共查询到20条相似文献,搜索用时 15 毫秒
1.
Michelle M. Porter Anthony A. Vandervoort 《European journal of applied physiology and occupational physiology》1997,76(1):62-68
Many studies have reported strength gains in older adults following high-intensity resistance training. However, the muscle
contraction types examined have been primarily isometric (static) or concentric (CONC; shortening). Less is known about how
eccentric (ECC) strength in older adults responds to training or about the efficacy of ECC contractions as training stimuli
in these subjects, even though muscle contractions of this type are performed in most training regimens and daily physical
activities. In this study, 15 physically active, healthy older women [68 (5) years; mean (SD)] completed an 8-week resistance
training program of two sessions per week. Training consisted of three sets of eight repetitions of CONC ankle plantar flexion
(PF) and ECC dorsiflexion (DF), at greater than 80% of the initial peak torque, in a standing position only. Subjects were
tested in standing and supine positions for: (1) strength over a range of 10° DF to 20° PF for both CONC and ECC; DF and PF
(2) passive resistive torque of the plantar flexors at 6°/s; and (3) DF and PF rate of torque development. All strength testing
and training was done at 30°/s. Significant increases (P < 0.01) were found for both CONC DF (↑30%) and ECC DF (↑17%) peak torque in the standing position. No significant changes
occurred for DF strength as measured with the subjects in the supine position, PF strength in either position, passive resistive
torque, or rate of torque development. In summary, strength gains occurred only in the dorsiflexors, which were trained using
ECC contractions. Improvements in DF strength were specific to the position of training, which has implications for the transferability
of strength gains to functional tasks such as maintaining gait.
Accepted: 17 January 1997 相似文献
2.
Bermon S Philip P Ferrari P Candito M Dolisi C 《European journal of applied physiology and occupational physiology》1999,79(4):336-340
The effects of a short-term strength training programme on resting lymphocyte subsets and stress hormone concentrations were analysed in 32 elderly sedentary subjects. Out of these 32 subjects, 8 women and 8 men [mean age 70.1 (SEM 1.0) years] were randomly assigned to a 8-week strength training programme which consisted of three sets of eight repetitions at 80% of one repetition maximum, for leg press, bilateral leg extension and seated chest press, 3 days a week. The remaining 8 women and 8 men [mean age 70.5 (SEM 0.9) years] served as controls. Absolute counts of lymphocyte subsets (CD20+, CD3+, CD3+CD4+, CD3+CD8+, CD3-CD56+CD16+) were measured with a new technique combining fluorescent microspheres and flow cytometry. In the trained subjects, substantial increases in strength took place in one repetition maximum during the 8-week training period for leg press [from means of 20.7 (SEM 1.0) to 23.6 (SEM 1.0) N x kg(-1) LBM (lean body mass)], chest press [from means of 5.4 (SEM 0.3) to 6.2 (SEM 0.3) N x kg(-1) LBM] and bilateral leg extension [from means of 6.3 (SEM 0.2) to 7.4 (SEM 0.3) N x kg(-1) LBM] movements. Baseline cortisol concentration (P < 0.01), CD20+ cell count (P < 0.05), CD3+ cell count (P < 0.05), and CD4+ cell count (P < 0.01) decreased in both groups secondary to circannual variations between winter and summer. No significant effect of strength training on resting adrenaline, noradrenaline and cortisol concentrations or distributions of lymphocyte subsets at rest was observed. The main finding of this study was to demonstrate that 8-week is too short a duration for a strength training programme to modify counts of lymphocyte subsets at rest in elderly sedentary adults. 相似文献
3.
