首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
LqhIT2 is an insect-specific neurotoxin from the venom of scorpion. In this study, the LqhIT2 gene was introduced into the entomopathogenic fungus, Metarhizium acridum. The virulence of the genetically modified strain MaLqhIT2 was then evaluated against locusts (Locusta migratoria manilensis). Compared with the wild-type strain, the median lethal cell density (LC50) for MaLqhIT2 was a 22.6-fold lower, and the median times to death (LT50) for MaLqhIT2 were reduced by 30.3 and 29.6 %, respectively, after topical inoculation and injection. MaLqhIT2 also grew significantly faster in the hemolymph than wild-type strain. There were no significant differences in germination, appressorium formation and sporulation in locust carcasses between the MaLqhIT2 and wild-type strain. These results indicate that LqhIT2 increased the virulence of M. acridum towards locusts by shortening the in vivo infection period, without affecting cuticle penetration or conidia formation in the carcasses. LqhIT2 thus shows considerable potential for increasing fungal virulence against locusts.  相似文献   

4.
5.
Calcineurin is highly conserved and regulates growth, conidiation, stress response, and pathogenicity in fungi. However, the functions of calcineurin and its regulatory network in entomopathogenic fungi are not clear. In this study, calcineurin was functionally analyzed by deleting the catalytic subunit MaCnA from the entomopathogenic fungus Metarhizium acridum. The ΔMaCnA mutant had aberrant, compact colonies and blunt, shortened hyphae. Conidia production was reduced, and phialide differentiation into conidiogenous cells was impaired in the ΔMaCnA mutant. ΔMaCnA had thinner cell walls and greatly reduced chitin and β-1,3-glucan content compared to the wild type. The ΔMaCnA mutant was more tolerant to cell wall-perturbing agents and elevated or decreased exogenous calcium but less tolerant to heat, ultraviolet irradiation, and caspofungin than the wild type. Bioassays showed that ΔMaCnA had decreased virulence. Digital gene expression profiling revealed that genes involved in cell wall construction, conidiation, stress tolerance, cell cycle control, and calcium transport were downregulated in ΔMaCnA. Calcineurin affected some components of small G proteins, mitogen-activated protein kinase, and cyclic AMP (cAMP)-protein kinase A signaling pathways in M. acridum. In conclusion, our results gave a global survey of the genes downstream of calcineurin in M. acridum, providing molecular explanations for the changes in phenotypes observed when calcineurin was deleted.  相似文献   

6.
7.
Peroxisomes are involved in various metabolic processes and are important for virulence in different pathogenic fungi. How peroxisomes rapidly emerge in the appressorium during fungal infection is poorly understood. Here, we describe a gene, PEF1, which can regulate peroxisome formation in the appressorium by controlling peroxisomal fission, and is required for plant infection in the rice blast fungus Magnaporthe oryzae. Targeted deletion of PEF1 resulted in a reduction in virulence and a delay in penetration and invasive growth in host cells. PEF1 was particularly expressed during appressorial development, and its encoding protein was co‐localized with peroxisomes during appressorial development. Compared with the massive vesicle‐shaped peroxisomes formed in the wild‐type appressorium, the Δpef1 mutant could only form stringy linked immature peroxisomes, suggesting that PEF1 was involved in peroxisomal fission during appressorium formation. We also found that the Δpef1 mutant could not utilize fatty acids efficiently, which can improve significantly the expression level of PEF1 and induce peroxisomal fission. As expected, the Δpef1 mutant showed reduced intracellular production of reactive oxygen species (ROS) during appressorium formation and induced ROS accumulation in host cells during infection. Taken together, PEF1‐mediated peroxisomal fission is important for fungal infection by controlling the number of peroxisomes in the appressorium.  相似文献   

8.
9.

Background  

The entomopathogenic fungus Metarhizium acridum has been used as an important biocontrol agent instead of insecticides for controlling crop pests throughout the world. However, its virulence varies with environmental factors, especially temperature. Neutral trehalase (Ntl) hydrolyzes trehalose, which plays a role in environmental stress response in many organisms, including M. acridum. Demonstration of a relationship between Ntl and thermotolerance or virulence may offer a new strategy for enhancing conidiospore thermotolerance of entomopathogenic fungi through genetic engineering.  相似文献   

10.
The insect pathogenic fungus, Metarhizium anisopliae is a commercialized microbial agent used in biological control efforts targeting a diverse range of agricultural and other insect pests. The second step in the synthesis of a group of M. anisopliae α-pyrone diterpenoids (termed subglutinols) involves the activity of a prenyltransferase family geranylgeranyl diphosphate synthase (product of the subD/MaGGPPS5 gene). Here, we show that targeted gene disruption of MaGGPPS5 results in earlier conidial germination and faster greater vegetative growth compared to the wild type (WT) parent and complemented strains. In addition, insect bioassays revealed that the ΔMaGGPPS5 mutant strain displayed significantly increased virulence, with a ~50% decrease in the mean lethal time (LT50, from 6 to 3 days) to kill (50% of) target insects, and an ~15–40-fold decrease in the mean lethal dose (LC50). Metabolite profiling indicated increased accumulation in the ΔMaGGPPS5 mutant of select subglutinols (A, B and C) and destruxins (A, A2, B and B2), the latter a set of fungal secondary metabolites that act as insect toxins, with a concomitant loss of production of subglutinol ‘analogue 45’. These data suggest that the increased virulence phenotype seen for the ΔMaGGPPS5 strain can, at least in part, be attributed to a combination of faster growth and increased insect toxin production, linking the production of two different secondary metabolite pathways, and represent a novel approach for the screening of isolates with enhanced virulence via modulation of terpenoid secondary metabolite biosynthesis.  相似文献   

