首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Akazara scallop (Chlamys nipponensis akazara) troponin C (TnC) of striated adductor muscle binds only one Ca2+ ion at the C-terminal EF-hand motif (Site IV), but it works as the Ca2+-dependent regulator in adductor muscle contraction. In addition, the scallop troponin (Tn) has been thought to regulate muscle contraction via activating mechanisms that involve the region spanning from the TnC C-lobe (C-lobe) binding site to the inhibitory region of the TnI, and no alternative binding of the TnI C-terminal region to TnC because of no similarity between second TnC-binding regions of vertebrate and the scallop TnIs. To clarify the Ca2+-regulatory mechanism of muscle contraction by scallop Tn, we have analyzed the Ca2+-binding properties of the complex of TnC C-lobe and TnI peptide, and their interaction using isothermal titration microcalorimetry, nuclear magnetic resonance, circular dichroism, and gel filtration chromatography. The results showed that single Ca2+-binding to the Site IV leads to a structural transition not only in Site IV but also Site III through the structural network in the C-lobe of scallop TnC. We therefore assumed that the effect of Ca2+-binding must lead to a change in the interaction mode between the C-lobe of TnC and the TnI peptide. The change should be the first event of the transmission of Ca2+ signal to TnI in Tn ternary complex.  相似文献   

2.
Troponin I (TnI) peptides (TnI inhibitory peptide residues 104-115, Ip; TnI regulatory peptide resides 1-30, TnI1-30), recombinant Troponin C (TnC) and Troponin I mutants were used to study the structural and functional relationship between TnI and TnC. Our results reveal that an intact central D/E helix in TnC is required to maintain the ability of TnC to release the TnI inhibition of the acto-S1-TM ATPase activity. Ca(2+)-titration of the TnC-TnI1-30 complex was monitored by circular dichroism. The results show that binding of TnI1-30 to TnC caused a three-folded increase in Ca(2+) affinity in the high affinity sites (III and IV) of TnC. Gel electrophoresis and high performance liquid chromatography (HPLC) studies demonstrate that the sequences of the N- and C-terminal regions of TnI interact in an anti-parallel fashion with the corresponding N- and C-domain of TnC. Our results also indicate that the N- and C-terminal domains of TnI which flank the TnI inhibitory region (residues 104 to 115) play a vital role in modulating the Ca(2+)- sensitive release of the TnI inhibitory region by TnC within the muscle filament. A modified schematic diagram of the TnC/TnI interaction is proposed.  相似文献   

3.
Troponin I (TnI) is the inhibitory component of the striated muscle Ca2+ regulatory protein troponin (Tn). The other two components of Tn are troponin C (TnC), the Ca2+-binding component, and troponin T (TnT), the tropomyosin-binding component. We have used limited chymotryptic digestion to probe the local conformation of TnI in the free state, the binary TnC*TnI complex, the ternary TnC*. TnI*TnT (Tn) complex, and in the reconstituted Tn*tropomyosin*F-actin filament. The digestion of TnI alone or in the TnC*TnI complex produced initially two major fragments via a cleavage of the peptide bond between Phe100 and Asp101 in the so-called inhibitory region. In the ternary Tn complex cleavage occurred at a new site between Leu140 and Lys141. In the absence of Ca2+ this was followed by digestion of the 1-140 fragment at Leu122 and Met116. In the reconstituted thin filament the same fragments as in the case of the ternary complex were produced, but the rate of digestion was slower in the absence than in the presence of Ca2+. These results indicate firstly that in both free TnI and TnI complexed with TnC there is an exposed and flexible site in the inhibitory region. Secondly, TnT affects the conformation of TnI in the inhibitory region and also in the region that contains the 140-141 bond. Thirdly, the 140-141 region of TnI is likely to interact with actin in the reconstituted thin filament when Ca2+ is absent. These findings are discussed in terms of the role of TnI in the mechanism of thin filament regulation, and in light of our previous results [Y. Luo, J.-L. Wu, J. Gergely, T. Tao, Biochemistry 36 (1997) 13449-13454] on the global conformation of TnI.  相似文献   

