首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The fouetté turn in classical ballet dancing is a continuous turn with the whipping of the gesture leg and the arms and the bending and stretching of the supporting leg. The knowledge of the movement intensities of both legs for the turn would be favorable for the conditioning of the dancer's body. The purpose of this study was to estimate the intensities. The hypothesis of this study was that the intensities were higher in the supporting leg than in the gesture leg. The joint torques of both legs were determined in the turns performed by seven experienced female classical ballet dancers with inverse dynamics using three high-speed cine cameras and a force platform. The hip abductor torque, knee extensor and plantar flexor torques of the supporting leg were estimated to be exerted up to their maximum levels and the peaks of the torques were larger than the peaks of their matching torques of the gesture leg. Thus, the hypothesis was partly supported. Training of the supporting leg rather than the gesture leg would help ballet dancers perform many revolutions of the fouetté turn continuously.  相似文献   

2.
Biomechanics of overground vs. treadmill walking in healthy individuals.   总被引:1,自引:0,他引:1  
The goal of this study was to compare treadmill walking with overground walking in healthy subjects with no known gait disorders. Nineteen subjects were tested, where each subject walked on a split-belt instrumented treadmill as well as over a smooth, flat surface. Comparisons between walking conditions were made for temporal gait parameters such as step length and cadence, leg kinematics, joint moments and powers, and muscle activity. Overall, very few differences were found in temporal gait parameters or leg kinematics between treadmill and overground walking. Conversely, sagittal plane joint moments were found to be quite different, where during treadmill walking trials, subjects demonstrated less dorsiflexor moments, less knee extensor moments, and greater hip extensor moments. Joint powers in the sagittal plane were found to be similar at the ankle but quite different at the knee and hip joints. Differences in muscle activity were observed between the two walking modalities, particularly in the tibialis anterior throughout stance, and in the hamstrings, vastus medialis and adductor longus during swing. While differences were observed in muscle activation patterns, joint moments and joint powers between the two walking modalities, the overall patterns in these behaviors were quite similar. From a therapeutic perspective, this suggests that training individuals with neurological injuries on a treadmill appears to be justified.  相似文献   

3.
The role of intersegmental dynamics during rapid limb oscillations   总被引:4,自引:0,他引:4  
The interactive dynamic effects of muscular, inertial and gravitational moments on rapid, multi-segmented limb oscillations were studied. Using three-segment, rigid-body equations of motion, hip, knee and ankle intersegmental dynamics were calculated for the steady-state cycles of the paw-shake response in adult spinal cats. Hindlimb trajectories were filmed to obtain segmental kinematics, and myopotentials of flexors and extensors at each of the three joints were recorded synchronously with the ciné film. The segmental oscillations that emerged during the paw-shake response were a consequence of an interplay between active and passive musculotendinous forces, inertial forces, and gravity. During steady-state oscillations, the amplitudes of joint excursions, peak angular velocities, and peak angular accelerations increased monotonically and significantly in magnitude from the proximal joint (hip) to the most distal joint (ankle). In contrast to these kinematic relationships, the maximal values of net moments at the hip and knee were equal in magnitude, but of significantly lower magnitude than the large net moment at the ankle joint. At both the ankle and the knee, the flexor and extensor muscle moments were equal, but at the hip the magnitude of the peak flexor muscle moment was significantly greater than the extensor muscle moment. Muscle moments at the hip not only acted to counterbalance accelerations of the more distal segments, but also acted to maintain the postural orientation of the hindlimb. Large muscle moments at the knee functioned to counterbalance the large inertial moments generated by the large angular accelerations of the paw. At the ankle, the muscle moments dominated the generation of the paw accelerations. At the ankle and the knee, muscle moments controlled limb dynamics by slowing and reversing joint motions, and the active muscle forces contributing to ankle and knee moments were derived from lengthening of active musculotendinous units. In contrast to the more distal joints, the active muscles crossing the hip predominantly shortened as a result of the interplay among inertial forces and gravitational moments. The muscle function and kinetic data explain key features of the complex interactions that occur between central control mechanisms and multi-segmented, oscillating limb segments during the paw-shake response.  相似文献   

