共查询到20条相似文献,搜索用时 15 毫秒
1.
Vogelaar JC Klapwijk B Temmink H van Lier JB 《Journal of industrial microbiology & biotechnology》2003,30(2):81-88
Kinetic parameters describing growth and decay of mesophilic (30°C) and thermophilic (55°C) aerobic biomass were determined
in continuous and batch experiments by using oxygen uptake rate measurements. Biomass was cultivated on a single soluble substrate
(acetate) in a mineral medium. The intrinsic maximum growth rate (μ
max) at 55°C was 0.71±0.09 h−1, which is 1.5 times higher than the μ
max at 30°C (0.48±0.11 h−1). The biomass decay rates increased from 0.004 h−1 at 30°C to 0.017 h−1 at 55°C. Monod constants were very low for both types of biomass: 9±2 mg chemical oxygen demand (COD) l−1at 30°C and 3±2 mg COD l−1at 55°C. Theoretical biomass yields were similar at 30 and 55°C: 0.5 g biomass COD (g acetate COD)−1. The observed biomass yields decreased under both temperature conditions as a function of the cell residence time. Under
thermophilic conditions, this effect was more pronounced due to the higher decay rates, resulting in lower biomass production
at 55°C compared to 30°C.
Electronic Publication 相似文献
2.
The subtalar joint (STJ) contributes to the absorption and generation of mechanical energy (and power) during walking to maintain frontal plane stability. Previous observational studies have suggested that there may be a relationship between step width and STJ supination moment. This study directly tests the hypothesis that walking with a step width greater than preferred would reduce STJ moments, energy absorption, and power generation requirements, while increasing energy absorption at the hip during initial contact. Participants (n = 12, 7 females) were asked to walk on an instrumented treadmill at a constant velocity and cadence at a range of fixed step widths ranging from 0.1 to 0.4 times leg length (L). Walking at step widths greater than preferred (0.149 ± 0.04 L) reduced peak STJ moments at initial contact and propulsion which subsequently reduced the negative and positive work performed at the STJ. There was a 43% reduction in energy absorption (negative work) and approximately 30% decrease in positive work at the STJ as step width increased from 0.1 L to 0.4 L. An increase in energy absorption at the knee and hip was evident with an increase in step width during initial contact, although minimal mechanical changes were observed at the proximal joints during propulsion. These results suggest an increase in step width reduces the forces generated by muscles at the STJ across stance and is therefore likely to be beneficial in the prevention and treatment of their injuries. In terms of rehabilitation, the increase in mechanical costs occurring due to an increase in energy absorption by the hip and knee is of minimal concern. 相似文献
3.
Direct kinematic-kinetic modelling currently represents the “Gold-standard” in leg stiffness quantification during three-dimensional (3D) motion capture experiments. However, the medial-lateral components of ground reaction force and leg length have been neglected in current leg stiffness formulations. It is unknown if accounting for all 3D would alter healthy biologic estimates of leg stiffness, compared to present direct modelling methods. This study compared running leg stiffness derived from a new method (multiplanar method) which includes all three Cartesian axes, against current methods which either only include the vertical axis (line method) or only the plane of progression (uniplanar method). Twenty healthy female runners performed shod overground running at 5.0 m/s. Three-dimensional motion capture and synchronised in-ground force plates were used to track the change in length of the leg vector (hip joint centre to centre of pressure) and resultant projected ground reaction force. Leg stiffness was expressed as dimensionless units, as a percentage of an individual’s bodyweight divided by standing leg length (BW/LL). Leg stiffness using the line method was larger than the uniplanar method by 15.6%BW/LL (P < .001), and multiplanar method by 24.2%BW/LL (P < .001). Leg stiffness from the uniplanar method was larger than the multiplanar method by 8.5%BW/LL (6.5 kN/m) (P < .001). The inclusion of medial-lateral components significantly increased leg deformation magnitude, accounting for the reduction in leg stiffness estimate with the multiplanar method. Given that limb movements typically occur in 3D, the new multiplanar method provides the most complete accounting of all force and length components in leg stiffness calculation. 相似文献
4.