《Peptides》2017
Due to the important interactions of proenkephalin fragments (e.g., proenkephalin [107–140] Peptide F) to enhance activation of immune cells and potentially combat pain associated with exercise-induced muscle tissue damage, we examined the differential plasma responses of Peptide F to different exercise training programs. Participants were tested pre-training (T1), and after 8 weeks (T2) of training. Fifty-nine healthy women were matched and then randomly assigned to one of four groups: heavy resistance strength training (STR, n = 18), high intensity endurance training (END, n = 14), combined strength and endurance training (CMB, n = 17), or control (CON, n = 10). Blood was collected using a cannula inserted into a superficial vein in the antecubital fossa with samples collected at rest and immediately after an acute bout of 6 X 10 RM in a squat resistance exercise before training and after training. Prior to any training, no significant differences were observed for any of the groups before or after acute exercise. With training, significant (P ≤ 0.95) elevations were observed with acute exercise in each of the exercise training groups and this effect was significantly greater in the CMB group. These data indicate that in untrained women exercise training will not change resting of plasma Peptide F concentrations unless both forms of exercise are performed but will result in significant increases in the immediate post-exercise responses. Such findings appear to indicate adrenal medullary adaptations opioid production significantly altered with exercise training. 相似文献
4.
Yoshinao Z. Hosaka Hideyuki Takahashi Prasarn Tangkawattana Kazushige Takehana 《Tissue & cell》2010,42(1):9-17
The aim of this study was to determine the characteristic differences in tendinocytes derived from tendons in the equine forelimb, superficial digital flexor tendon (SDFT), deep digital flexor tendon (DDFT) and common digital extensor tendon (CDET), in morphology, proliferation, collagen production ability and ability for synthesis of matrix metalloproteinases (MMPs). Significant differences were observed in cell number in vivo. The cellular number was largest in the SDFT and smallest in the CDET. The values of in vitro proliferation ratios and ability for synthesis of collagen and MMPs were largest in the SDFT and smallest in the CDET. Addition of TNFα to culture of all three types of tendinocytes increased the synthesis of both proMMP-9 (except CDET) and collagen and decreased proMMP-13 synthesis and had no effect on proMMP-2 synthesis. Flexor tendons in forelimbs (SDFT and DDFT) restore energy during locomotion and are more easily injured than are extensor tendons. This structural property would cause active ECM and MMPs synthesis. And CDET have very low turnover potential; in the small number of cells, low cellular proliferation, lower ability for synthesis of collagen and MMPs. The isolated tendinocytes provided much information on the characteristics and properties of tendons for the ECM turnover system and responsiveness of tendinocytes to complex inflammatory responses in tendinopathy. 相似文献
5.
Old compared to young adults exhibit increased hip and decreased ankle mechanical output during walking – a phenomenon known as biomechanical plasticity. Previous comparison studies suggest that low compared to high capacity old adults exhibit larger magnitudes of this plasticity, however the precise relationship between capacity and plasticity magnitude remains unclear. The purpose of this study was to quantify the relationships between physical capacity and biomechanical plasticity magnitude during level and incline walking. Data were collected for 32 old adults walking over level and inclined (+10°) surfaces at self-selected, comfortable speeds. Physical capacity was measured using the Short-Form Health Survey Physical Component (SF-36 PC) and biomechanical plasticity was quantified by ratios of hip extensor to ankle plantarfexor peak torques, angular impulses, peak positive powers, and positive work (larger ratios indicate larger magnitudes of plasticity). SF-36 PC scores correlated positively with all four biomechanical plasticity ratios during level walking and three of the four ratios during incline walking. Some of the biomechanical plasticity ratios correlated positively with comfortable walking speeds and stride frequencies, indicating better walking performance with larger magnitudes of plasticity. Additionally, all four biomechanical plasticity ratios were larger during incline compared to level walking, suggesting the need for larger magnitudes of plasticity during the more difficult task. These results indicate that larger magnitudes of biomechanical plasticity afford functional benefits such as increased level and incline walking performance for old adults. Increased walking performance has the potential to increase quality of life in the growing population of old adults. 相似文献
6.
