首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The treatment of neuropathic pain remains a major challenge to pain clinicians. Certain nociceptive and non-nociceptive dorsal root ganglion (DRG) neurons may develop abnormal spontaneous activities following peripheral nerve injury, which is believed to be a major contributor to chronic pain. Subthreshold membrane potential oscillation (SMPO) observed in injured DRG neurons was reported to be involved in the generation of abnormal spontaneous activity. Tetrodotoxin-sensitive sodium (Na+) channels were testified to be involved in the generation of SMPO, but their specific subunits have not been clarified. We hypothesize that the subunits of voltage-gated sodium channel, Nav1.3 and Nav1.6, are involved in the generation of SMPO. An attempt to test this hypothesis may lead to a new therapeutic strategy for neuropathic pain.  相似文献   

2.
3.
The Ca(2+)/Mg(2+)-dependent interactions between TnC and TnI play a critical role in regulating the 'on' and 'off' states of muscle contraction as well as maintaining the structural integrity of the troponin complex in the off state. In the present study, we have investigated the binding interactions between the N-terminus of TnI (residues 1-40 of skeletal TnI) and skeletal TnC in the presence of Ca(2+) ions, Mg(2+) ions and in the presence of the C-terminal regulatory region peptides: TnI(96-115), TnI(96-131) and TnI(96-139). Our results show the N-terminus of TnI can bind to TnC with high affinity in the presence of Ca(2+) or Mg(2+) ions with apparent equilibrium dissociation constants of K(d(Ca(2+) ) ) = 48 nM and K(d(Mg(2+) ) ) = 29 nM. The apparent association and dissociation rate constants for the interactions were, k(on) = 4.8 x 10(5) M (-1) s(-1), 3.4 x 10(5) M (-1) s(-1) and k(off) = 2.3 x 10(-2) s(-1), 1.0 x 10(-2) s(-1) for TnC(Ca(2+)) and TnC(Mg(2+)) states, respectively. Competition studies between each of the TnI regions and TnC showed that both TnI regions can bind simultaneously to TnC while native gel electrophoresis and SEC confirmed the formation of stable ternary complexes between TnI(96-139) (or TnI(96-131)) and TnC-TnI(1-40). Further analysis of the binding interactions in the ternary complex showed the binding of the TnI regulatory region to TnC was critically dependent upon the presence of both TnC binding sites (i.e. TnI(96-115) and TnI(116-131)) and the presence of Ca(2+). Furthermore, the presence of TnI(1-40) slightly weakened the affinity of the regulatory peptides for TnC. Taken together, these results support the model for TnI-TnC interaction where the N-terminus of TnI remains bound to the C-domain of TnC in the presence of high and low Ca(2+) levels while the TnI regulatory region (residues 96-139) switches in its binding interactions between the actin-tropomyosin thin filament and its own sites on the N- and C-domain of TnC at high Ca(2+) levels, thus regulating muscle contraction.  相似文献   

4.
We measured EPR spectra from a spin label on the Cys133 residue of troponin I (TnI) to identify Ca(2+)-induced structural states, based on sensitivity of spin-label mobility to flexibility and tertiary contact of a polypeptide. Spectrum from Tn complexes in the -Ca(2+) state showed that Cys133 was located at a flexible polypeptide segment (rotational correlation time tau=1.9ns) that was free from TnC. Spectra of both Tn complexes alone and those reconstituted into the thin filaments in the +Ca(2+) state showed that Cys133 existed on a stable segment (tau=4.8ns) held by TnC. Spectra of reconstituted thin filaments (-Ca(2+) state) revealed that slow mobility (tau=45ns) was due to tertiary contact of Cys133 with actin, because the same slow mobility was found for TnI-actin and TnI-tropomyosin-actin filaments lacking TnC, T or tropomyosin. We propose that the Cys133 region dissociates from TnC and attaches to the actin surface on the thin filaments, causing muscle relaxation at low Ca(2+) concentrations.  相似文献   

5.
A novel series of 3-arylsulfonylamino-5,6-dihydro-6-substituted-1H-pyrazolo[3,4-c]pyridine-7-ones was designed and synthesized as 5-HT6 ligands. Among the derivatives synthesized, the lead compound, 12b, having piperidine functionality at the 6-position and (1-naphthyl)sulfonamino at the 3-position of the core structure showed the most potent 5-HT6 inhibitory activity in vitro, good stability without CYP liability, and good neuropathic pain alleviation activity in a rat animal model.  相似文献   

6.