An episode of ‘giving way’ at the ankle is described as excessive inversion of the rearfoot that does not result in an acute ankle sprain and is a unique feature associated with chronic ankle instability (CAI). Limited data currently exists describing the preparatory movement patterns and those that occur during an episode of ‘giving way. Therefore, this case report describes the movement patterns and the forces generated during an unintentional ‘giving way’ captured while an individual with unilateral CAI was performing a single-leg landing task in a research laboratory. The participant completed five single-leg landing trials for both limbs. 3D lower extremity kinematics and kinetics for the sagittal and frontal plane were extracted from 200 ms before and after initial contact (IC). Relative to the affected and un-affected single-leg landing trials, the ‘giving way’ episode was characterized by an increase in plantarflexion and hip extension moments before and after IC. The plantarflexion deviation dissipated (50 ms post-IC) and was followed by excessive ankle inversion. The ankle began to plantarflex again (150 ms post-IC) and the knee extended (50 ms post-IC) and adducted (100 ms post-IC). As a result, the ankle inversion angle plateaued at 150 ms post-IC. Furthermore, large sagittal plane internal joint moments were observed. In the frontal plane, the ‘giving way’ trial generated a large inversion joint moment which was counteracted by a large internal eversion joint moment. The observed plantarflexion and knee extension and adduction after initial contact likely contributed to preventing the ankle from continuing to invert and avoid an ankle sprain. 相似文献
5.
Kinematic and kinetic comparison of baseball pitching among various levels of development 总被引:1,自引:0,他引:1
Fleisig GS Barrentine SW Zheng N Escamilla RF Andrews JR 《Journal of biomechanics》1999,32(12):1233-1375
Proper biomechanics help baseball pitchers minimize their risk of injury and maximize performance. However previous studies involved adult pitchers only. In this study, 23 youth, 33 high school, 115 college, and 60 professional baseball pitchers were analyzed. Sixteen kinematic (11 position and five velocity), eight kinetic, and six temporal parameters were calculated and compared among the four levels of competition. Only one of the 11 kinematic position parameters showed significant differences among the four levels, while all five velocity parameters showed significant differences. All eight kinetic parameters increased significantly with competition level. None of the six temporal parameters showed significant differences. Since 16 of the 17 position and temporal parameters showed no significant differences, this study supports the philosophy that a child should be taught ‘proper’ pitching mechanics for use throughout a career. Kinetic differences observed suggest greater injury risk at higher competition levels. Since adult pitchers did not demonstrate different position or temporal patterns than younger pitchers, increases in joint forces and torques were most likely due to increased strength and muscle mass in the higher level athlete. The greater shoulder and elbow angular velocities produced by high-level pitchers were most likely due to the greater torques they generated during the arm cocking and acceleration phases. The combination of more arm angular velocity and a longer arm resulted in greater linear ball velocity for the higher level pitcher. Thus, it appears that the natural progression for successful pitching is to learn proper mechanics as early as possible, and build strength as the body matures. 相似文献
6.
Wen-Hao Hsu Cara L. Lewis Gail M. Monaghan Elliot Saltzman Joseph Hamill Kenneth G. Holt 《Journal of biomechanics》2014
The purpose of the present study was to determine the effects of orthoses designed to support the forefoot and rearfoot on the kinematics and kinetics of the lower extremity joints during walking. Fifteen participants volunteered for this study. Kinematic and kinetic variables during overground walking were compared with the participants wearing sandals without orthoses or sandals with orthoses. Orthoses increased knee internal abduction moment during late stance and knee abduction angular impulse, and reduced the medial ground reaction force during late stance, adduction free moment, forefoot eversion angle, ankle inversion moment and angular impulse, hip adduction angle, hip abduction moment, and hip external rotation moment and angular impulse (p<0.05). Orthoses decreased the torsional forces on the lower extremity and reduced the loading at the hip during walking. These findings combined with our previous studies and those of others suggest that forefoot abnormalities are critically important in influencing lower extremity kinematics and kinetics, and may underlie some non-traumatic lower extremity injuries. 相似文献
7.