4.
Asymmetry in the alignment of the lower limbs during weight-bearing activities is associated with patellofemoral pain syndrome (PFPS), caused by an increase in patellofemoral (PF) joint stress. High neuromuscular demands are placed on the lower limb during the propulsion phase of the single leg triple hop test (SLTHT), which may influence biomechanical behavior. The aim of the present cross-sectional study was to compare kinematic, kinetic and muscle activity in the trunk and lower limb during propulsion in the SLTHT using women with PFPS and pain free controls. The following measurements were made using 20 women with PFPS and 20 controls during propulsion in the SLTHT: kinematics of the trunk, pelvis, hip, and knee; kinetics of the hip, knee and ankle; and muscle activation of the gluteus maximus (GM), gluteus medius (GMed), biceps femoris (BF) and vastus lateralis (VL). Differences between groups were calculated using three separate sets of multivariate analysis of variance for kinematics, kinetics, and electromyographic data. Women with PFPS exhibited ipsilateral trunk lean; greater trunk flexion; greater contralateral pelvic drop; greater hip adduction and internal rotation; greater ankle pronation; greater internal hip abductor and ankle supinator moments; lower internal hip, knee and ankle extensor moments; and greater GM, GMed, BL, and VL muscle activity. The results of the present study are related to abnormal movement patterns in women with PFPS. We speculated that these findings constitute strategies to control a deficient dynamic alignment of the trunk and lower limb and to avoid PF pain. However, the greater BF and VL activity and the extensor pattern found for the hip, knee, and ankle of women with PFPS may contribute to increased PF stress.  相似文献   

5.
Two-dimensional analyses of sprint kinetics are commonly undertaken but often ignore the metatarsalphalangeal (MTP) joint and model the foot as a single segment. Due to the linked-segment nature of inverse dynamics analyses, the aim of this study was to investigate the effect of ignoring the MTP joint on the calculated joint kinetics at the other stance leg joints during sprinting. High-speed video and force platform data were collected from four to five trials for each of three international athletes. Resultant joint moments, powers, and net work at the stance leg joints during the first stance phase after block clearance were calculated using three different foot models. By ignoring the MTP joint, peak extensor moments at the ankle, knee, and hip were on average 35% higher (p < .05 for each athlete), 40% lower (p < .05), and 9% higher (p > .05), respectively, than those calculated with the MTP joint included. Peak ankle and knee joint powers and net work at all joints were also significantly (p < .05) different. By ignoring a genuine MTP joint plantar flexor moment, artificially high peak ankle joint moments are calculated, and these also affect the calculated joint kinetics at the knee.  相似文献   

6.
The aim of the study was to investigate the distribution of net joint moments in the lower extremities during walking on high-heeled shoes compared with barefooted walking at identical speed. Fourteen female subjects walked at 4 km/h across three force platforms while they were filmed by five digital video cameras operating at 50 frames/second. Both barefooted walking and walking on high-heeled shoes (heel height: 9 cm) were recorded. Net joint moments were calculated by 3D inverse dynamics. EMG was recorded from eight leg muscles. The knee extensor moment peak in the first half of the stance phase was doubled when walking on high heels. The knee joint angle showed that high-heeled walking caused the subjects to flex the knee joint significantly more in the first half of the stance phase. In the frontal plane a significant increase was observed in the knee joint abductor moment and the hip joint abductor moment. Several EMG parameters increased significantly when walking on high-heels. The results indicate a large increase in bone-on-bone forces in the knee joint directly caused by the increased knee joint extensor moment during high-heeled walking, which may explain the observed higher incidence of osteoarthritis in the knee joint in women as compared with men.  相似文献   

7.
To investigate the biomechanical strategy adopted by older adults with medial compartment knee osteoarthritis (OA) for successful obstacle crossing with the trailing limb, and to discuss its implications for fall-prevention, 15 older adults with bilateral medial compartment knee OA and 15 healthy controls were recruited to walk and cross obstacles of heights of 10%, 20%, and 30% of their leg lengths. Kinematic and kinetic data were obtained using a three-dimensional (3D) motion analysis system and forceplates. The OA group had higher trailing toe clearance than the controls. When the trailing toe was above the obstacle, the OA group showed greater swing hip abduction, yet smaller stance hip adduction, knee flexion, and ankle eversion. They showed greater pelvic anterior tilt and toe-out angle. They also exhibited greater peak knee abductor moments during early stance and at the instant when the swing toe was above the obstacle, while a greater peak hip abductor moment was found during late stance. Smaller knee extensor, yet greater hip extensor moments, were found in the OA group throughout the stance phase. In order to achieve higher toe clearance with knee OA, particular joint kinematic and kinetic strategies have been adopted by the OA group. Weakness in the hip abductors and extensors in individuals with OA may be risk factors for tripping owing to the greater demands on these muscle groups during obstacle crossing by these individuals.  相似文献   