To gain insight into the mechanical determinants of walking energetics, we investigated the effects of aging and arm swing on the metabolic cost of stabilization. We tested two hypotheses: (1) elderly adults consume more metabolic energy during walking than young adults because they consume more metabolic energy for lateral stabilization, and (2) arm swing reduces the metabolic cost of stabilization during walking in young and elderly adults. To test these hypotheses, we provided external lateral stabilization by applying bilateral forces (10% body weight) to a waist belt via elastic cords while young and elderly subjects walked at 1.3m/s on a motorized treadmill with arm swing and with no arm swing. We found that the external stabilizer reduced the net rate of metabolic energy consumption to a similar extent in elderly and young subjects. This reduction was greater (6-7%) when subjects walked with no arm swing than when they walked normally (3-4%). When young or elderly subjects eliminated arm swing while walking with no external stabilization, net metabolic power increased by 5-6%. We conclude that the greater metabolic cost of walking in elderly adults is not caused by a greater cost of lateral stabilization. Moreover, arm swing reduces the metabolic cost of walking in both young and elderly adults likely by contributing to stability. 相似文献
7.
K. H?kkinen K. L. Keskinen M. Alén P. V. Komi H. Kauhanen 《European journal of applied physiology and occupational physiology》1989,59(3):233-238
A study of 1 year was performed on nine elite endurance-trained athletes (swimmers) and on eight elite strength-trained athletes (weightlifters) in order to examine the effects of training on the endocrine responses and on physical performance capacity. The measurements for the determination of serum hormone concentrations were performed at about 4-month intervals during the course of the year. The primary findings demonstrated that during the first and most intensive training period of the year in preparing for the primary competitions similar but statistically insignificant changes were observed in the concentrations of serum testosterone, free testosterone and cortisol in both the endurance-trained and strength-trained groups. After that period the changes in hormonal response over the year were infrequent and minor. A significant (p less than 0.01) decrease occurred in the strength-trained group in serum-free testosterone during the second period, which was characterized by the highest overall amount of training. Over the entire year the concentrations of serum hormones remained statistically unaltered in both groups. Slight but statistically insignificant increases of 1.2% +/- 0.8% and 2.1% +/- 5.1% were observed in the competitive performances over the year in the endurance-trained and strength-trained groups, respectively. The present findings in the two groups of elite athletes, who differed greatly with regard to the type of physiological loading, demonstrated that the overall hormonal responses both during the most intensive and during prolonged training periods were rather similar and the infrequent small changes remained well within the normal physiological range.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
8.
Concentrations of dopamine (DA), norepinephrine (NE), serotonin (5-HT) and their acid merabolites were assayed in specific brain areas of Wistar rats of various ages. DA and its metabolite 3,4-dihydroxyphenylacetic acid (DOPAC) were significantly lower in striatum and mesolimbic areas of old (24 mos) rats than young adult (3 mos), but not mature (12 mos) rats. The decrease of homovanillic acid (HVA) was significant in mesolimbic areas but not in striatum. Neither cortical NE nor its metabolite methoxydroxyphenylglycol sulphate (MHPG-SO4) were significantly changed by aging. 5-HT and 5-hydroxyindoleacetic acid (5-HIAA) in the brainstem showed a tendency to a decrease and increase respectively in aged animals compared with young adults, but the differences were not statistically significant. However, the ratio of 5-HIAA to 5-HT concentrations was significantly higher in aged animals. The conclusion can be drawn that, in these brain areas, DA is more vulnerable to aging than NE and 5-HT, the metabolism of the latter being even enhanced. 相似文献
9.