Background

Neuropathic pain is a very troublesome and difficult pain to treat. Although opioids are the best analgesics for cancer and surgical pain in clinic, only oxycodone among opioids shows better efficacy to alleviate neuropathic pain. However, many side effects associated with the use of oxycodone render the continued use of it in neuropathic pain treatment undesirable. Hence, we explored whether dextromethorphan (DM, a known N-methyl-D-aspartate receptor antagonist with neuroprotective properties) could potentiate the anti-allodynic effect of oxycodone and underlying mechanisms regarding to glial cells (astrocytes and microglia) activation and proinflammatory cytokines release in a spinal nerve injury (SNL) mice model.

Results

Oxycodone produced a dose-dependent anti-allodynic effect. Co-administration of DM at a dose of 10 mg/kg (i.p.) (DM10) which had no anti-allodynic effect by itself enhanced the acute oxycodone (1 mg/kg, s.c.) effect. When the chronic anti-allodynic effects were examined, co-administration of DM10 also significantly enhanced the oxycodone effect at 3 mg/kg. Furthermore, oxycodone decreased SNL-induced activation of glial cells (astrocytes and microglia) and plasma levels of proinflammatory cytokines (IL-6, IL-1β and TNF-α). Co-administration of DM10 potentiated these effects of oxycodone.

Conclusion

The combined use of DM with oxycodone may have therapeutic potential for decreasing the effective dose of oxycodone on the treatment of neuropathic pain. Attenuation of the glial activation and proinflammatory cytokines in the spinal cord may be important mechanisms for these effects of DM.  相似文献   

7.
There are divergences between neuropathic pain and visceralgia in terms of the duration, location, and character of hyperalgesia. It is generally recognized that nociceptive receptors, including P2X receptors, may play different roles in nociceptive mechanisms. The different roles of P2X1–7 receptors have not been fully understood both in neuropathic pain and visceral hyperalgesia. In order to explore the different expressions of P2X1–7 receptors in these two hyperalgesia models, the lumbosacral dorsal root ganglion (DRG) neurons from rat sciatic nerve chronic constriction injury (CCI) model and neonatal colorectal distention (NCRD) model were studied (both the primary nociceptive neuron afferents of those two models projected to the same segment of spinal cord). Both immunohistochemistry (IHC) technique and real-time fluorescence quantitative polymerase chain reaction (RT-PCR) technology were applied to analyze the protein expression levels and nucleic acid of P2X1–7 receptors. We found that except P2X2 and P2X3, the expression levels of P2X1 and P2X5 receptors increased in neuropathic pain while those expression levels of P2X4, P2X6, and P2X7 receptors increased in visceral pain. Our results also suggested that in addition to P2X2/3 heteromeric, other P2X subunits may also involved in generation heteromeric such as P2X1/5 and/or P2X2/5 in neuropathic pain and P2X4/6 and/or P2X4/7 in visceral pain.  相似文献   

8.
The N-terminal extension of cardiac troponin I (TnI) is bisphosphorylated by protein kinase A in response to beta-adrenergic stimulation. How this signal is transmitted between TnI and troponin C (TnC), resulting in accelerated Ca(2+) release, remains unclear. We recently proposed that the unphosphorylated extension interacts with the N-terminal domain of TnC stabilizing Ca(2+) binding and that phosphorylation prevents this interaction. We now use (1)H NMR to study the interactions between several N-terminal fragments of TnI, residues 1-18 (I1-18), residues 1-29 (I1-29), and residues 1-64 (I1-64), and TnC. The shorter fragments provide unambiguous information on the N-terminal regions of TnI that interact with TnC: I1-18 does not bind to TnC whereas the C-terminal region of unphosphorylated I1-29 does bind. Bisphosphorylation greatly weakens this interaction. I1-64 contains the phosphorylatable N-terminal extension and a region that anchors I1-64 to the C-terminal domain of TnC. I1-64 binding to TnC influences NMR signals arising from both domains of TnC, providing evidence that the N-terminal extension of TnI interacts with the N-terminal domain of TnC. TnC binding to I1-64 broadens NMR signals from the side chains of residues immediately C-terminal to the phosphorylation sites. Binding of TnC to bisphosphorylated I1-64 does not broaden these NMR signals to the same extent. Circular dichroism spectra of I1-64 indicate that bisphosphorylation does not produce major secondary structure changes in I1-64. We conclude that bisphosphorylation of cardiac TnI elicits its effects by weakening the interaction between the region of TnI immediately C-terminal to the phosphorylation sites and TnC either directly, due to electrostatic repulsion, or via localized conformational changes.  相似文献   