8.
Knee varus position and motion have been correlated with increased medial knee loading during gait. The purpose of this study is to determine whether runners with excessive varus excursion (EVE) at the knee demonstrate frontal plane knee and hip kinetics that are different from those of runners with normal varus excursion (NVE). Twelve runners with EVE were compared with 12 NVE subjects using three-dimensional kinematics and kinetics. Frontal plane angles and moments were compared at the knee and hip. Runners with EVE had significantly greater abductor moment of the knee (p = .004) and lower peak abductor moment of the hip (p = .047). Runners with EVE demonstrate knee and hip mechanics thought to be associated with increased medial tibiofemoral loading. Further understanding of how changing hip abductor moments may affect changes in knee abductor moments during running may potentially lead to interventions that augment long-term risk of injury.  相似文献   

9.
The aim of the present study was to analyze the net joint moment distribution, joint forces and kinematics during cycling to exhaustion. Right pedal forces and lower limb kinematics of ten cyclists were measured throughout a fatigue cycling test at 100% of POMAX. The absolute net joint moments, resultant force and kinematics were calculated for the hip, knee and ankle joint through inverse dynamics. The contribution of each joint to the total net joint moments was computed. Decreased pedaling cadence was observed followed by a decreased ankle moment contribution to the total joint moments in the end of the test. The total absolute joint moment, and the hip and knee moments has also increased with fatigue. Resultant force was increased, while kinematics has changed in the end of the test for hip, knee and ankle joints. Reduced ankle contribution to the total absolute joint moment combined with higher ankle force and changes in kinematics has indicated a different mechanical function for this joint. Kinetics and kinematics changes observed at hip and knee joint was expected due to their function as power sources. Kinematics changes would be explained as an attempt to overcome decreased contractile properties of muscles during fatigue.  相似文献   

10.
According to the state of the art model (single inverted pendulum) the regulation of quiet human stance seems to be dominated by ankle joint actions. Recent findings substantiated both in-phase and anti-phase fluctuations of ankle and hip joint kinematics can be identified in quiet human stance. Thus, we explored in an experimental study to what extent all three leg joints actually contribute to the balancing problem of quiet human stance. We also aimed at distinguishing kinematic from torque contributions. Thereto, we directly measured ankle, knee, and hip joint kinematics with high spatial resolution and ground reaction forces. Then, we calculated the six respective joint torques and, additionally, the centre of mass kinematics. We searched for high cross-correlations between all these mechanical variables. Beyond confirming correlated anti-phase kinematics of ankle and hip, the main results are: (i) ankle and knee joint fluctuate tightly (torque) coupled and (ii) the bi-articular muscles of the leg are well suited to fulfil the requirements of fluctuations around static equilibrium. Additionally, we (iii) identified high-frequency oscillations of the shank between about 4 and 8 Hz and (iv) discriminated potentially passive and active joint torque contributions. These results demonstrate that all leg joints contribute actively and concertedly to quiet human stance, even in the undisturbed case. Moreover, they substantiate the single inverted pendulum paradigm to be an invalid model for quiet human stance.  相似文献   