BackgroundTrace elements (TE) in the human body provide a connecting link between the environment, lifestyle and biochemical modulation of homeodynamics. On the other hand, many non-essential (toxic) elements are linked to numerous diseases. Our study tried to identify differences in TE levels between healthy old and young Wistar rats in blood and the tissues of kidney, liver, heart, and testicles. Furthermore, we wanted to see if there were age-related differences in correlations between essential and/or non-essential (toxic) TE within and between mentioned tissues.MethodsWe used 28 healthy male Wistar rats which were divided into two age groups: young, aged 10 weeks (n = 15) and old, aged 36 months (n = 13). The animals were sacrificed under general anesthesia and the blood samples, and samples from the tissues of the heart, kidneys, testicles, and liver were used for the determination of TE content in them. Analysis of the 16 elements was performed by inductively coupled plasma mass spectrometry (ICP-MS).ResultsToxic elements in old rats (As, Hg, and Cd) were significantly higher in all of the tissues where the difference in levels of these elements was found. Tissues of the kidney and liver had the most correlations between TE in old and young rats, respectively. In both old and young rats, arsenic was the toxic element that had most of the correlations with other essential or non-essential elements. In old rats, most of the TE correlations were detected between the tissues of the kidney and heart (11 correlations), while in young rats most of the correlations were observed between the tissues of kidney and liver, and kidney and testicles (with 9 correlations both).ConclusionsOur study has found significant changes in levels of trace elements in all of the mentioned tissues, with kidney and testicles being the tissues with the most TE differences between the two aged groups. This and other similar studies should encourage other investigators to evaluate the mutual connections between TE and physiological, or the “unhealthy” aging. More studies with more tissues included, more biomarkers of the systemic function, and even molecular methods are needed to provide the answers to numerous questions relating to TE and aging. 相似文献
10.
Tendons with different in vivo functions are known to have different baseline biomechanics, biochemistry and ultrastructure, and these can be affected by changes in loading. However it is not know whether different tendon types respond in the same, or different ways, to changes in loading.This study performed in vitro un-loading (stress deprivation) in culture on ovine medial extensor tendons (MET, a positional tendon), and superficial and deep digital flexor tendons (SDFTs and DDFTs, with energy-storing and intermediate functions respectively), for 21 days (n = 14 each). Tensile strength and elastic modulus were then measured, followed by biochemical assays for sulphated glycosaminoglycan (sGAG) and hydroxyproline content. Histological inspection for cell morphology, cell density and collagen alignment was also performed.The positional tendon (MET) had a significant reduction (∼50%) in modulus and strength (P < 0.001) after in vitro stress-deprivation, however there were no significant effects on the energy-storing tendons (SDFT and DDFT). In contrast, sGAG was not affected in the MET, but was reduced in the SDFT and DDFT (P < 0.001). All tendons lost compactness and collagen organisation, and had reduced cell density, but these were more rapid in the MET than the SDFT and DDFT.These results suggest that different tendon types respond to identical stimuli in different ways, thus; (i) the results from an experiment in one tendon type may not be as applicable to other tendon types as previously thought, (ii) positional tendons may be particularly vulnerable to clinical stress-deprivation, and (iii) graft tendon source may affect the biological response to loading in ligament and tendon reconstruction. 相似文献
11.
The extensor mechanism of the finger is a structure transmitting the forces from several muscles to the finger joints. Force transmission in the extensor mechanism is usually modeled by equations with constant coefficients which are determined experimentally only for finger extension posture. However, the coefficient values change with finger flexion because of the extensor mechanism deformation. This induces inaccurate results for any other finger postures. We proposed a biomechanical model of the extensor mechanism represented as elastic strings. The model includes the main tendons and ligaments. The parametric identification of the model in extension posture was performed to match the distribution of the forces among the tendons to experimental data. The parametrized model was used to simulate three degrees of flexion. Furthermore, the ability of the model to reproduce how the force distribution in simulated extensor mechanism changes according to the muscle forces was also demonstrated. The proposed model could be used to simulate the extensor mechanism for any physiological finger posture for which the coefficients involved in the equations are unknown. 相似文献
12.