St-Onge N C?té JN Preuss RA Patenaude I Fung J 《Journal of electromyography and kinesiology》2011,21(6):904-912
Postural reactions in healthy individuals in the seated position have previously been described and have been shown to depend on the direction of the perturbation; however the neck response following forward and backward translations has not been compared. The overall objective of the present study was to compare neck and trunk kinematic, kinetic and electromyographic (EMG) stabilization patterns of seated healthy individuals to forward and backward translations. Ten healthy individuals, seated on a chair fixed onto a movable platform, were exposed to forward and backward translations (distance = 0.15 m, peak acceleration = 1.2 m/s2). The head and trunk kinematics as well as the EMG activity of 16 neck and trunk muscles were recorded. Neck and trunk angular displacements were computed in the sagittal plane. The centers of mass (COMs) of the head (HEAD), upper thorax (UPTX), lower thorax (LOWTX) and abdomen (ABDO) segments were also computed. Moments of force at the C7-T1 and L5-S1 levels were calculated using a top-down, inverse dynamics approach. Forward translations provoked greater overall COM peak displacements. The first peak of moment of force was also reached earlier following forward translations which may have played a role in preventing the trunk from leaning backwards. These responses can be explained by the higher postural threat imposed by a forward translation. 相似文献
8.
Anterior cruciate ligament reconstruction (ACLR) restores joint stability following ACL injury but does not attenuate the heightened risk of developing knee osteoarthritis. Additionally, patellar tendon (PT) grafts incur a greater risk of osteoarthritis compared to hamstring grafts (HT). Aberrant gait biomechanics, including greater loading rates (i.e. impulsive loading), are linked to the development of knee osteoarthritis. However, the role of graft selection on walking gait biomechanics linked to osteoarthritis is poorly understood, thus the purpose of this study was to compare walking gait biomechanics between individuals with HT and PT grafts. Ninety-eight (74 PT; 24 HT) subjects with a history of ACLR performed walking gait at a self-selected speed from which the peak vertical ground reaction force (vGRF) during the first 50% of the stance phase and its instantaneous loading rate, peak internal knee extension and valgus moments, and peak knee flexion and varus angles were obtained. When controlling for time since ACLR and quadriceps strength, there were no differences in any kinetic or kinematic variables between graft types. While not significant, 44% of the PT cohort were identified as impulsive loaders (displaying a heelstrike transient in the majority of walking trials) compared to only 25% of the HT cohort (odds ratio = 2.3). This more frequent observation of impulsive loading may contribute to the greater risk of osteoarthritis with PT grafts. Future research is necessary to determine if impulsive loading and small magnitude differences between graft types contribute to osteoarthritis risk when extrapolated over thousands of steps per day. 相似文献
9.
This study quantified how a dual cognitive task impacts lower limb biomechanics during anticipated and unanticipated single-leg cuts with body borne load. Twenty-four males performed anticipated and unanticipated cuts with and without a dual cognitive task with three load conditions: no load (∼6 kg), medium load (15% of BW), and heavy load (30% of BW). Lower limb biomechanics were submitted to a repeated measures linear mixed model to test the main and interaction effects of load, anticipation, and dual task. With body borne load, participants increased peak stance (PS) hip flexion (p = .004) and hip internal rotation (p = .001) angle, and PS hip flexion (p = .001) and internal rotation (p = .018), and knee flexion (p = .016) and abduction (p = .001) moments. With the dual task, participants decreased PS knee flexion angle (p < .001) and hip flexion moment (p = .027), and increased PS knee external rotation angle (p = .034). During the unanticipated cut, participants increased PS hip (p = .040) and knee flexion angle (p < .001), and decreased PS hip adduction (p = .001), and knee abduction (p = .005) and external rotation (p = .026) moments. Adding body borne load produces lower limb biomechanical adaptations thought to increase risk of musculoskeletal injury, but neither anticipation nor dual task exaggerated those biomechanical adaptations. With a dual task, participants adopted biomechanics known to increase injury risk; whereas, participants used lower limb biomechanics thought to decrease injury risk during unanticipated cuts. 相似文献
10.