11.
The purpose of this study was to characterize biomechanically three different toe-walking gait patterns, artificially induced in six neurologically intact subjects and to compare them to selected cases of pathological toe-walking. The subjects, equipped with lightweight mechanical exoskeleton with elastic ropes attached to the left leg's heel on one end and on shank and thigh on the other end in a similar anatomical locations where soleus and gastrocnemius muscles attach to skeleton, walked at speed of approximately 1m/s along the walkway under four experimental conditions: normal walking (NW), soleus contracture emulation (SOL), gastrocnemius contracture emulation (GAS) and emulation of both soleus and gastrocnemius contractures (SOLGAS). Reflective markers and force platform data were collected and ankle, knee and hip joint angles, moments and powers were calculated using inverse dynamic model for both legs. Characteristic peaks of averaged kinematic and kinetic patterns were compared among all four experimental conditions in one-way ANOVA. In the left leg SOL contracture mainly influenced the ankle angle trajectory, while GAS and SOLGAS contractures influenced the ankle and knee angle trajectories. GAS and SOLGAS contractures significantly increased ankle moment during midstance as compared to SOL contracture and NW. All three toe-walking experimental conditions exhibited significant power absorption in the ankle during loading response, which was absent in the NW condition, while during preswing significant decrease in power absorption as compared to NW was seen. In the knee joint SOL contracture diminished, GAS contracture increased while SOLGAS contracture approximately halved knee extensor moment during midstance as compared to NW. All three toe-walking experimental conditions decreased hip range of motion, hip flexor moment and power requirements during stance phase. Main difference in the right leg kinematic and kinetic patterns was seen in the knee moment trajectory, where significant increase in the knee extensor moment took place in terminal stance for GAS and SOLGAS experimental conditions as compared to SOL and NW. The kinetic trajectories under SOL and GAS experimental conditions were qualitatively compared to two selected clinical cases showing considerable similarity. This implies that distinct differences in kinetics between SOL, GAS and SOLGAS experimental conditions, as described in this paper, may be clinically relevant in determining the relative contribution of soleus and gastrocnemius muscles contractures to toe-walking in particular pathological gait.  相似文献   

12.
Mechanical analysis of the landing phase in heel-toe running.   总被引:3,自引:0,他引:3  
Results of mechanical analyses of running may be helpful in the search for the etiology of running injuries. In this study a mechanical analysis was made of the landing phase of three trained heel-toe runners, running at their preferred speed and style. The body was modeled as a system of seven linked rigid segments, and the positions of markers defining these segments were monitored using 200 Hz video analysis. Information about the ground reaction force vector was collected using a force plate. Segment kinematics were combined with ground reaction force data for calculation of the net intersegmental forces and moments. The vertical component of the ground reaction force vector Fz was found to reach a first peak approximately 25 ms after touch-down. This peak occurs because, in the support leg, the vertical acceleration of the knee joint is not reduced relative to that of the ankle joint by rotation of the lower leg, so that the support leg segments collide with the floor. Rotation of the support upper leg, however, reduces the vertical acceleration of the hip joint relative to that of the knee joint, and thereby plays an important role in limiting the vertical forces during the first 40 ms. Between 40 and 100 ms after touch-down, the vertical forces are mainly limited by rotation of the support lower leg. At the instant that Fz reaches its first peak, net moments about ankle, knee and hip joints of the support leg are virtually zero. The net moment about the knee joint changed from -100 Nm (flexion) at touch-down to +200 Nm (extension) 50 ms after touch-down. These changes are too rapid to be explained by variations in the muscle activation levels and were ascribed to spring-like behavior of pre-activated knee flexor and knee extensor muscles. These results imply that the runners investigated had no opportunity to control the rotations of body segments during the first part of the contact phase, other than by selecting a certain geometry of the body and muscular (co-)activation levels prior to touch-down.  相似文献   

13.
A high angular velocity of the thigh of the stance limb, generated by hip extensor musculature, is commonly thought to be a performance-determining factor in sprint running. However, the thigh segment is a component of a linked system (i.e., the lower limb), therefore, it is unlikely that the kinematics of the thigh will be due exclusively to the resultant joint moment (RJM) at the hip. The purpose of this study was to quantify, by means of segment-interaction analysis, the determinants of sagittal plane kinematics of the lower limb segments during the stance phase of sprint running. Video and ground reaction force data were collected from four male athletes performing maximal-effort sprints. The analysis revealed that during the first-third of the stance phase, a hip extension moment was the major determinant of the increasing angular velocity of the thigh. However, during the mid-third of stance, hip and knee extension moments and segment interaction effects all contributed to the thigh attaining its peak angular velocity. Extension moments at the ankle, and to a lesser extent the knee, were attributed with preventing the 'collapse' of the shank under the effects of the interactive moment due to ground reaction force. The angular acceleration of the foot was determined almost completely by the RJM at the ankle and the interactive moment due to ground reaction force. Further research is required to determine if similar results exit for a wide range of athletes and for other stages of a sprint race (e.g. early acceleration, maximal velocity, and deceleration phases).  相似文献   

