
Structural magnetic resonance imaging (MRI) has shown great utility in diagnosing soft tissue burden in osteoarthritis (OA), though MRI measures of cartilage integrity have proven more elusive. Sodium MRI can reflect the proteoglycan content of cartilage; however, it requires specialized hardware, acquisition sequences, and long imaging times. This study was designed to assess the potential of a clinically feasible sodium MRI acquisition to detect differences in the knee cartilage of subjects with OA versus healthy controls (HC), and to determine whether longitudinal changes in sodium content are observed at 3 and 6 months. 28 subjects with primary knee OA and 19 HC subjects age and gender matched were enrolled in this ethically-approved study. At baseline, 3 and 6 months subjects underwent structural MRI and a 0.4ms echo time 3D T1-weighted sodium scan as well as the knee injury and osteoarthritis outcome score (KOOS) and knee pain by visual analogue score (VAS). A standing radiograph of the knee was taken for Kellgren-Lawrence (K-L) scoring. A blinded reader outlined the cartilage on the structural images which was used to determine median T1-weighted sodium concentrations in each region of interest on the co-registered sodium scans. VAS, K-L, and KOOS all significantly separated the OA and HC groups. OA subjects had higher T1-weighted sodium concentrations, most strongly observed in the lateral tibial, lateral femoral and medial patella ROIs. There were no significant changes in cartilage volume or sodium concentration over 6 months. This study has shown that a clinically-feasible sodium MRI at a moderate 3T field strength and imaging time with fluid attenuation by T1 weighting significantly separated HCs from OA subjects.  相似文献   

5.
Osteoarthritis (OA) is associated with a local inflammatory process. Dyslipidemia is known to be an underlying cause for the development of OA. Therefore, lipid and inflammatory levels were quantified ex vivo in blood and synovial fluid of OA patients (n=29) and compared to those of rheumatoid arthritis (RA) patients (n=27) or healthy volunteers (HV) (n=35). The role of apolipoprotein A-I (ApoA1) was investigated in vitro on inflammatory parameters using human joint cells isolated from cartilage and synovial membrane obtained from OA patients after joint replacement. Cells were stimulated with ApoA1 in the presence or not of serum amyloid A (SAA) protein and/or lipoproteins (LDL and HDL) at physiological concentration observed in OA synovial fluid. In our ex vivo study, ApoA1, LDL-C and total cholesterol levels were strongly correlated to each other inside the OA joint cavity whereas same levels were not or weakly correlated to their corresponding serum levels. In OA synovial fluid, ApoA1 was not as strongly correlated to HDL as observed in OA serum or in RA synovial fluid, suggesting a dissociative level between ApoA1 and HDL in OA synovial fluid. In vitro, ApoA1 induced IL-6, MMP-1 and MMP-3 expression by primary chondrocytes and fibroblast-like synoviocytes through TLR4 receptor. HDL and LDL attenuated joint inflammatory response induced by ApoA1 and SAA in a ratio dependent manner. In conclusion, a dysregulated lipidic profile in the synovial fluid of OA patients was observed and was correlated with inflammatory parameters in the OA joint cavity. Pro-inflammatory properties of ApoA1 were confirmed in vitro.  相似文献   

6.

Introduction

Osteoarthritis (OA) is a degenerative disease characterized by cartilage breakdown in the synovial joints. The presence of low-grade inflammation in OA joints is receiving increasing attention, with synovitis shown to be present even in the early stages of the disease. How the synovial inflammation arises is unclear, but proteins in the synovial fluid of affected joints could conceivably contribute. We therefore surveyed the proteins present in OA synovial fluid and assessed their immunostimulatory properties.

Methods

We used mass spectrometry to survey the proteins present in the synovial fluid of patients with knee OA. We used a multiplex bead-based immunoassay to measure levels of inflammatory cytokines in serum and synovial fluid from patients with knee OA and from patients with rheumatoid arthritis (RA), as well as in sera from healthy individuals. Significant differences in cytokine levels between groups were determined by significance analysis of microarrays, and relations were determined by unsupervised hierarchic clustering. To assess the immunostimulatory properties of a subset of the identified proteins, we tested the proteins' ability to induce the production of inflammatory cytokines by macrophages. For proteins found to be stimulatory, the macrophage stimulation assays were repeated by using Toll-like receptor 4 (TLR4)-deficient macrophages.