Osteoarthritis (OA) is a common occupational hazard for service members. This study quantified how body borne load impacts knee biomechanics for participants who do and do not present varus thrust (range of knee adduction motion exhibited from heel strike to mid-stance (0–51%)) during over-ground running. Eighteen (9 varus thrust and 9 control) military personnel had knee biomechanics recorded when running with three load conditions (light, ∼6 kg, medium, 15% BW, and heavy, 30% BW). Subject-based means for knee biomechanics were calculated and submitted to a RM ANOVA to test the main effects and possible interactions between load and varus thrust group. The varus thrust group exhibited greater varus thrust (p = .001) and peak stance (PS, 0–100%) knee adduction (p = .009) posture compared to the control group with the light load, but not for the medium (p = .741 and p = .825) or heavy loads (p = .142 and p = .429). With the heavy load, varus thrust group reduced varus thrust (p = .023), whereas, the control group increased varus thrust (p = .037) compared to the light load, and increased PS knee adduction moment compared to light (p = .006) and medium loads (p = .031). The varus thrust group, however, exhibited no significant difference in knee adduction moment between any load (p = .174). With the addition of body borne load, varus thrust participants exhibited a significant reduction in knee biomechanics related to OA; whereas, control participants adopted knee biomechanics, including greater varus thrust and knee adduction moment, related to the development of OA. 相似文献
11.
Three-dimensional gait analysis (3D–GA) is commonly used to answer clinical questions of the form “which joints and what variables are most affected during when”. When studying high-dimensional datasets, traditional dimension reduction methods (e.g. principal components analysis) require “data flattening”, which may make the ensuing solutions difficult to interpret. The aim of the present study is to present a case study of how a multi-dimensional dimension reduction technique, Parallel Factor 2 (PARAFAC2), provides a clinically interpretable set of solutions to typical biomechanical datasets where different variables are collected during walking and running. Three-dimensional kinematic and kinetic data used for the present analyses came from two publicly available datasets on walking (n = 33) and running (n = 28). For each dataset, a four-dimensional array was constructed as follows: Mode A was time normalized cycle points; mode B was the number of participants multiplied by the number of speed conditions tested; mode C was the number of joint degrees of freedom, and mode D was variable (angle, velocity, moment, power). Five factors for walking and four factors for running were extracted which explained 79.23% and 84.64% of their dataset’s variance. The factor which explains the greatest variance was swing-phase sagittal plane knee kinematics (walking), and kinematics and kinetics (running). Qualitatively, all extracted factors increased in magnitude with greater speed in both walking and running. This study is a proof of concept that PARAFAC2 is useful for performing dimension reduction and producing clinically interpretable solutions to guide clinical decision making. 相似文献
12.
《Journal of electromyography and kinesiology》2014,24(2):258-263
Walking is the most common form of human locomotion. From a motor control perspective, human bipedalism makes the task of walking extremely complex. For parts of the step cycle, there is only one foot on the ground, so both balance and propulsion are required in order for the movement to proceed smoothly. One condition known to compound the difficulty of walking is the use of high heeled shoes, which alter the natural position of the foot–ankle complex, and thereby produce a chain reaction of (mostly negative) effects that travels up the lower limb at least as far as the spine. This review summarises recent studies that have examined acute and chronic effects of high heels on balance and locomotion in young, otherwise healthy women. Controversial issues, common study limitations and directions for future research are also addressed in detail. 相似文献
13.
14.
A comparison of dorsal and heel plate foot tracking methods on lower extremity dynamics 总被引:1,自引:0,他引:1
The primary method to model ankle motion during inverse dynamic calculations of the lower limb is through the use of skin-mounted markers, with the foot modeled as a rigid segment. Motion of the foot is often tracked via the use of a marker cluster triad on either the dorsum, or heel, of the foot/shoe. The purpose of this investigation was to evaluate differences in calculated lower extremity dynamics during the stance phase of gait between these two tracking techniques. In an analysis of 7 subjects, it was found that sagittal ankle angles and sagittal ankle, hip and knee moments were strongly correlated between the two conditions, however, there was a significant difference in peak ankle plantar flexion and dorsiflexion angles. Frontal ankle angles were only moderately correlated and there was a significant difference in peak ankle eversion and inversion, resulting in moderate correlations in frontal plane moments and a significant difference in peak hip adductor moments. We demonstrate that the technique used to track the foot is an important consideration in interpreting lower extremity dynamics for clinical and research purposes. 相似文献
15.