14.
Lower extremity corrective reactions to slip events.   总被引:7,自引:0,他引:7  
A significant number of injuries in the workplace is attributed to slips and falls. Biomechanical responses to actual slip events determine whether the outcome of a slip will be recovery or a fall. The goal of this study was to examine lower extremity joint moments and postural adjustments for experimental evidence of corrective strategies evoked during slipping in an attempt to prevent falling. Sixteen subjects walked onto a possibly oily vinyl tile floor, while ground reaction forces and body motion were recorded at 350 Hz. The onset of corrective reactions by the body in an attempt to recover from slips became evident at about 25% of stance and continued until about 45% into stance, i.e. on average between 190 and 350 ms after heel contact. These reactions included increased flexion moment at the knee and extensor activity at the hip. The ankle, on the other hand, acted as a passive joint (no net moment) during fall trials. Joint kinematics showed increased knee flexion and forward rotation of the shank in an attempt to bring the foot back towards the body. Once again, the ankle kinematics appeared to play a less dominant role (compared to the knee) in recovery attempts. This study indicates that humans generate corrective reactions to slips that are different than previously reported responses to standing perturbations translating the supporting surface.  相似文献   

15.
This study examined lower extremity joint moments during walk and turn with different turn angles and pivot feet. Seven young adults (age 21+/-1.3 yrs) were asked to walk at a self-selected speed (1.35+/-0.15 m/s) and to turn to the right using right (spin turn) and left (step turn) pivot feet at turn angles of 0 degrees (walking straight), 45 degrees, and 90 degrees. Video and forceplate systems were employed for kinematic and kinetic data collection. Inverse dynamics approach was used to compute joint moments using segmental kinematics, ground reaction forces, and moments. The participants decreased their forward speed by increasing the ankle plantar flexion moment as the turn angle increased. The peak ankle plantar flexion moment during the braking phase increased with increasing turn angle for both spin and step turns. Ankle invertor moments were observed only in spin turns, suggesting that more ankle muscles are involved in spin turns than in step turns. The turn angle had a significant effect on the transverse plane moment profiles at the different lower extremity joints. The results suggest that the loading patterns of different anatomical structures in the lower extremity are affected by both turn angle and pivot foot during walk and turn actions.  相似文献   

16.
Turning is a common locomotor task essential to daily activity; however, very little is known about the forces and moments responsible for the kinematic adaptations occurring relative to straight-line gait in typically developing children. Thus, the aims of this study were to analyse ground reaction forces (GRFs), ground reaction free vertical torque (TZ), and the lower-limb joint kinetics of 90° outside (step) and inside (spin) limb turns. Step, spin, and straight walking trials from fifty-four typically developing children were analysed. All children were fit with the Plug-in Gait and Oxford Foot Model marker sets while walking over force plates embedded in the walkway. Net internal joint moments and power were computed via a standard inverse dynamics approach. All dependent variables were statistically analysed over the entire curves using the mean difference 95% bootstrap confidence band approach. GRFs were directed medially for step turns and laterally for spin turns during the turning phase. Directions were reversed and magnitudes decreased during the approach phase. Step turns showed reduced ankle power generation, while spin turns showed large TZ. Both strategies required large knee and hip coronal and transverse plane moments during swing. These kinetic differences highlight adaptations required to maintain stability and reorient the body towards the new walking direction during turning. From a clinical perspective, turning gait may better reveal weaknesses and motor control deficits than straight walking in pathological populations, such as children with cerebral palsy, and could potentially be implemented in standard gait analysis sessions.  相似文献   