9.
RNA interference (RNAi) has proven to be a powerful technique to study the function of genes by producing knock-down phenotypes. Here, we report that intrathecal injection of an siRNA against the transient receptor potential vanilloid receptor 1 (TRPV1) reduced cold allodynia of mononeuropathic rats by more than 50% over a time period of approximately 5 days. A second siRNA targeted to a different region of the TRPV1 gene was employed and confirmed the analgesic action of a TRPV1 knock-down. Furthermore, siRNA treatment diminished spontaneous visceral pain behavior induced by capsaicin application to the rectum of mice. The analgesic effect of siRNA-mediated knockdown of TRPV1 in the visceral pain model was comparable to that of the low-molecular weight receptor antagonist BCTC. Our data demonstrate that TRPV1 antagonists, including TRPV1 siRNAs, have potential in the treatment of both, neuropathic and visceral pain.  相似文献   

10.
The interaction between troponin I and troponin C plays a critical role in the regulation of muscle contraction. In this study the interaction between troponin C (TnC) and the N-terminal region of TnI was investigated by the synthesis of three TnI peptides (residues 1-40/Rp, 10-40, and 20-40). The regulatory peptide (Rp) on binding to TnC prevents the ability of TnC to release the inhibition of the acto-S1-tropomyosin ATPase activity caused by TnI or the TnI inhibitory peptide (Ip), residues 104-115. A stable complex between TnC and Rp in the presence of Ca2+ was demonstrated by polyacrylamide gel electrophoresis in the presence of 6 M urea. Rp was able to displace TnI from a preformed TnI.TnC complex. In the absence of Ca2+, Rp was unable to maintain a complex with TnC in benign conditions of polyacrylamide gel electrophoresis which demonstrates the Ca(2+)-dependent nature of this interaction. Size-exclusion chromatography demonstrated that the TnC.Rp complex consisted of a 1:1 complex. The results of these studies have shown that the N-terminal region of TnI (1-40) plays a critical role in modulating the Ca(2+)-sensitive release of TnI inhibition by TnC.  相似文献   

11.
Conventional antithrombotic drug discovery requires testing of large numbers of drug candidates. We used computer-aided macromolecular interaction assessment (MIAX) to select antithrombotic molecules that mimic and therefore block platelet GPIb’s binding to von Willebrand factor (vWf), an early step in thrombus formation. We screened a random array of 15-mer D-amino acid peptides for binding vWf. Structures of 4 candidate peptides were inferred by comparison to sequences in protein databases, conversion from the L to D conformations and molecular dynamics (MD) determinations of those most energetically stable. By MIAX, we deduced the amino acids and intermolecular hydrogen bonds contributing to the GPIb-vWf interaction interface. We docked the peptides onto vWf in silico to localize their binding sites and consequent potential for preventing GPIb-vWf binding. In vitro inhibition of ristocetin-initiated platelet agglutination confirmed peptide function and suitability for antithrombotic development, thereby validating this novel approach to drug discovery.  相似文献   

12.
A new series of aryls, including benzo[d]imidazole/isoxazole/pyrazole, conjugated to 3N-substituted-azabicyclo[3.1.0]hexane derivatives were designed and synthesized as inhibitors of T-type calcium channels. Among the synthesized compounds, 3N-R-substituted azabicyclo[3.1.0]hexane carboxamide derivatives containing 5-isobutyl-1-phenyl-pyrazole ring exhibited potent and selective T-channel inhibition and good metabolic stability without CYP450 inhibition. Compounds 10d and 10e contained hydrophobic substituents at the 3N-position and exhibited potent in vitro efficacy, as well as neuropathic pain alleviation in rats.  相似文献   

13.
Highly effective and safe drugs for the treatment of neuropathic pain are urgently required and it was shown that blocking T-type calcium channels can be a promising strategy for drug development for neuropathic pain. We have developed pyrrolidine-based T-type calcium channel inhibitors by structural hybridization and subsequent assessment of in vitro activities against Cav3.1 and Cav3.2 channels. Profiling of in vitro ADME properties of compounds was also carried out. The representative compound 17h showed comparable in vivo efficacy to gabapentin in the SNL model, which indicates T-type calcium channel inhibitors can be developed as effective therapeutics for neuropathic pain.  相似文献   