Josep M. Serrano-Ramon Juan M. Cortell-Tormo Iker Bautista Miguel García-Jan Ivn Chulvi-Medrano 《Biology of sport / Institute of Sport》2023,40(1):209
The aim was to compare the acute effects of bench press (BP) and squat (SQ) exercises with blood flow restriction (BFR) (40%, 60%, 80% and 100% of the complete arterial occlusion pressure (AOP)) and without BFR (CON) on the mean propulsive (VelMED) and maximum (VelMAX) bar velocity. Fourteen healthy, physically active males (age, 23.6 ± 4.1 years; height, 1.85 ± 0.11 m; body weight 85.4 ± 4.1 kg) took part in the study. There was one set for each testing condition (CON, 40%, 60%, 80% and 100%) with 6 repetitions for BP and 6 repetitions for SQ, at 60% of 1RM, and 3 minutes of recovery between sets. The results showed statistically significant differences of the sets with 80% BFR vs. CON (mean difference [MD] = 0.035 m · s-1, p < 0.05, ES = 0.52 [1.02–0.03]) and 100% BFR sets vs. CON (MD = 0.074, p < 0.001, ES = 1.08 [1.79–0.38]) for BP. In the SQ exercise, statistically significant differences were found between 100% BFR vs. CON (DM = 0.031 m · s-1, p < 0.05), vs. 100% BFR 40% (MD = 0.04 m · s-1, p < 0.05). Trend analysis showed a statistically significant linear trend (F[1,9] = 34.9, p < 0.001, F[1,13] = 27.32, p < 0.001) for the VelMED in relation to the different levels of BFR. In conclusion, our results showed that BFR levels above ˜80% AOP (BP) and ˜100% AOP (SQ) produce a VelMED improvement at 60% 1RM. 相似文献
13.
Changes in voluntary and electrically induced contractions during strength training and detraining 总被引:1,自引:0,他引:1
Koji Ishida Toshio Moritani Kazuo Itoh 《European journal of applied physiology and occupational physiology》1990,60(4):244-248
To elucidate the changes in neuro-muscular function during strength training and detraining, five male subjects underwent progressive isotonic strength training of their calf muscles three times a week for 8 weeks with additional detraining for the same periods. Electrically evoked twitch contractions were induced in the triceps surae muscles of each subject every 4 weeks during the training and detraining periods. At the same time, maximal voluntary isometric contractions (MVC) and the maximal girth of the calf (MGC) were measured. During the training period, MVC increased significantly from 98.4 to 129.6 Nm (31.7%, P less than 0.01) for the first 4 weeks of training but MGC showed little increase. Neither of the changes correlated with each other. Twitch contraction parameters, i.e. maximal twitch torque (Pt), maximal rate of torque development (max dT/dt) and rate of relaxation (relax dT/dt) showed no statistical change. During detraining, on the contrary, a large and significant increase (22.5%, P less than 0.01) was observed in max dT/dt without any changes in Pt and relax dT/dt. The MVC/Pt showed both significant increases during training and decreases during detraining. Our data suggest that short term strength training as employed in the present study does not induce changes in the contractile properties of the muscle during training, but may significantly affect the rate of force development during the subsequent detraining period, indicating the possible existence of complex post-training muscle adaptation. 相似文献
14.
Luis A. Gómez Juan D. Chavez Tory M. Hagen 《Archives of biochemistry and biophysics》2009,490(1):30-35
Accumulation of mitochondrial electron transport chain (ETC) defects is a recognized hallmark of the age-associated decline in cardiac bioenergetics; however, the molecular events involved are only poorly understood. In the present work, we hypothesized that age-related ETC deterioration stemmed partly from disassociation of large solid-state macromolecular assemblies termed “supercomplexes”. Mitochondrial proteins from young and old rat hearts were separated by blue native-PAGE, protein bands analyzed by LC-MALDI-MS/MS, and protein levels quantified by densitometry. Results showed that supercomplexes comprised of various stoichiometries of complexes I, III and IV were observed, and declined significantly (p < 0.05, n = 4) with age. Supercomplexes displaying the highest molecular masses were the most severely affected. Considering that certain diseases (e.g. Barth Syndrome) display similar supercomplex destabilization as our results for aging, the deterioration in ETC supercomplexes may be an important underlying factor for both impaired mitochondrial function and loss of cardiac bioenergetics with age. 相似文献
15.