Results

We identified 108 proteins in OA synovial fluid, including plasma proteins, serine protease inhibitors, proteins indicative of cartilage turnover, and proteins involved in inflammation and immunity. Multiplex cytokine analysis revealed that levels of several inflammatory cytokines were significantly higher in OA sera than in normal sera, and levels of inflammatory cytokines in synovial fluid and serum were, as expected, higher in RA samples than in OA samples. As much as 36% of the proteins identified in OA synovial fluid were plasma proteins. Testing a subset of these plasma proteins in macrophage stimulation assays, we found that Gc-globulin, α1-microglobulin, and α2-macroglobulin can signal via TLR4 to induce macrophage production of inflammatory cytokines implicated in OA.

Conclusions

Our findings suggest that plasma proteins present in OA synovial fluid, whether through exudation from plasma or production by synovial tissues, could contribute to low-grade inflammation in OA by functioning as so-called damage-associated molecular patterns in the synovial joint.  相似文献   

7.
In the study of aggrecan fragmentation several methods to extract and purify aggrecan from cartilage and synovial fluid (SF) are used. This work compares and evaluates the effectiveness for purification of aggrecan of the most commonly used methods by the ratio of sulfated glycosaminoglycan (sGAG) to protein and by fragment analysis by Western blot. A novel method for purification of aggrecan fragments from SF by boiling (Boiled SF) is also presented.Of the sGAG extracted from cartilage by guanidinium, 66% was recovered by associative–dissociative cesium chloride density gradient centrifugation (A1D1–D3) with a 9 times higher ratio of sGAG to protein in the A1D1 fraction. Although less enriched in aggrecan, the Western blot aggrecan pattern of the guanidinium extracted sample resembled that of the combined patterns of the A1D1, A1D2 and A1D3 fractions.The recoveries of sGAG from SF purified by anion chromatography and Alcian blue precipitation were around 50%, while the recoveries were over 80% in the associative or dissociative density gradient fractions (A1 and D1) and Boiled SF. The purification compared to neat SF ranged from 9 times in boiled SF to 1800–1900 times in Alcian blue and D1 samples. To obtain reliable results when analyzing synovial fluid aggrecan fragments by Western blot, purification was necessary. The immuno-pattern of anion chromatography purified SF resembled the patterns of A1 and D1, while the pattern of Boiled SF resembled the D1 sample.This work suggests that aggrecan fragments extracted from cartilage by guanidinium need no further purification to be analyzed by Western blot, whereas aggrecan fragments in SF are best analyzed in the A1 and D1 fractions or in the Boiled SF sample.  相似文献   

8.
Aggrecan is a critical component of the extracellular matrix of all cartilages. One of the early hallmarks of osteoarthritis (OA) is the loss of aggrecan from articular cartilage followed by degeneration of the tissue. Mesenchymal progenitor cell (MPC) populations in joints, including those in the synovium, have been hypothesized to play a role in the maintenance and/or repair of cartilage, however, the mechanism by which this may occur is unknown. In the current study, we have uncovered that aggrecan is secreted by synovial MPCs from healthy joints yet accumulates inside synovial MPCs within OA joints. Using human synovial biopsies and a rat model of OA, we established that this observation in aggrecan metabolism also occurs in vivo. Moreover, the loss of the “anti-proteinase” molecule alpha-2 macroglobulin (A2M) inhibits aggrecan secretion in OA synovial MPCs, whereas overexpressing A2M rescues the normal secretion of aggrecan. Using mice models of OA and cartilage repair, we have demonstrated that intra-articular injection of aggrecan into OA joints inhibits cartilage degeneration and stimulates cartilage repair respectively. Furthermore, when synovial MPCs overexpressing aggrecan were transplanted into injured joints, increased cartilage regeneration was observed vs. wild-type MPCs or MPCs with diminished aggrecan expression. Overall, these results suggest that aggrecan secreted from joint-associated MPCs may play a role in tissue homeostasis and repair of synovial joints.Subject terms: Mesenchymal stem cells, Cartilage, Experimental models of disease  相似文献   

9.