14.
15.
In earlier work, we synthesized a cyclic 9-amino acid peptide (AFPep, cyclo[EKTOVNOGN]) and showed it to be useful for prevention and therapy of breast cancer. In an effort to explore the structure–function relationships of AFPep, we have designed analogs that bear a short ‘tail’ (one or two amino acids) attached to the cyclic peptide distal to its pharmacophore. Analogs that bore a tail of either one or two amino acids, either of which had a hydrophilic moiety in the side chain (e.g., cyclo[EKTOVNOGN]FS) exhibited greatly diminished biological activity (inhibition of estrogen-stimulated uterine growth) relative to AFPep. Analogs that bore a tail of either one or two amino acids which had hydrophobic (aliphatic or aromatic) side chains (e.g., cyclo[EKTOVNOGN]FI) retained (or had enhanced) growth inhibition activity. Combining in the same biological assay a hydrophilic-tailed analog with either AFPep or a hydrophobic-tailed analog resulted in decreased activity relative to that for AFPep or for the hydrophobic-tailed analog alone, suggesting that hydrophilic-tailed analogs are binding to a biologically active receptor. An analog with a disrupted pharmacophore (cyclo[EKTOVGOGN]) exhibited little or no growth inhibition activity. An analog with a hydrophilic tail and a disrupted pharmacophore (cyclo[EKTOVGOGN]FS) exhibited no growth inhibition activity of its own and did not affect the activity of a hydrophobic-tailed analog, but enhanced the growth inhibition activity of AFPep. These results are discussed in the context of a two-receptor model for binding of AFPep and ring-and-tail analogs. We suggest that tails on cyclic peptides may comprise a useful method to enhance diversity of peptide design and specificity of ligand–receptor interactions.  相似文献   

16.
Interactions between troponin C (TnC) and troponin I (TnI) play an important role in the Ca2(+)-dependent regulation of vertebrate striated muscle contraction. Previous attempts to elucidate the molecular details of TnC-TnI interactions, mainly involving chemically modified proteins or fragments thereof, have led to the widely accepted idea that the "inhibitory region" (residues 96-116) of TnI binds to an alpha-helical segment of TnC comprising residues 89-100 in the nonregulatory, COOH-terminal domain. In an attempt to identify other possible physiologically important interactions between these proteins, 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide (EDC) was used to produce zero-length cross-links in the complex of rabbit skeletal muscle TnC and TnI. TnC was activated with EDC and N-hydroxysuccinimide (NHS) and then mixed with an equimolar amount of TnI [Grabarek, Z., & Gergely, J. (1988) Biophys. J. 53, 392a]. The resulting cross-linked TnCXI was cleaved with cyanogen bromide, trypsin, and Staphylococcus aureus V8 protease (SAP). Cross-linked peptides were purified by reverse-phase HPLC and characterized by sequence analysis. The results indicated that residues from the regulatory Ca2(+)-binding site II in the NH2-terminal domain of TnC (residues 46-78) formed cross-links with TnI segments spanning residues 92-167. The most highly cross-linked residues in TnI were Lys-105 and Lys-107, located in the inhibitory region. These results yield the first evidence for an interaction between the N-terminal domain of TnC and the inhibitory region of TnI.  相似文献   

17.
The present study was undertaken to determine the effects of intracerebroventricular (i.c.v.) and intraperitoneal (i.p.) melatonin on mechanical allodynia and thermal hyperalgesia in mice with partial tight ligation of the sciatic nerve, and how the nitric oxide (NO) precursor l-arginine and the opiate antagonist naloxone influence this effect. A plantar analgesic meter was used to assess thermal hyperalgesia, and nerve injury-induced mechanical hyperalgesia was assessed with von Frey filaments. 1-5 weeks following the surgery, marked mechanical allodynia and thermal hyperalgesia developed in neuropathic mice. Intracerebroventricular and intraperitoneal melatonin, with its higher doses, produced a blockade of thermal hyperalgesia, but not mechanical allodynia. Administration of both l-arginine and naloxone, at doses which produced no effect on their own, partially reversed antihyperalgesic effect of melatonin. These results suggest that although it has different effects on neuropathic pain-related behaviors, melatonin may have clinical utility in neuropathic pain therapy in the future. It is also concluded that l-arginine-NO pathway and opioidergic system are involved in the antihyperalgesic effect of melatonin in nerve-injured mice.  相似文献   