4.
The Ca2+-induced transition in the troponin complex (Tn) regulates vertebrate striated muscle contraction. Tn was reconstituted with recombinant forms of troponin I (TnI) containing a single intrinsic 5-hydroxytryptophan (5HW). Fluorescence analysis of these mutants of TnI demonstrate that the regions in TnI that respond to Ca2+ binding to the regulatory N-domain of TnC are the inhibitory region (residues 96-116) and a neighboring region that includes position 121. Our data confirms the role of TnI as a modulator of the Ca2+ affinity of TnC; we show that point mutations and incorporation of 5HW in TnI can affect both the affinity and the cooperativity of Ca2+ binding to TnC. We also discuss the possibility that the regulatory sites in the N-terminal domain of TnC might be the high affinity Ca2+-binding sites in the troponin complex.  相似文献   

5.
The role of the inhibitory region of troponin (Tn) I in the regulation of skeletal muscle contraction was studied with three deletion mutants of its inhibitory region: 1) complete (TnI-(Delta96-116)), 2) the COOH-terminal domain (TnI-(Delta105-115)), and 3) the NH(2)-terminal domain (TnI-(Delta95-106)). Measurements of Ca(2+)-regulated force and relaxation were performed in skinned skeletal muscle fibers whose endogenous TnI (along with TnT and TnC) was displaced with high concentrations of added troponin T. Reconstitution of the Tn-displaced fibers with a TnI.TnC complex restored the Ca(2+) sensitivity of force; however, the levels of relaxation and force development varied. Relaxation of the fibers (pCa 8) was drastically impaired with two of the inhibitory region deletion mutants, TnI-(Delta96-116).TnC and TnI-(Delta105-115).TnC. The TnI-(Delta95-106).TnC mutant retained approximately 55% relaxation when reconstituted in the Tn-displaced fibers. Activation in skinned skeletal muscle fibers was enhanced with all TnI mutants compared with wild-type TnI. Interestingly, all three mutants of TnI increased the Ca(2+) sensitivity of contraction. None of the TnI deletion mutants, when reconstituted into Tn, could inhibit actin-tropomyosin-activated myosin ATPase in the absence of Ca(2+), and two of them (TnI-(Delta96-116) and TnI-(Delta105-115)) gave significant activation in the absence of Ca(2+). These results suggest that the COOH terminus of the inhibitory region of TnI (residues 105-115) is much more critical for the biological activity of TnI than the NH(2)-terminal region, consisting of residues 95-106. Presumably, the COOH-terminal domain of the inhibitory region of TnI is a part of the Ca(2+)-sensitive molecular switch during muscle contraction.  相似文献   

6.
The interaction between troponin I and troponin C plays a critical role in the regulation of muscle contraction. In this study the interaction between troponin C (TnC) and the N-terminal region of TnI was investigated by the synthesis of three TnI peptides (residues 1-40/Rp, 10-40, and 20-40). The regulatory peptide (Rp) on binding to TnC prevents the ability of TnC to release the inhibition of the acto-S1-tropomyosin ATPase activity caused by TnI or the TnI inhibitory peptide (Ip), residues 104-115. A stable complex between TnC and Rp in the presence of Ca2+ was demonstrated by polyacrylamide gel electrophoresis in the presence of 6 M urea. Rp was able to displace TnI from a preformed TnI.TnC complex. In the absence of Ca2+, Rp was unable to maintain a complex with TnC in benign conditions of polyacrylamide gel electrophoresis which demonstrates the Ca(2+)-dependent nature of this interaction. Size-exclusion chromatography demonstrated that the TnC.Rp complex consisted of a 1:1 complex. The results of these studies have shown that the N-terminal region of TnI (1-40) plays a critical role in modulating the Ca(2+)-sensitive release of TnI inhibition by TnC.  相似文献   

7.
We present a model for the skeletal muscle troponin-C (TnC)/troponin-I (TnI) interaction, a critical molecular switch that is responsible for calcium-dependent regulation of the contractile mechanism. Despite concerted efforts by multiple groups for more than a decade, attempts to crystallize troponin-C in complex with troponin-I, or in the ternary troponin-complex, have not yet delivered a high-resolution structure. Many groups have pursued different experimental strategies, such as X-ray crystallography, NMR, small-angle scattering, chemical cross-linking, and fluorescent resonance energy transfer (FRET) to gain insights into the nature of the TnC/TnI interaction. We have integrated the results of these experiments to develop a model of the TnC/TnI interaction, using an atomic model of TnC as a scaffold. The TnI sequence was fit to each of two alternate neutron scattering envelopes: one that winds about TnC in a left-handed sense (Model L), and another that winds about TnC in a right-handed sense (Model R). Information from crystallography and NMR experiments was used to define segments of the models. Tests show that both models are consistent with available cross-linking and FRET data. The inhibitory region TnI(95-114) is modeled as a flexible beta-hairpin, and in both models it is localized to the same region on the central helix of TnC. The sequence of the inhibitory region is similar to that of a beta-hairpin region of the actin-binding protein profilin. This similarity supports our model and suggests the possibility of using an available profilin/actin crystal structure to model the TnI/actin interaction. We propose that the beta-hairpin is an important structural motif that communicates the Ca2+-activated troponin regulatory signal to actin.  相似文献   