11.
Conidial germination and the formation of appressoria are important events in the interactions between entomopathogenic fungi and their arthropod hosts. In this study, we demonstrate the effects of lipids extracted from tick epicuticle and the surface of a mammalian host (calf) on conidial germination and the development of appressoria in two subspecies of Metarhizium anisopliae, M. anisopliae var. anisopliae (M.an.an.-7) and M. anisopliae var. acridum (M.an.ac.-5), which have different levels of virulence toward ticks. Pentane extracts of epicuticles of ticks susceptible and resistant to fungal infection always stimulated the germination of M.an.an.-7 conidia and the development of their appressoria; whereas the effects of dichloromethane (DCM) extracts of tick epicuticle varied depending on the tick. The DCM extracts from most of the tick species and developmental stages stimulated conidial germination and/or the formation of appressoria in M.an.an.-7. However, a DCM extract of lipids from the most resistant tick, engorged Hyalomma excavatum female, inhibited the germination of M.an.an.-7 conidia. Conidia of the non-virulent M.an.ac.-5 did not germinate on agarose amended with any of the examined tick extracts. However, when the tick extracts were placed on bactoagar, conidial germination increased 7- to 8-fold. Extracts from the skin, hair and ear secretions of a calf stimulated conidial germination and the formation of appressoria in M.an.an.-7, but not M.an.ac.-5. This study demonstrates that lipids from tick epicuticles and mammalian skin selectively affect the germination of conidia of entomopathogenic fungi. The effects of these lipids may explain the variability in tick control these fungi provide for different hosts.  相似文献   

12.
Lipid droplets (LDs) serve as one of the major reservoirs in conidia of Magnaporthe oryzae and are quickly utilized during appressorium formation. Here, we identified a gene, LDP1, encoding a perilipin that is important for LD formation and utilization during appressorium maturation. LDP1 is highly expressed in conidium and immature appressorium. Disruption mutants of LDP1 were significantly reduced in virulence, due to appressorial turgor reduction and difficulty in penetration. LDs were significantly reduced in the Δldp1 mutant, indicating LDP1 was required for LDs formation. LDP1 was colocalized with the LDs in conidium and immature appressorium but was gradually separated during appressorium maturation. A typical intracellular triacylglycerol lipase, TGL1-2, was clearly separated with LDs in conidium and immature appressorium but was well colocalized with LDs during appressorium maturation. The subcellular localization of TGL1-2 was affected by LDP1. These data suggested that LDP1 was bound to LDs for protecting from utilization in conidia and at the early appressorium stage but was separated from LDs for lipase entering and degradation. LDP1 was phosphorylated by CPKA at Thr96, which was essential for its localization and functions. These data indicate perilipin LDP1 can coordinate LD formation and utilization for appressorium-mediated infection of M. oryzae.  相似文献   

13.
14.
Botrytis cinerea is the causative agent of grey mould on over 1000 plant species and annually causes enormous economic losses worldwide. However, the fungal factors that mediate pathogenesis of the pathogen remain largely unknown. Here, we demonstrate that a novel B. cinerea-specific pathogenicity-associated factor BcHBF1 (h yphal b ranching-related f actor 1), identified from virulence-attenuated mutant M8008 from a B. cinerea T-DNA insertion mutant library, plays an important role in hyphal branching, infection structure formation, sclerotial formation and full virulence of the pathogen. Deletion of BcHBF1 in B. cinerea did not impair radial growth of mycelia, conidiation, conidial germination, osmotic- and oxidative-stress adaptation, as well as cell wall integrity of the ∆Bchbf1 mutant strains. However, loss of BcHBF1 impaired the capability of hyphal branching, appressorium and infection cushion formation, appressorium host penetration and virulence of the pathogen. Moreover, disruption of BcHBF1 altered conidial morphology and dramatically impaired sclerotial formation of the mutant strains. Complementation of BcHBF1 completely rescued all the phenotypic defects of the ∆Bchbf1 mutants. During young hyphal branching, host penetration and early invasive growth of the pathogen, BcHBF1 expression was up-regulated, suggesting that BcHBF1 is required for these processes. Our findings provide novel insights into the fungal factor mediating pathogenesis of the grey mould fungus via regulation of its infection structure formation, host penetration and invasive hyphal branching and growth.  相似文献   