Objective

Mesenchymal progenitor cells (MPCs) can differentiate into osteoblasts, adipocytes, and chondrocytes, and are in part responsible for maintaining tissue integrity. Recently, a progenitor cell population has been found within the synovial fluid that shares many similarities with bone marrow MPCs. These synovial fluid MPCs (sfMPCs) share the ability to differentiate into bone and fat, with a bias for cartilage differentiation. In this study, sfMPCs were isolated from human and canine synovial fluid collected from normal individuals and those with osteoarthritis (human: clinician-diagnosed, canine: experimental) to compare the differentiation potential of CD90+ vs. CD90− sfMPCs, and to determine if CD90 (Thy-1) is a predictive marker of synovial fluid progenitors with chondrogenic capacity in vitro.

Methods

sfMPCs were derived from synovial fluid from normal and OA knee joints. These cells were induced to differentiate into chondrocytes and analyzed using quantitative PCR, immunofluorescence, and electron microscopy.

Results

The CD90+ subpopulation of sfMPCs had increased chondrogenic potential compared to the CD90− population. Furthermore, sfMPCs derived from healthy joints did not require a micro-mass step for efficient chondrogenesis. Whereas sfMPCs from OA synovial fluid retain the ability to undergo chondrogenic differentiation, they require micro-mass culture conditions.

Conclusions

Overall, this study has demonstrated an increased chondrogenic potential within the CD90+ fraction of human and canine sfMPCs and that this population of cells derived from healthy normal joints do not require a micro-mass step for efficient chondrogenesis, while sfMPCs obtained from OA knee joints do not differentiate efficiently into chondrocytes without the micro-mass procedure. These results reveal a fundamental shift in the chondrogenic ability of cells isolated from arthritic joint fluids, and we speculate that the mechanism behind this change of cell behavior is exposure to the altered milieu of the OA joint fluid, which will be examined in further studies.  相似文献   

10.

Introduction

This study aimed to evaluate whether profiles of several soluble mediators in synovial fluid and cartilage tissue are pathology-dependent and how their production is related to in vitro tissue formation by chondrocytes from diseased and healthy tissue.

Methods

Samples were obtained from donors without joint pathology (n = 39), with focal defects (n = 65) and osteoarthritis (n = 61). A multiplex bead assay (Luminex) was performed measuring up to 21 cytokines: Interleukin (IL)-1α, IL-1β, IL-1RA, IL-4, IL-6, IL-6Rα, IL-7, IL-8, IL-10, IL-13, tumor necrosis factor (TNF)α, Interferon (IFN)γ, oncostatin M (OSM), leukemia inhibitory factor (LIF), adiponectin, leptin, monocyte chemotactic factor (MCP)1, RANTES, basic fibroblast growth factor (bFGF), hepatocyte growth factor (HGF), vascular growth factor (VEGF).

Results

In synovial fluid of patients with cartilage pathology, IL-6, IL-13, IFNγ and OSM levels were higher than in donors without joint pathology (P ≤0.001). IL-13, IFNγ and OSM were also different between donors with cartilage defects and OA (P <0.05). In cartilage tissue from debrided defects, VEGF was higher than in non-pathological or osteoarthritic joints (P ≤0.001). IL-1α, IL-6, TNFα and OSM concentrations (in ng/ml) were markedly higher in cartilage tissue than in synovial fluid (P <0.01). Culture of chondrocytes generally led to a massive induction of most cytokines (P <0.001). Although the release of inflammatory cytokines was also here dependent on the pathological condition (P <0.001) the actual profiles were different from tissue or synovial fluid and between non-expanded and expanded chondrocytes. Cartilage formation was lower by healthy unexpanded chondrocytes than by osteoarthritic or defect chondrocytes.

Conclusions

Several pro-inflammatory, pro-angiogenic and pro-repair cytokines were elevated in joints with symptomatic cartilage defects and/or osteoarthritis, although different cytokines were elevated in synovial fluid compared to tissue or cells. Hence a clear molecular profile was evident dependent on disease status of the joint, which however changed in composition depending on the biological sample analysed. These alterations did not affect in vitro tissue formation with these chondrocytes, as this was at least as effective or even better compared to healthy chondrocytes.  相似文献   

11.

Introduction  

The goals of this study were (i) to compare the prevalence of focal knee abnormalities, the mean cartilage T2 relaxation time, and the spatial distribution of cartilage magnetic resonance (MR) T2 relaxation times between subjects with and without risk factors for Osteoarthritis (OA), (ii) to determine the relationship between MR cartilage T2 parameters, age and cartilage morphology as determined with whole-organ magnetic resonance imaging scores (WORMS) and (iii) to assess the reproducibility of WORMS scoring and T2 relaxation time measurements including the mean and grey level co-occurrence matrix (GLCM) texture parameters.  相似文献   

12.