8.
The N-terminal regulatory region of Troponin I, residues 1-40 (TnI 1-40, regulatory peptide) has been shown to have a biologically important function in the interactions of troponin I and troponin C. Truncated analogs corresponding to shorter versions of the N-terminal region (1-30, 1-28, 1-26) were synthesized by solid-phase methodology. Our results indicate that residues 1-30 of TnI comprises the minimum sequence to retain full biological activity as measured in the acto-S1-TM ATPase assay. Binding of the TnI N-terminal regulatory peptides (TnI 1-30 and the N-terminal regulatory peptide (residues 1-40) labeled with the photoprobe benzoylbenzoyl group, BBRp) were studied by gel electrophoresis and photochemical cross-linking experiments under various conditions. Fluorescence titrations of TnI 1-30 were carried out with TnC mutants that carry a single tryptophan fluorescence probe in either the N- or C-domain (F105W, F105W/C domain (88-162), F29W and F29W/N domain (1-90)) (Fig. 1). Low Kd values (Kd < 10(-7) M) were obtained for the interaction of F105W and F105W/C domain (88-162) with TnI 1-30. However, there was no observable change in fluorescence when the fluorescence probe was located at the N-domain of the TnC mutant (F29W and F29W/N domain (1-90)). These results show that the regulatory peptide binds strongly to the C-terminal domain of TnC.  相似文献   

9.
Ward DG  Brewer SM  Gallon CE  Gao Y  Levine BA  Trayer IP 《Biochemistry》2004,43(19):5772-5781
Phosphorylation of the cardiac troponin complex by PKA at S22 and S23 of troponin I (TnI) accelerates Ca(2+) release from troponin C (TnC). The region of TnI around the bisphosphorylation site binds to, and stabilizes, the Ca(2+) bound N-terminal domain of TnC. Phosphorylation interferes with this interaction between TnI and TnC resulting in weaker Ca(2+) binding. In this study, we used (1)H-(15)N-HSQC NMR to investigate at the atomic level the interaction between an N-terminal fragment of TnI consisting of residues 1-64 of TnI (I1-64) and TnC. We produced several mutants of I1-64, TnI, and TnC to test the contribution of certain residues to the transmission of the phosphorylation signal in both NMR experiments and functional assays. We also investigated how phosphorylation of the PKC sites in I1-64 (S41 and S43) affects the interaction of I1-64 with TnC. We found that phosphorylation of S22 and S23 produced only localized effects in the structure of I1-64 between residues 24 and 34. Residues 1-17 of I1-64 did not bind to TnC, and residues 38-64 bound tightly to the C-terminal domain of TnC regardless of phosphorylation. Residues 22-34 bound weakly to TnC in a phosphorylation sensitive manner. Bisphosphorylation prevented this phosphorylation switch region from interacting with TnC. Systematic mutation of residues in the phosphorylation switch did not prevent PKA phosphorylation from accelerating Ca(2+) release from troponin. We conclude that the phosphorylation switch binds to TnC via an extended interaction site spanning residues R19 to A34.  相似文献   