The increased use of gait analysis has raised the need for a better understanding of how walking speed and demographic variations influence asymptomatic gait. Previous analyses mainly reported relationships between subsets of gait features and demographic measures, rendering it difficult to assess whether gait features are affected by walking speed or other demographic measures. The purpose of this study was to conduct a comprehensive analysis of the kinematic and kinetic profiles during ambulation that tests for the effect of walking speed in parallel to the effects of age, sex, and body mass index. This was accomplished by recruiting a population of 121 asymptomatic subjects and analyzing characteristic 3-dimensional kinematic and kinetic features at the ankle, knee, hip, and pelvis during walking trials at slow, normal, and fast speeds. Mixed effects linear regression models were used to identify how each of 78 discrete gait features is affected by variations in walking speed, age, sex, and body mass index. As expected, nearly every feature was associated with variations in walking speed. Several features were also affected by variations in demographic measures, including age affecting sagittal-plane knee kinematics, body mass index affecting sagittal-plane pelvis and hip kinematics, body mass index affecting frontal-plane knee kinematics and kinetics, and sex affecting frontal-plane kinematics at the pelvis, hip, and knee. These results could aid in the design of future studies, as well as clarify how walking speed, age, sex, and body mass index may act as potential confounders in studies with small populations or in populations with insufficient demographic variations for thorough statistical analyses. 相似文献
16.
Continuous monitoring of spine movement function could enhance our understanding of low back pain development. Wearable technologies have gained popularity as promising alternative to laboratory systems in allowing ambulatory movement analysis. This paper aims to review the state of art of current use of wearable technology to assess spine kinematics and kinetics.Four electronic databases and reference lists of relevant articles were searched to find studies employing wearable technologies to assess the spine in adults performing dynamic movements. Two reviewers independently identified relevant papers. Customised data extraction and quality appraisal form were developed to extrapolate key details and identify risk of biases of each study. Twenty-two articles were retrieved that met the inclusion criteria: 12 were deemed of medium quality (score 33.4–66.7%), and 10 of high quality (score >66.8%). The majority of articles (19/22) reported validation type studies. Only 6 reported data collection in real-life environments. Multiple sensors type were used: electrogoniometers (3/22), strain gauges based sensors (3/22), textile piezoresistive sensor (1/22) and accelerometers often used with gyroscopes and magnetometers (15/22). Two sensors units were mainly used and placing was commonly reported on the spine lumbar and sacral regions. The sensors were often wired to data transmitter/logger resulting in cumbersome systems. Outcomes were mostly reported relative to the lumbar segment and in the sagittal plane, including angles, range of motion, angular velocity, joint moments and forces.This review demonstrates the applicability of wearable technology to assess the spine, although this technique is still at an early stage of development. 相似文献
17.
The objective of this study was to quantify the kinematic, kinetic and electromyography differences between individuals with and without chronic ankle instability (CAI) during comfortable (CW) and fast (FW) walking. Twenty-one individuals with CAI and 21 healthy controls were recruited to walk at CW and FW speeds. The dependent variables were gluteus medius, vastus lateralis, gastrocnemius lateralis, gastrocnemius medialis, peroneus longus and tibialis anterior muscles mean activity, ankle and knee angles and moments. Kinematic, kinetic and electromyography variables were compared between groups with a one-dimensional statistical non-parametric mapping analysis. The CAI group exhibited no significant difference for ankle angles and moments compared to the control group. However, the CAI group showed less external knee rotation from 56 to 100% (CW) and 51 to 98% (FW) and more knee abduction moment from 1 to 6% and 7 to 9% (CW) and 1 to 2% (FW) of the stance phase. Less gluteus medius muscle activity was also observed from 6 to 9% and 99 to 100% (CW) of the stance phase for the CAI group. These results suggest proximal biomechanical compensations and will help better understand the underlying deficits associated with CAI. They also indicate that regardless of walking speeds, individuals with CAI exhibit similar differences compared to healthy participants. 相似文献
18.