Background

Rheumatoid arthritis (RA) is an autoimmune disease of the synovial joints. The autoimmune character of RA is underscored by prominent production of autoantibodies such as those against IgG (rheumatoid factor), and a broad array of joint tissue-specific and other endogenous citrullinated proteins. Anti-citrullinated protein antibodies (ACPA) can be detected in the sera and synovial fluids of RA patients and ACPA seropositivity is one of the diagnostic criteria of RA. Studies have demonstrated that RA T cells respond to citrullinated peptides (epitopes) of proteoglycan (PG) aggrecan, which is one of the most abundant macromolecules of articular cartilage. However, it is not known if the PG molecule is citrullinated in vivo in human cartilage, and if so, whether citrulline-containing neoepitopes of PG (CitPG) can contribute to autoimmunity in RA.

Methods

CitPG was detected in human cartilage extracts using ACPA+ RA sera in dot blot and Western blot. Citrullination status of in vitro citrullinated recombinant G1 domain of human PG (rhG1) was confirmed by antibody-based and chemical methods, and potential sites of citrullination in rhG1 were explored by molecular modeling. CitPG-specific serum autoantibodies were quantified by enzyme-linked immunosorbent assays, and CitPG was localized in osteoarthritic (OA) and RA cartilage using immunohistochemistry.

Findings

Sera from ACPA+ RA patients reacted with PG purified from normal human cartilage specimens. PG fragments (mainly those containing the G1 domain) from OA or RA cartilage extracts were recognized by ACPA+ sera but not by serum from ACPA- individuals. ACPA+ sera also reacted with in vitro citrullinated rhG1 and G3 domain-containing fragment(s) of PG. Molecular modeling suggested multiple sites of potential citrullination within the G1 domain. The immunohistochemical localization of CitPG was different in OA and RA cartilage.

Conclusions

CitPG is a new member of citrullinated proteins identified in human joints. CitPG could be found in both normal and diseased cartilage specimens. Antibodies against CitPG may trigger or augment arthritis by forming immune complexes with this autoantigen in the joints of ACPA+ RA patients.  相似文献   

13.
This work utilises advances in multi-tissue imaging, and incorporates new metrics which define in situ joint changes and individual tissue changes in osteoarthritis (OA). The aims are to (1) demonstrate a protocol for processing intact animal joints for microCT to visualise relevant joint, bone and cartilage structures for understanding OA in a preclinical rabbit model, and (2) introduce a comprehensive three-dimensional (3D) quantitative morphometric analysis (QMA), including an assessment of reproducibility. Sixteen rabbit joints with and without transection of the anterior cruciate ligament were scanned with microCT and contrast agents, and processed for histology. Semi-quantitative evaluation was performed on matching two-dimensional (2D) histology and microCT images. Subsequently, 3D QMA was performed; including measures of cartilage, subchondral cortical and epiphyseal bone, and novel tibio-femoral joint metrics. Reproducibility of the QMA was tested on seven additional joints. A significant correlation was observed in cartilage thickness from matching histology-microCT pairs. The lateral compartment of operated joints had larger joint space width, thicker femoral cartilage and reduced bone volume, while osteophytes could be detected quantitatively. Measures between the in situ tibia and femur indicated an altered loading scenario. High measurement reproducibility was observed for all new parameters; with ICC ranging from 0.754 to 0.998. In conclusion, this study provides a novel 3D QMA to quantify macro and micro tissue measures in the joint of a rabbit OA model. New metrics were established consisting of: an angle to quantitatively measure osteophytes (σ), an angle to indicate erosion between the lateral and medial femoral condyles (ρ), a vector defining altered angulation (λ, α, β, γ) and a twist angle (τ) measuring instability and tissue degeneration between the femur and tibia, a length measure of joint space width (JSW), and a slope and intercept (m, Χ) of joint contact to demonstrate altered loading with disease progression, as well as traditional bone and cartilage and histo-morphometry measures. We demonstrate correlation of microCT and histology, sensitive discrimination of OA change and robust reproducibility.  相似文献   