10.
Luo Y  Li B  Yang G  Gergely J  Tao T 《Biochemistry》2002,41(42):12891-12898
We reported previously that both residues 48 and 82 on opposite sides of troponin-C's (TnC's) N-terminal regulatory hydrophobic cleft photo-cross-linked to Met121 of troponin-I (TnI) [Luo, Y., Leszyk, J., Qian, Y., Gergely, J., and Tao, T. (1999) Biochemistry 38, 6678-6688]. Here we report that the Ca2+-absent inhibitory activity of troponin (Tn) was progressively lost as the extent of photo-cross-linking increased. To extend these studies, we constructed a mutant TnI with a single cysteine at residue 121 (TnI121). In Tn complexes containing TnI121 and mutant TnCs with a single cysteine at positions 12, 48, 82, 98, or 125 (TnC12, TnC48 etc.), TnI121 formed disulfide cross-links primarily with TnC48 and TnC82 when Ca2+ was present, and with only TnC48 when Ca2+ was absent. These results indicate that TnI Met121 is situated within the N-domain hydrophobic cleft of TnC in the presence of Ca2+, and that it moves out of the cleft upon Ca2+ removal but remains within the vicinity of TnC. Activity assays revealed that the Met121 to Cys mutation in TnI121 reduced the Ca2+-present activation of Tn, indicating that Met121 is important in hydrophobic interactions between this TnI region and TnC's N-domain cleft. The formation of a disulfide cross-link between TnI121 and TnC48 or TnC82 abolished the Ca2+-absent inhibitory activity of Tn, indicating that the movement of the Met121 region of TnI out of TnC's N-domain cleft is essential for the occurrence of further events in the inhibitory process of skeletal muscle contraction. On the basis of these and other results, a simple mechanism for Ca2+ regulation of skeletal muscle contraction is presented and discussed.  相似文献   

11.
The muscle thin filament protein troponin (Tn) regulates contraction of vertebrate striated muscle by conferring Ca2+ sensitivity to the interaction of actin and myosin. Troponin C (TnC), the Ca2+ binding subunit of Tn contains two homologous domains and four divalent cation binding sites. Two structural sites in the C-terminal domain of TnC bind either Ca2+ or Mg2+, and two regulatory sites in the N-terminal domain are specific for Ca2+. Interactions between TnC and the inhibitory Tn subunit troponin I (TnI) are of central importance to the Ca2+ regulation of muscle contraction and have been intensively studied. Much remains to be learned, however, due mainly to the lack of a three-dimensional structure for TnI. In particular, the role of amino acid residues near the C-terminus of TnI is not well understood. In this report, we prepared a mutant TnC which contains a single Trp-26 residue in the N-terminal, regulatory domain. We used fluorescence lifetime and quenching measurements to monitor Ca2+- and Mg2+-dependent changes in the environment of Trp-26 in isolated TnC, as well as in binary complexes of TnC with a Trp-free mutant of TnI or a truncated form of this mutant, TnI(1-159), which lacked the C-terminal 22 amino acid residues of TnI. We found that full-length TnI and TnI(1-159) affected Trp-26 similarly when all four binding sites of TnC were occupied by Ca2+. When the regulatory Ca2+-binding sites in the N-terminal domain of TnC were vacant and the structural sites in the C-terminal domain of were occupied by Mg2+, we found significant differences between full-length TnI and TnI(1-159) in their effect on Trp-26. Our results provide the first indica- tion that the C-terminus of TnI may play an important role in the regulation of vertebrate striated muscle through Ca2+-dependent interactions with the regula- tory domain of TnC.  相似文献   

12.
Muscle contraction is tightly regulated by Ca2+ binding to the thin filament protein troponin. The mechanism of this regulation was investigated by detailed mapping of the dynamic properties of cardiac troponin using amide hydrogen exchange-mass spectrometry. Results were obtained in the presence of either saturation or non-saturation of the regulatory Ca2+ binding site in the NH2 domain of subunit TnC. Troponin was found to be highly dynamic, with 60% of amides exchanging H for D within seconds of exposure to D2O. In contrast, portions of the TnT-TnI coiled-coil exhibited high protection from exchange, despite 6 h in D2O. The data indicate that the most stable portion of the trimeric troponin complex is the coiled-coil. Regulatory site Ca2+ binding altered dynamic properties (i.e. H/D exchange protection) locally, near the binding site and in the TnI switch helix that attaches to the Ca2+-saturated TnC NH2 domain. More notably, Ca2+ also altered the dynamic properties of other parts of troponin: the TnI inhibitory peptide region that binds to actin, the TnT-TnI coiled-coil, and the TnC COOH domain that contains the regulatory Ca2+ sites in many invertebrate as opposed to vertebrate troponins. Mapping of these affected regions onto the troponin highly extended structure suggests that cardiac troponin switches between alternative sets of intramolecular interactions, similar to previous intermediate resolution x-ray data of skeletal muscle troponin.  相似文献   