BackgroundThe aim of this study was to determine whether changes in synergies relate to changes in gait while walking on a treadmill at multiple speeds and slopes. The hypothesis was that significant changes in movement pattern would not be accompanied by significant changes in synergies, suggesting that synergies are not dependent on the mechanical constraints but are instead neurological in origin.MethodsSixteen typically developing children walked on a treadmill for nine combinations (stages) of different speeds and slopes while simultaneously collecting kinematics, kinetics, and surface electromyography (EMG) data. The kinematics for each stride were summarized using a modified version of the Gait Deviation Index that only includes the sagittal plane. The kinetics for each stride were summarized using a modified version of the Gait Deviation Index – Kinetic which includes sagittal plane moments and powers. Within each synergy group, the correlations of the synergies were calculated between the treadmill stages.ResultsWhile kinematics and kinetics were significantly altered at the highest slope compared to level ground when walking on a treadmill, synergies were similar across stages.ConclusionsThe high correlations between synergies across stages indicate that neuromuscular control strategies do not change as children walk at different speeds and slopes on a treadmill. However, the multiple significant differences in kinematics and kinetics between stages indicate real differences in movement pattern. This supports the theory that synergies are neurological in origin and not simply a response to the biomechanical task constraints. 相似文献
19.
Jesus Beltran-Heredia Joaquin Torregrosa Joaquin R. Dominguez Juan Garcia 《Process Biochemistry》2000,35(10):1183-1190
The present work is a study of oxidative degradation of the organic matter present in the washing waters from the black table olive industry. Pollutant organic matter reduction was studied by an aerobic biological process and by the combination of two successive steps: ozonation pretreatment followed by aerobic biological degradation. In the single aerobic biological process, the evolution of biomass and organic matter contents was followed during each experiment. Contaminant removal was followed by means of global parameters directly related to the concentration of organic compounds in those effluents: chemical oxygen demand (COD) and total phenolic content (TP). A kinetic study was performed using the Contois model, which applied to the experimental data, provides the specific kinetic parameters of this model: 4.81×10−2 h−1 for the kinetic substrate removal rate constant, 0.279 g VSS g COD−1 for the cellular yield coefficient and 1.92×10−2 h−1 for the kinetic constant for endogenous metabolism. In the combined process, an ozonation pretreatment is conducted with experiments where an important reduction in the phenolic compounds is achieved. The kinetic parameters of the following aerobic degradation stage are also evaluated, being 5.42×10−2 h−1 for the kinetic substrate removal rate constant, 0.280 g VSS g COD−1 for the cellular yield coefficient and 9.1×10−3 h−1 for the kinetic constant for the endogenous metabolism. 相似文献
20.
Effect of landing height on frontal plane kinematics, kinetics and energy dissipation at lower extremity joints 总被引:1,自引:0,他引:1
Lack of the necessary magnitude of energy dissipation by lower extremity joint muscles may be implicated in elevated impact stresses present during landing from greater heights. These increased stresses are experienced by supporting tissues like cartilage, ligaments and bones, thus aggravating injury risk. This study sought to investigate frontal plane kinematics, kinetics and energetics of lower extremity joints during landing from different heights. Eighteen male recreational athletes were instructed to perform drop-landing tasks from 0.3- to 0.6-m heights. Force plates and motion-capture system were used to capture ground reaction force and kinematics data, respectively. Joint moment was calculated using inverse dynamics. Joint power was computed as a product of joint moment and angular velocity. Work was defined as joint power integrated over time. Hip and knee joints delivered significantly greater joint power and eccentric work (p<0.05) than the ankle joint at both landing heights. Substantial increase (p<0.05) in eccentric work was noted at the hip joint in response to increasing landing height. Knee and hip joints acted as key contributors to total energy dissipation in the frontal plane with increase in peak ground reaction force (GRF). The hip joint was the top contributor to energy absorption, which indicated a hip-dominant strategy in the frontal plane in response to peak GRF during landing. Future studies should investigate joint motions that can maximize energy dissipation or reduce the need for energy dissipation in the frontal plane at the various joints, and to evaluate their effects on the attenuation of lower extremity injury risk during landing. 相似文献