14.
The pathogenesis of rheumatoid arthritis (RA) and psoriatic arthritis (PsA) involves an abnormal chemokine regulation. The chemokine receptor CCR4 is necessary for T cell migration to the skin. We, therefore, studied if CCR4 and its ligand macrophage-derived chemokine (MDC/CCL22) could participate in spreading the disease between skin and joints by examining RA, PsA and osteoarthritis (OA) patients. In synovial fluid from RA and PsA patients we observed a significantly higher MDC/CCL22 level compared to OA patients. Additionally, the MDC/CCL22 protein was found to be elevated in RA and PsA plasma compared to OA and healthy volunteers. Flow cytometry revealed that most CD4+CCR4+ lymphocytes also co-expressed CD45RO. Neither the MDC/CCL22 level nor the expression of CCR4 correlated to CRP. Immunohistochemistry of the RA and OA synovial membrane demonstrated CCR4 to be expressed by mononuclear cells and endothelial cells. Our results show that MDC/CCL22 is present within the synovial membrane of RA and OA patients and in high amount in the synovial fluid of patients with RA and PsA. This will enable migration of CCR4 expressing memory cells supporting that MDC/CCR4 could play a role in attracting skin specific memory T cells to the joints.  相似文献   

15.
The influence of ankle kinematics and plantar pressure from mid-range barefoot running on T2 relaxation times of tibiotalar cartilage is unknown. This study aimed to quantitatively evaluate the T2 relaxation time of tibiotalar cartilage and ankle biomechanics following 5 km barefoot running. Twenty healthy runners (who had no 5 km barefoot running experience) underwent 3.0-Tesla magnetic resonance (MR) scans and assessment of running gait before and after 5 km barefoot running. Participants were divided into two groups consisting of marathon-experienced (n = 10) and novice (n = 10) with equal number of males and females in each group. Three musculoskeletal radiologists measured T2 relaxation times in 18 regions of the ankle cartilage: anterior zone, central zone, and posterior zone, or lateral, middle, and medial sections in the sagittal plane. Three-dimensional ankle kinetics, kinematics, and plantar pressure were all also assessed during barefoot running. In the novice group, the T2 relaxation time in the posterior zone of tibial cartilage (p = 0.001) and lateral section in both tibial (p = 0.02) and talar (p = 0.02) cartilage were significantly increased after barefoot running. Ankle kinematics exhibited significant changes in females. Plantar loading was shifted from the medial to lateral aspect after running. This included a significant reduction in the loading under the toes and the 1st, 2nd and 3rd metatarsals, with a significant increase under the 4th and 5th metatarsals and lateral midfoot. The results suggest that plantar pressure may directly lead to local increases in cartilage T2 signal, which was not associated with changes in ankle kinematics.  相似文献   

16.

Introduction  

Inflammation is an important feature of many joint diseases, and levels of cartilage biomarkers measured in synovial fluid may be influenced by local inflammatory status. Little is known about the magnitude and time course of inflammation-induced changes in cartilage tissue turnover as measured in vivo by synovial fluid markers. We aimed to study temporal changes in concentrations of inflammatory mediators, matrix metalloproteinase activity and cartilage biomarkers over 1 week in joints with experimentally induced inflammation.  相似文献   

17.
Thirteen young, castrated male goats had instability of one stifle (knee joint) created by surgical transection of the cranial cruciate ligament, but did not develop any signs of osteoarthritis (OA) in treated joints when confined in limited space for 8 months. At the end of the experiment, the instability in the stifles had not improved, the joints were normal at radiographic examination, there were no signs of inflammation in the synovial membrane or joint capsule, and fibrosis in these tissues was not evident. The articular cartilage was normal both visually and histologically. This may indicate that the young age of the goats and the restricted physical activity on soft floor had prevented the expected development of OA in the experimantally operated joints. Synovial fluid volumes and proteoglycan concentration were measured in the treated and control joints in 6 of the goats. There seemed to be increased quantity of the proteoglycan aggrecan in the synovial fluid from the treated joints compared to the contralateral joints throughout the course of this study. It was concluded that the turnover of aggrecan in the articular cartilage of the treated joints may have been increased.  相似文献   

18.

Introduction

This study was performed to evaluate the attenuation of osteoarthritic (OA) pathogenesis via disruption of the stromal cell-derived factor-1 (SDF-1)/C-X-C chemokine receptor type 4 (CXCR4) signaling with AMD3100 in a guinea pig OA model.