Effect of aging on properties of motor unit action potentials in the rat medial gastrocnemius muscle
Piotr Krutki Iwona Ciechanowicz-Kowalczyk Dawid Łochyński Jan Celichowski 《Journal of electromyography and kinesiology》2013,23(5):1150-1157
The purpose of this study was to investigate whether age-related changes in motor unit (MU) contractile properties are reflected in parameters of motor unit action potentials (MUAPs). MUs of the medial gastrocnemius muscle were functionally isolated in anaesthetized Wistar rats. A control group of young animals (5–10 mo) was compared to two groups of old rats (24–25 mo and 28–30 mo). The basic contractile properties of MUs as well as the amplitude, total duration, peak-to-peak time, and number of turns within MUAPs were measured. Effects of aging were mainly observed for fast fatigable MUs (a prolongation of MUAPs and increased number of turns). The MUAP amplitude did not change significantly with aging in either MU type, but it correlated to the twitch or tetanic forces, which tended to increase with age, especially for slow MUs. We concluded that the prolongation of MUAPs and the greater incidence of signal turns was probably a result of a decrease in muscle fiber conduction velocity and/or an increase in their dispersion, and enlargement of MU territories – presumably caused by axonal sprouting of surviving motoneurons. The latter might also be responsible for the observed age-related tendency for a increase in MUAP amplitudes in slow MUs. 相似文献
16.
Hee-Jae Kim Byunghun So Jun Seok Son Han Sol Song Seung Lyul Oh Je Kyung Seong Hoyoung Lee Wook Song 《Journal of Exercise Nutrition & Biochemistry》2015,19(4):281-288
[Purpose]
In the present study, we investigated the effects of 8 weeks of progressive resistance training on the level of skeletal muscle derived BDNF as well as glucose intolerance in Zucker diabetic rats.[Methods]
Six week-old male Zucker diabetic fatty (ZDF) and Zucker lean control (ZLC) rats were randomly divided into 3 groups: sedentary ZLC (ZLC-Con), sedentary ZDF (ZDF-Con), and exercised ZDF (ZDF-Ex). Progressive resistance training using a ladder and tail weights was performed for 8 weeks (3 days/week).[Results]
After 8 weeks of resistance training, substantial reduction in body weight was observed in ZDF-Ex compared to ZDF-Con. Though the skeletal muscle volume did not change, grip strength grip strength was significantly higher in ZDF-Ex compared to ZDF-Con. In the soleus, the level of BDNF was increased in ZDF-Con, but was significantly decreased (p<0.05) in ZDF-Ex, showing a training effect. Moreover, we found that there was a negative correlation (r=-0.657; p=0.004) between grip strength and BDNF level whereas there was a positive correlation (r=0.612; p=0.008) between plasma glucose level and BDNF level in skeletal muscle.[Conclusion]
Based upon our results, we demonstrated that resistance training inhibited the elevation of skeletal muscle derived-BDNF expression concomitant with the improvement of muscle strength in zucker diabetic rats. In addition, muscle-derived BDNF might be a potential mediator for the preventive effect of resistance training on the progress of type 2 diabetes. 相似文献17.