15.
To avoid pathogen-associated molecular pattern recognition, the hemibiotrophic maize pathogen Colletotrichum graminicola secretes proteins mediating the establishment of biotrophy. Targeted deletion of 26 individual candidate genes and seven gene clusters comprising 32 genes of C. graminicola identified a pathogenicity cluster (CLU5) of five co-linear genes, all of which, with the exception of CLU5b, encode secreted proteins. Targeted deletion of all genes of CLU5 revealed that CLU5a and CLU5d are required for full appressorial penetration competence, with virulence deficiencies independent of the host genotype and organ inoculated. Cytorrhysis experiments and microscopy showed that Δclu5a mutants form pressurized appressoria, but they are hampered in forming penetration pores and fail to differentiate a penetration peg. Whereas Δclu5d mutants elicited WT-like papillae, albeit at increased frequencies, papillae induced by Δclu5a mutants were much smaller than those elicited by the WT. Synteny of CLU5 is not only conserved in Colletotrichum spp. but also in additional species of Sordariomycetes including insect pathogens and saprophytes suggesting importance of CLU5 for fungal biology. Since CLU5a and CLU5d also occur in non-pathogenic fungi and since they are expressed prior to plant invasion and even in vegetative hyphae, the encoded proteins probably do not act primarily as effectors.  相似文献   

16.
Various surface signals are recognized by Magnaporthe oryzae to activate the Pmk1 MAP kinase that is essential for appressorium formation and invasive growth. One of upstream sensors of the Pmk1 pathway is the MoMsb2 signalling mucin. However, the activation of MoMsb2 and its relationship with other sensors is not clear. In this study, we showed that the cleavage and transmembrane domains are essential for MoMsb2 functions. Cleavage of MoMsb2 was further confirmed by western blot analysis, and five putative cleavage sites were functionally characterized. Expression of the extracellular region alone partially rescued the defects of Momsb2 in appressorium formation and virulence. The cytoplasmic region of MoMsb2, although dispensable for appressorium formation, was more important for penetration and invasive growth. Interestingly, the Momsb2 cbp1 double mutant deleted of both mucin genes was blocked in Pmk1 activation. It failed to form appressoria on artificial surfaces and was non‐pathogenic. In addition, we showed that MoMsb2 interacts with Ras2 but not with MoCdc42 in co‐immunoprecipitation assays. Overall, results from this study indicated that the extracellular and cytoplasmic regions of MoMsb2 have distinct functions in appressorium formation, penetration and invasive growth, and MoMsb2 has overlapping functions with Cbp1 in recognizing environmental signals for Pmk1 activation.  相似文献   

17.
《Autophagy》2013,9(4):538-549
Autophagy is a highly conserved process that maintains intracellular homeostasis by degrading proteins or organelles in all eukaryotes. The effect of autophagy on fungal biology and infection of insect pathogens is unknown. Here, we report the function of MrATG8, an ortholog of yeast ATG8, in the entomopathogenic fungus Metarhizium robertsii. MrATG8 can complement an ATG8-defective yeast strain and deletion of MrATG8 impaired autophagy, conidiation and fungal infection biology in M. robertsii. Compared with the wild-type and gene-rescued mutant, Mratg8Δ is not inductive to form the infection-structure appressorium and is impaired in defense response against insect immunity. In addition, accumulation of lipid droplets (LDs) is significantly reduced in the conidia of Mratg8Δ and the pathogenicity of the mutant is drastically impaired. We also found that the cellular level of a LD-specific perilipin-like protein is significantly lowered by deletion of MrATG8 and that the carboxyl terminus beyond the predicted protease cleavage site is dispensable for MrAtg8 function. To corroborate the role of autophagy in fungal physiology, the homologous genes of yeast ATG1, ATG4 and ATG15, designated as MrATG1, MrATG4 and MrATG15, were also deleted in M. robertsii. In contrast to Mratg8Δ, these mutants could form appressoria, however, the LD accumulation and virulence were also considerably impaired in the mutant strains. Our data showed that autophagy is required in M. robertsii for fungal differentiation, lipid biogenesis and insect infection. The results advance our understanding of autophagic process in fungi and provide evidence to connect autophagy with lipid metabolism.  相似文献   

18.
19.
20.
本研究以罗伯茨绿僵菌Metarhizium robertsii为研究对象,针对鉴定出的精胺合成酶基因(MAA_02088, Mrsps),利用农杆菌介导的同源重组方法获得Mrsps敲除株ΔMrsps。与野生型相比,ΔMrsps营养生长和产孢能力下降,对氯化钠和紫外照射耐受性增强。大蜡螟幼虫毒力分析表明,浸渍和注射两种情况下ΔMrsps致病力降低,半致死时间(LT50:6.71和4.75 d)比野生型(LT50:5.17和4.19 d)显著增加。Mrsps敲除后不影响附着胞形成率和蝉翅穿透能力,但会显著下调昆虫血腔定殖相关基因的表达量。这些结果说明精胺合成酶MrSPS参与调控罗伯茨绿僵菌的生长发育、外界胁迫应答和致病力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号