13.
In skeletal and cardiac muscles, troponin (Tn), which resides on the thin filament, senses a change in intracellular Ca2+ concentration. Tn is composed of TnC, TnI, and TnT. Ca2+ binding to the regulatory domain of TnC removes the inhibitory effect by TnI on the contraction. The inhibitory region of cardiac TnI spans from residue 138 to 149. Upon Ca2+ activation, the inhibitory region is believed to be released from actin, thus triggering actin-activation of myosin ATPase. In this study, we created a series of Ala-substitution mutants of cTnI to delineate the functional contribution of each amino acid in the inhibitory region to myofilament regulation. We found that most of the point mutations in the inhibitory region reduced the ATPase activity in the presence of Ca2+, which suggests the same region also acts as an activator of the ATPase. The thin filaments can also be activated by strong myosin head (S1)-actin interactions. The binding of N-ethylmaleimide-treated myosin subfragment 1 (NEM-S1) to actin filaments mimics such strong interactions. Interestingly, in the absence of Ca2+ NEM-S1-induced activation of S1 ATPase was significantly less with the thin filaments containing TnI(T144A) than that with the wild-type TnI. However, in the presence of Ca2+, there was little difference in the activation of ATPase activity between these preparations.Striated muscle thin filaments exist in equilibrium among multiple states. Ca2+ binding to the regulatory domain of troponin C (TnC)2 along the thin filaments and strong cross-bridge interactions with thick filaments are thought to shift the equilibrium. Ca2+ binds to the regulatory domain of TnC, which regulates the interaction of troponin I (TnI) with actin-tropomyosin (Tm) and TnC (13). In the thin filaments, the inhibitory region of TnI (residues 104–115 of rabbit fast skeletal TnI (fsTnI) or 138–149 of mouse cardiac TnI (cTnI)) undergoes a structural transition depending on the Ca2+ state of TnC (4, 5). In the absence of Ca2+ at the regulatory site(s) of TnC, the inhibitory region interacts with actin to prevent activation of myosin ATPase activity. When Ca2+ binds to the regulatory site(s) of TnC, the switch region of TnI, which is located at the C terminus of the inhibitory region, interacts with the newly exposed hydrophobic patch of the N-terminal regulatory domain of TnC (68). This interaction causes the removal of the inhibitory region and the second actin-Tm binding region of TnI from the actin surface and allows actin to interact with myosin. In the presence of Ca2+ at the regulatory sites of TnC, the inhibitory region and the central helical region of TnC are mutually stabilized, according to the recent x-ray crystal structure of the core domain of the fsTn complex (9). The sequence variations in the N-terminal and the C-terminal regions of TnT, another component of the Tn complex, are known to alter the Ca2+ sensitivity of myofilament activity (10, 11). In addition, TnT is involved in the Ca2+-dependent interaction of the Tn complex with actin-Tm (12). However, the molecular mechanism whereby TnT participates in the Ca2+ regulation has not been established.There is evidence supporting the idea that each amino acid residue in the inhibitory region of TnI contributes differently and to a different degree to myofilament activities. One example is genetic mutations and phosphorylation of amino acid residues in the inhibitory region of cardiac TnI that cause the modification of myofilament activities. In hypertrophic or restrictive cardiomyopathy-linked mutations found in the inhibitory region, such as R142Q, L145Q, and R146G/Q/W mutations (mouse cTnI sequence number), induce Ca2+ sensitization of myofilament activities and an increase in ATPase/tension at low [Ca2+] (13, 14). Recently we reported that thin filaments reconstituted with R146G or R146W mutant cTnI bind Ca2+ tighter than those with cTnI(wt) (15). The Ca2+ sensitization may occur as a result of the destabilization of the off-state of the thin filaments due to the mutation introduced into the actin-Tm-interacting residue, i.e. Arg-146, of cTnI. On the other hand, Thr-144 is phosphorylated by protein kinase C (PKC) specifically, although the consequence of the PKC-dependent phosphorylation of Thr-144 has not yet been clearly defined. Pseudophosphorylation of Thr-144 was shown to cause Ca2+ desensitization in in vitro motility assays (16), whereas there is a report that indicates phosphorylation of Thr-144 sensitizes skinned cardiomyocytes to Ca2+ (17). Furthermore, Tachampa et al. reported that Thr-144 of cTnI is important for length-dependent activation of skinned cardiac muscle (18). Thus in each case presented above, a specific change in a single amino acid in the inhibitory region of TnI induced different and divergent effects on myofilament activities.Our aim of this study is to assess the functional contributions of the individual amino acid residues in the inhibitory region to the regulatory function. To assess the functional roles of the individual amino acid residues systematically, we used Ala scanning (19, 20). Ala substitution deletes all the interactions made by atoms beyond β-C yet does not alter the peptide backbone conformation, unless it is applied to Gly or Pro. Ala is one of the most abundant amino acids and is found in both buried and exposed positions. We found that almost the entire minimum inhibitory region of cTnI we investigated (Fig. 1) is important for both the inhibition and activation. Our data also indicate that the C-terminal part of the inhibitory region destabilizes the active state of the thin filaments. We also found that Thr-144 is involved in NEM-S1-dependent activation of ATPase activity in the absence of Ca2+.Open in a separate windowFIGURE 1.Inhibitory region of TnI. A, sequence comparison of the minimum inhibitory region from various vertebrates. The amino acid residues that are different from fsTnI are colored green in cardiac sequences. Note the amino acid sequence of the inhibitory region is highly conserved. Also the amino acid sequences of the minimum inhibitory region of the mutants we investigated in this study are shown. B, crystal structure of the inhibitory region and its surrounding region in chicken fsTn complex in the Ca2+-bound form (PDB: 1YTZ). TnC, pink; TnT, light blue; TnI, gray. The segment, corresponding to residues 143–149 of mouse cTnI, is colored red.  相似文献   