18.
Lindhout DA  Boyko RF  Corson DC  Li MX  Sykes BD 《Biochemistry》2005,44(45):14750-14759
We have addressed the electrostatic interactions occurring between the inhibitory region of cardiac troponin I with the C-lobe of troponin C using scanning glycine mutagenesis of the inhibitory region. We report variations in the electric potentials due to mutation of charged residues within this complex based upon the solved NMR structure (1OZS). These results demonstrate the importance of electrostatics within this complex, and it is proposed that electrostatic interactions are integral to the formation and function of larger ternary troponin complexes. To address this hypothesis, we report (15)N NMR relaxation measurements, which suggest that, within a ternary complex involving the C-lobe and the N-terminal region of troponin I (residues 34-71), the inhibitory region maintains the electrostatic interactions with the E-helix of the C-lobe as observed within the binary complex. These results imply that, in solution, the cardiac troponin complex behaves in a manner consistent with that of the crystal structure of the skeletal isoform (1YTZ). A cardiac troponin complex possessing domain orientations similar to that of the skeletal isoform provides structural insights into altered troponin I activities as observed for the familial hypertrophic cardiomyopathy mutation R144G and phosphorylation of Thr142.  相似文献   

19.
The troponin I peptide N alpha-acetyl TnI (104-115) amide (TnIp) represents the minimum sequence necessary for inhibition of actomyosin ATPase activity of skeletal muscle (Talbot, J.A. & Hodges, R.S. 1981, J. Biol. Chem. 256, 2798-3802; Van Eyk, J.E. & Hodges, R.S., 1988, J. Biol. Chem. 263, 1726-1732; Van Eyk, J.E., Kay, C.M., & Hodges, R.S., 1991, Biochemistry 30, 9974-9981). In this study, we have used 1H NMR spectroscopy to compare the binding of this inhibitory TnI peptide to a synthetic peptide heterodimer representing site III and site IV of the C-terminal domain of troponin C (TnC) and to calcium-saturated skeletal TnC. The residues whose 1H NMR chemical shifts are perturbed upon TnIp binding are the same in both the site III/site IV heterodimer and TnC. These residues include F102, I104, F112, I113, I121, I149, D150, F151, and F154, which are all found in the C-terminal domain hydrophobic pocket and antiparallel beta-sheet region of the synthetic site III/site IV heterodimer and of TnC. Further, the affinity of TnIp binding to the heterodimer (Kd = 192 +/- 37 microM) was found to be similar to TnIp binding to TnC (48 +/- 18 microM [Campbell, A.P., Cachia, P.J., & Sykes, B.D., 1991, Biochem. Cell Biol. 69, 674-681]). The results indicate that binding of the inhibitory region of TnI is primarily to the C-terminal domain of TnC. The results also indicate how well the synthetic peptide heterodimer mimics the C-terminal domain of TnC in structure and functional interactions.  相似文献   

20.
The paramagnetic relaxation reagent, 4-hydroxy-2,2,6,6-tetramethylpiperidinyl-1-oxy (HyTEMPO), was used to probe the surface exposure of methionine residues of recombinant cardiac troponin C (cTnC) in the absence and presence of Ca2+ at the regulatory site (site II), as well as in the presence of the troponin I inhibitory peptide (cTnIp). Methyl resonances of the 10 Met residues of cTnC were chosen as spectral probes because they are thought to play a role in both formation of the N-terminal hydrophobic pocket and in the binding of cTnIp. Proton longitudinal relaxation rates (R1's) of the [13C-methyl] groups in [13C-methyl]Met-labeled cTnC(C35S) were determined using a T1 two-dimensional heteronuclear single- and multiple-quantum coherence pulse sequence. Solvent-exposed Met residues exhibit increased relaxation rates from the paramagnetic effect of HyTEMPO. Relaxation rates in 2Ca(2+)-loaded and Ca(2+)-saturated cTnC, both in the presence and absence of HyTEMPO, permitted the topological mapping of the conformational changes induced by the binding of Ca2+ to site II, the site responsible for triggering muscle contraction. Calcium binding at site II resulted in an increased exposure of Met residues 45 and 81 to the soluble spin label HyTEMPO. This result is consistent with an opening of the hydrophobic pocket in the N-terminal domain of cTnC upon binding Ca2+ at site II. The binding of the inhibitory peptide cTnIp, corresponding to Asn 129 through Ile 149 of cTnI, to both 2Ca(2+)-loaded and Ca(2+)-saturated cTnC was shown to protect Met residues 120 and 157 from HyTEMPO as determined by a decrease in their measured R1 values. These results suggest that in both the 2Ca(2+)-loaded and Ca(2+)-saturated forms of cTnC, cTnIp binds primarily to the C-terminal domain of cTnC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号