Methods

OA chondrocytes and cartilage explants were incubated with SDF-1, siRNA CXCR4, or anti-CXCR4 antibody before treatment with SDF-1. Matrix metalloproteases (MMPs) mRNA and protein levels were measured with real-time polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA), respectively. The 35 9-month-old male Hartley guinea pigs (0.88 kg ± 0.21 kg) were divided into three groups: AMD-treated group (n = 13); OA group (n = 11); and sham group (n = 11). At 3 months after treatment, knee joints, synovial fluid, and serum were collected for histologic and biochemical analysis. The severity of cartilage damage was assessed by using the modified Mankin score. The levels of SDF-1, glycosaminoglycans (GAGs), MMP-1, MMP-13, and interleukin-1 (IL-1β) were quantified with ELISA.

Results

SDF-1 infiltrated cartilage and decreased proteoglycan staining. Increased glycosaminoglycans and MMP-13 activity were found in the culture media in response to SDF-1 treatment. Disrupting the interaction between SDF-1 and CXCR4 with siRNA CXCR4 or CXCR4 antibody attenuated the effect of SDF-1. Safranin-O staining revealed less cartilage damage in the AMD3100-treated animals with the lowest Mankin score compared with the control animals. The levels of SDF-1, GAG, MMP1, MMP-13, and IL-1β were much lower in the synovial fluid of the AMD3100 group than in that of control group.

Conclusions

The binding of SDF-1 to CXCR4 induces OA cartilage degeneration. The catabolic processes can be disrupted by pharmacologic blockade of SDF-1/CXCR4 signaling. Together, these findings raise the possibility that disruption of the SDF-1/CXCR4 signaling can be used as a therapeutic approach to attenuate cartilage degeneration.  相似文献   

19.
Osteoarthritis (OA) is a chronic disease affecting the cartilage of over 15% of Canadians. Synovial fluid mesenchymal progenitor cells (sfMPCs) are present in joints and are thought to contribute to healing. OA sfMPCs have a greater proliferative ability but decreased chondrogenic potential. However, little is known about the factors influencing/regulating the differences between normal and OA sfMPCs. Recently, our lab has shown that sfMPC chondrogenic differentiation in vitro is favorably biased toward a similar osmotic environment as they experience in vivo. The current study now examines the expression and functionality of a variety of ion channels in sfMPCs derived from normal individuals and early OA patients. Results indicated that there is differential ion channel regulation at the functional level and expression level in early OA sfMPCs. All ion channels were upregulated in early OA compared to normal sfMPCs with the exception of KCNMA1 at the mRNA level. At the protein level, TRPV4 was over expressed in early OA sfMPCs, while KCNJ12 and KCNMA1 were unchanged between normal and early OA sfMPCs. At the functional level, the inward rectifying potassium channel was under expressed in early OA sfMPCs, however the membrane potential was unchanged between normal and early OA sfMPCs. In the synovial environment itself, a number of differences in ion concentration between normal and early OA synovial fluid were observed. These findings suggest that normal and OA progenitor cells demonstrate functional differences in how they interact with the synovial ion environment.  相似文献   

20.
Osteoarthritis (OA) is characterized by degenerative changes within joints that involved quantitative and/or qualitative alterations of cartilage and synovial fluid lubricin, a mucinous glycoprotein secreted by synovial fibroblasts and chondrocytes. Modern therapeutic methods, including tissue-engineering techniques, have been used to treat mechanical damage of the articular cartilage but to date there is no specific and effective treatment. This study aimed at investigating lubricin immunohistochemical expression in cartilage explant from normal and OA patients and in cartilage constructions formed by Poly (ethylene glycol) (PEG) based hydrogels (PEG-DA) encapsulated OA chondrocytes. The expression levels of lubricin were studied by immunohistochemistry: i) in tissue explanted from OA and normal human cartilage; ii) in chondrocytes encapsulated in hydrogel PEGDA from OA and normal human cartilage. Moreover, immunocytochemical and western blot analysis were performed in monolayer cells from OA and normal cartilage. The results showed an increased expression of lubricin in explanted tissue and in monolayer cells from normal cartilage, and a decreased expression of lubricin in OA cartilage. The chondrocytes from OA cartilage after 5 weeks of culture in hydrogels (PEGDA) showed an increased expression of lubricin compared with the control cartilage. The present study demonstrated that OA chondrocytes encapsulated in PEGDA, grown in the scaffold and were able to restore lubricin biosynthesis. Thus our results suggest the possibility of applying autologous cell transplantation in conjunction with scaffold materials for repairing cartilage lesions in patients with OA to reduce at least the progression of the disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号