14.
Troponin (Tn), in association with tropomyosin (Tm), plays a central role in the calcium regulation of striated muscle contraction. Fluorescence resonance energy transfer (FRET) between probes attached to the Tn subunits (TnC, TnI, TnT) and to Tm was measured to study the spatial relationship between Tn and Tm on the thin filament. We generated single-cysteine mutants of rabbit skeletal muscle α-Tm, TnI and the β-TnT 25-kDa fragment. The energy donor was attached to a single-cysteine residue at position 60, 73, 127, 159, 200 or 250 on TnT, at 98 on TnC and at 1, 9, 133 or 181 on TnI, while the energy acceptor was located at 13, 146, 160, 174, 190, 209, 230, 271 or 279 on Tm. FRET analysis showed a distinct Ca2+-induced conformational change of the Tm-Tn complex and revealed that TnT60 and TnT73 were closer to Tm13 than Tm279, indicating that the elongated N-terminal region of TnT extends beyond the beginning of the next Tm molecule on the actin filament. Using the atomic coordinates of the crystal structures of Tm and the Tn core domain, we searched for the disposition and orientation of these structures by minimizing the deviations of the calculated FRET efficiencies from the observed FRET efficiencies in order to construct atomic models of the Tn-Tm complex with and without bound Ca2+. In the best-fit models, the Tn core domain is located on residues 160-200 of Tm, with the arrowhead-shaped I-T arm tilting toward the C-terminus of Tm. The angle between the Tm axis and the long axis of TnC is ∼ 75° and ∼ 85° with and without bound Ca2+, respectively. The models indicate that the long axis of TnC is perpendicular to the thin filament without bound Ca2+, and that TnC and the I-T arm tilt toward the filament axis and rotate around the Tm axis by ∼ 20° upon Ca2+ binding.  相似文献   