Nadia L. Radwan Waleed S. Mahmoud Rasha A. Mohamed Marwa M. Ibrahim 《Journal of musculoskeletal & neuronal interactions》2021,21(2):237
Objectives:The study aimed to determine the effect of adding a school-based plyometric training program (PMT) to physical education (PE) sessions on the strength, balance, and flexibility in primary school girls.Methods:Students from grades 3-6 were randomized equally to a plyometric or control group. In the control group, students took their regular PE classes twice a week. In the plyometric group, students performed PMT twice a week during the initial 20 minutes of every PE session. The Lido Linea closed kinetic chain isokinetic dynamometer, Star excursion balance test (SEBT), and sit-and-reach test were used to assess muscle strength, balance, and flexibility, respectively, before and after nine weeks of training.Results:The improvement in extension peak force (p=0.04) and extension total work (p<0.001) was more prevalent in the PMT group than in the control group. SEBT scores had improved significantly (p<0.05) for all directions in the PMT group, except in the anterior direction, which was highly significant (p<0.001). Hamstring and lower back flexibility had improved more in the PMT group than in the control group (p<0.001).Conclusion:Adding PMT to regular PE classes has a positive and notable effect on muscle strength, balance, and flexibility in primary school students. 相似文献
18.
In this study, we have used two-dimensional electrophoresis, protein sequencing, immunoblotting, and immunohistochemistry to identify proteins that were differentially expressed during aging in human and rat skeletal muscles. Ubiquitin was identified. It was expressed at high levels in old fast-twitch muscles but at low levels in young fast-twitch muscles. It was also discovered that exogenous ubiquitin could suppress the growth of C2C12 cells, in vitro. The reduction in C2C12 cell growth was not attributed to an increase in apoptosis but to an inhibition in cell cycle entry. Furthermore, it was possible to induce muscles to degenerate in vivo by injecting a high dose of exogenous ubiquitin into young healthy skeletal muscles. These results suggest that hyperactivity of the ubiquitin-proteasome pathway is involved in the aging process of fast-twitch muscles. In addition, ubiquitin-dependent growth suppression in satellite cells may be associated with the poor healing potential of old skeletal muscles. 相似文献
19.
The age-related reduction in muscle force cannot be fully explained by the loss of muscle fiber mass or degeneration of myofibers. Our previous study showed that changes in lateral transmission of force could affect the total force transmitted to the tendon. The extracellular matrix (ECM) of skeletal muscle plays an important role in lateral transmission of force. The objective of this study was to define the effects of aging on lateral transmission of force in skeletal muscles, and explore possible underlying mechanisms. In vitro contractile tests were performed on extensor digitorum longus (EDL) muscle of young and old rats with series of tenotomy and myotomy. We concluded that lateral transmission of force was impaired in the old rats, and this deficit could be partly due to increased thickness of the ECM induced by aging. 相似文献
20.
T. Busso K. H?kkinen A. Pakarinen H. Kauhanen P. V. Komi J. R. Lacour 《European journal of applied physiology and occupational physiology》1992,64(4):381-386
The concentrations of serum testosterone, sex-hormone-binding-globulin (SHBG) and luteinizing hormone (LH) were examined throughout 1-year of training in six elite weightlifters. A systems model, providing an estimation of fatigue and fitness, was applied to records of training volume and performance levels in clean and jerk. The analysis focused on a 6-week training period during which blood samples were taken at 2-week intervals. A 4-week period of intensive training (period I) could be distinguished from the following 2-week period of reduced training (period II). During period I, decreases in serum testosterone (P less than 0.05) and increases in serum LH concentrations (P less than 0.01) were observed; a significant correlation (r = 0.90, P less than 0.05) was also observed between the changes in serum LH concentration and in estimated fitness. The magnitude of LH response was not related to the change in serum androgens. On the other hand, the change in testosterone:SHBG ratio during period II was significantly correlated (r = 0.97, P less than 0.01) to the LH variations during period I. These finding suggested that the LH response indicated that the decrease in testosterone concentration was not primarily due to a dysfunction of the hypothalamic-pituitary system control, and that the fatigue/fitness status of an athlete could have influenced the LH response to the decreased testosterone concentration. The negative effect of training on hormonal balance could have been amplified by its influence on the hypothalamic-pituitary axis. A decrease in physiological stress would thus have been necessary for the completion of the effect of LH release on androgenic activity. 相似文献