15.
J Leszyk  J H Collins  P C Leavis  T Tao 《Biochemistry》1988,27(18):6983-6987
The sulfhydryl-specific, heterobifunctional, photoactivatable cross-linker 4-maleimidobenzophenone (BPMal) was used to study the interaction of rabbit skeletal muscle troponin subunits TnC, TnT, and TnI. TnC was labeled at Cys-98 by the maleimide moiety of BPMal and then mixed with either TnT alone or TnI plus TnT, in the presence of Ca2+. Upon photolysis, TnI and/or TnT formed covalent cross-links with TnC. The cross-linked TnC-TnT heterodimer obtained from the binary complex was digested into progressively smaller cross-linked peptides that were purified by HPLC and then characterized by amino acid analysis and sequencing. An initial cross-linked CNBr fraction contained the expected peptide CB9 (residues 84-135) of TnC, plus CNBr peptides spanning residues 152-230 of TnT. Results from a peptic digest of the CNBr cross-linked fraction permitted the identification of residues 159-197 as the most highly cross-linked region in TnT. A final subtilisin digest yielded a heterogeneous cross-linked fraction, which suggested that an especially high degree of cross-links was formed in the vicinity of residues 175-178 (Met-Lys-Lys-Lys) of TnT. Although this region of TnT had previously been implicated in binding, we show here for the first time that it is close to Cys-98 of TnC. In an analogous study on the binary complex of TnC and TnI [Leszyk, J., Collins, J. H., Leavis, P. C., & Tao, T. (1987) Biochemistry 26, 7042-7047], we previously showed that Cys-98 of TnC was cross-linked mainly to CN4, the "inhibitory region", of TnI.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
The interaction sites of rabbit skeletal troponin I (TnI) with troponin C (TnC), troponin T (TnT), tropomyosin (Tm) and actin were mapped systematically using nine single cysteine residue TnI mutants with mutation sites at positions 6, 48, 64, 89, 104, 121, 133, 155 or 179 (TnI6, TnI48 etc.). Each mutant was labeled with the heterobifunctional photocrosslinker 4-maleimidobenzophenone (BP-Mal), and incorporated into the TnI.TnC binary complex, the TnI.TnC.TnT ternary troponin (Tn) complex, and the Tn.Tm.F-actin synthetic thin filament. Photocrosslinking reactions carried out in the presence and absence of Ca(2+) yielded the following results: (1) BP-TnI6 photocrosslinked primarily to TnC with a small degree of Ca(2+)-dependence in all the complex forms. (2) BP-TnI48, TnI64 and TnI89 photocrosslinked to TnT with no Ca(2+)-dependence. Photocrosslinking to TnC was reduced in the ternary versus the binary complex. BP-TnI89 also photocrosslinked to actin with higher yields in the absence of Ca(2+) than in its presence. (3) BP-TnI104 and TnI133 photocrosslinked to actin with much higher yields in the absence than in the presence of Ca(2+). (4) BP-TnI121 photocrosslinked to TnC with a small degree of Ca(2+)-dependence, and did not photocrosslink to actin. (5) BP-TnI155 and TnI179 photocrosslinked to TnC, TnT and actin, but all with low yields. All the labeled mutants photocrosslinked to TnC with varying degrees of Ca(2+)-dependence, and none to Tm. These results, along with those published allowed us to construct a structural and functional model of TnI in the Tn complex: in the presence of Ca(2+), residues 1-33 of TnI interact with the C-terminal domain hydrophobic cleft of TnC, approximately 48-89 with TnT, approximately 90-113 with TnC's central helix, approximately 114-125 with TnC's N-terminal domain hydrophobic cleft, and approximately 130-150 with TnC's A-helix. In the absence of Ca(2+), residues approximately 114-125 move out of TnC's N-terminal domain hydrophobic cleft and trigger the movements of residues approximately 89-113 and approximately 130-150 away from TnC and towards actin.  相似文献   

17.
Troponin (Tn) is an important regulatory protein in the thin-filament complex of cardiomyocytes. Calcium binding to the troponin C (TnC) subunit causes a change in its dynamics that leads to the transient opening of a hydrophobic patch on TnC’s surface, to which a helix of another subunit, troponin I (TnI), binds. This process initiates contraction, making it an important target for studies investigating the detailed molecular processes that underlie contraction. Here we use microsecond-timescale Anton molecular dynamics simulations to investigate the dynamics and kinetics of the opening transition of the TnC hydrophobic patch. Free-energy differences for opening are calculated for wild-type Ca2+-bound TnC (∼8 kcal/mol), V44Q Ca2+-bound TnC (3.2 kcal/mol), E40A Ca2+-bound TnC (∼12 kcal/mol), and wild-type apo TnC (∼20 kcal/mol). These results suggest that the mutations have a profound impact on the frequency with which the hydrophobic patch presents to TnI. In addition, these simulations corroborate that cardiac wild-type TnC does not open on timescales relevant to contraction without calcium being bound.  相似文献   

18.
Inhibition of muscle force development by acidic pH is a well known phenomenon, yet the exact mechanism by which a decrease in pH inhibits the Ca2+-activated force in striated myofilaments remains poorly understood. Whether or not the deactivation by acidic pH involves direct competition between Ca2+ and protons for regulatory binding sites on fast skeletal troponin C (TnC) or whether other proteins in thin filament regulation are important remains unclear. We measured the effects of acidic pH on Ca2+-dependent fluorescent changes in TnC labeled with the probe danzylaziridine (Danz), which reports Ca2+ binding to the regulatory (Ca2+-specific) sites. Measurements were also made with TnCDanz complexed with the inhibitory Tn unit, TnI, and in the whole Tn complex. Our results show that a drop in pH from 7.0 to 6.5 is associated with a 1.6-fold increase in the midpoint for the relation between free Ca2+ and Ca2+ binding to the regulatory sites on TnCDanz. However, when TnCDanz was present in its complex with either TnI alone or with TnI-TnT, the increase in midpoint free Ca2+ was increased by 3.5-fold. We tested whether this potentiation in the effect of acidic pH on Ca2+ binding to TnC is due to a pH-induced alteration in the binding of TnI to TnC. A decrease in pH from 7.0 to 6.5 was associated with a halving of the affinity of TnI for TnC. We also probed the effect of acidic pH on TnI. This was done (i) by measuring the intrinsic fluorescence of tryptophan residues in TnI alone and (ii) by measuring fluorescence of TnI (in the Tn complex) labeled at Cys-133 with 5-iodoacetamidofluorescein. A drop in pH from 7.0 to 6.5 was associated with a 15% decrease in intrinsic fluorescence and with a 30% decrease in the fluorescence of the 5-iodoacetamidofluorescein probe. We conclude, therefore, that while protons and Ca2+ may directly affect Ca2+ binding to regulatory sites on fast skeletal TnC, the effect of acidic pH on TnC Ca2+ binding is amplified in the TnI-TnC and Tn complexes by a pH-related effect on the affinity of TnI for TnC.  相似文献   

19.
The troponin (Tn) complex is formed by TnC, TnI and TnT and is responsible for the calcium-dependent inhibition of muscle contraction. TnC and TnI interact in an antiparallel fashion in which the N domain of TnC binds in a calcium-dependent manner to the C domain of TnI, releasing the inhibitory effect of the latter on the actomyosin interaction. While the crystal structure of the core cardiac muscle troponin complex has been determined, very little high resolution information is available regarding the skeletal muscle TnI-TnC complex. With the aim of obtaining structural information regarding specific contacts between skeletal muscle TnC and TnI regulatory domains, we have constructed two recombinant chimeric proteins composed of the residues 1-91 of TnC linked to residues 98-182 or 98-147 of TnI. The polypeptides were capable of binding to the thin filament in a calcium-dependent manner and to regulate the ATPase reaction of actomyosin. Small angle X-ray scattering results showed that these chimeras fold into compact structures in which the inhibitory plus the C domain of TnI, with the exception of residues 148-182, were in close contact with the N-terminal domain of TnC. CD and fluorescence analysis were consistent with the view that the last residues of TnI (148-182) are not well folded in the complex. MS analysis of fragments produced by limited trypsinolysis showed that the whole TnC N domain was resistant to proteolysis, both in the presence and in the absence of calcium. On the other hand the TnI inhibitory and C-terminal domains were completely digested by trypsin in the absence of calcium while the addition of calcium results in the protection of only residues 114-137.  相似文献   

20.
We have investigated the functions of troponin T (CeTnT-1) in Caenorhabditis elegans embryonic body wall muscle. TnT tethers troponin I (TnI) and troponin C (TnC) to the thin filament via tropomyosin (Tm), and TnT/Tm regulates the activation and inhibition of myosin-actin interaction in response to changes in intracellular [Ca2+]. Loss of CeTnT-1 function causes aberrant muscle trembling and tearing of muscle cells from their exoskeletal attachment sites (Myers, C.D., P.-Y. Goh, T. StC. Allen, E.A. Bucher, and T. Bogaert. 1996. J. Cell Biol. 132:1061–1077). We hypothesized that muscle tearing is a consequence of excessive force generation resulting from defective tethering of Tn complex proteins. Biochemical studies suggest that such defective tethering would result in either (a) Ca2+-independent activation, due to lack of Tn complex binding and consequent lack of inhibition, or (b) delayed reestablishment of TnI/TnC binding to the thin filament after Ca2+ activation and consequent abnormal duration of force. Analyses of animals doubly mutant for CeTnT-1 and for genes required for Ca2+ signaling support that CeTnT-1 phenotypes are dependent on Ca2+ signaling, thus supporting the second model and providing new in vivo evidence that full inhibition of thin filaments in low [Ca2+] does not require TnT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号