17.
Musculoskeletal modeling and simulations have vast potential in clinical and research fields, but face various challenges in representing the complexities of the human body. Soft tissue artifact from skin-mounted markers may lead to non-physiological representation of joint motions being used as inputs to models in simulations. To address this, we have developed adaptive joint constraints on five of the six degree of freedom of the knee joint based on in vivo tibiofemoral joint motions recorded during walking, hopping and cutting motions from subjects instrumented with intra-cortical pins inserted into their tibia and femur. The constraint boundaries vary as a function of knee flexion angle and were tested on four whole-body models including four to six knee degrees of freedom. A musculoskeletal model developed in OpenSim simulation software was constrained to these in vivo boundaries during level gait and inverse kinematics and dynamics were then resolved. Statistical parametric mapping indicated significant differences (p < 0.05) in kinematics between bone pin constrained and unconstrained model conditions, notably in knee translations, while hip and ankle flexion/extension angles were also affected, indicating the error at the knee propagates to surrounding joints. These changes to hip, knee, and ankle kinematics led to measurable changes in hip and knee transverse plane moments, and knee frontal plane moments and forces. Since knee flexion angle can be validly represented using skin mounted markers, our tool uses this reliable measure to guide the five other degrees of freedom at the knee and provide a more valid representation of the kinematics for these degrees of freedom.  相似文献   

18.
This study examines the effects of a radical bariatric surgery-induced weight loss on the gait of obese subjects. We performed a three-dimensional motion analysis of lower limbs, and collected force platform data in the gait laboratory to calculate knee and hip joint moments. Subjects (n=13) performed walking trials in the laboratory before and 8.8 months (SD 4.2) after the surgical procedure at two gait speeds (1.2m/s and 1.5m/s). The average weight loss was 26.7kg (SD 9.2kg), corresponding to 21.5% (SD 6.8%) of the initial weight. We observed a decrease in step width at both gait speeds, but no changes in relative double support or swing time or stride length. A significant decrease was noted in the absolute values of peak knee abductor, peak knee flexor and peak hip extensor moments. However, the moment values normalized by the body weight and height remained unchanged in most cases. Thus, we conclude that weight loss reduces hip and knee joint moments in proportion to the amount of weight lost.  相似文献   

19.
Patients with knee OA show altered gait patterns, affecting their quality of living. The current study aimed to quantify the effects of bilateral knee OA on the intra-limb and inter-limb sharing of the support of the body during gait. Fifteen patients with mild, 15 with severe bilateral knee OA, and 15 healthy controls walked along a walkway while the kinematic and kinetic data were measured. Compared with the controls, the patients significantly reduced their knee extensor moments and the corresponding contributions to the total support moment in the sagittal plane (p<0.05). For compensation, the mild OA group significantly increased the hip extensor moments (p<0.05) to maintain close-to-normal support and a more symmetrical inter-limb load-sharing during double-limb support. The severe OA group involved compensatory actions of both the ankle and hip, but did not succeed in maintaining a normal sagittal total support moment during late stance, nor a symmetrical inter-limb load-sharing during double-limb support. In the frontal plane, the knee abductor moments and the corresponding contributions to the total support moment were not affected by the changes in the other joints, regardless of the severity of the disease. The observed compensatory changes suggest that strengthening of weak hip muscles is essential for body support during gait in patients with knee OA, but that training of weak ankle muscles may also be needed for patients with severe knee OA.  相似文献   

20.
ABSTRACT: Bryanton, MA, Kennedy, MD, Carey, JP, and Chiu, LZF. Effect of squat depth and barbell load on relative muscular effort in squatting. J Strength Cond Res 26(10): 2820-2828, 2012-Resistance training is used to develop muscular strength and hypertrophy. Large muscle forces, in relation to the muscle's maximum force-generating ability, are required to elicit these adaptations. Previous biomechanical analyses of multi-joint resistance exercises provide estimates of muscle force but not relative muscular effort (RME). The purpose of this investigation was to determine the RME during the squat exercise. Specifically, the effects of barbell load and squat depth on hip extensor, knee extensor, and ankle plantar flexor RME were examined. Ten strength-trained women performed squats (50-90% 1 repetition maximum) in a motion analysis laboratory to determine hip extensor, knee extensor, and ankle plantar flexor net joint moment (NJM). Maximum isometric strength in relation to joint angle for these muscle groups was also determined. Relative muscular effect was determined as the ratio of NJM to maximum voluntary torque matched for joint angle. Barbell load and squat depth had significant interaction effects on hip extensor, knee extensor, and ankle plantar flexor RME (p < 0.05). Knee extensor RME increased with greater squat depth but not barbell load, whereas the opposite was found for the ankle plantar flexors. Both greater squat depth and barbell load increased hip extensor RME. These data suggest that training for the knee extensors can be performed with low relative intensities but require a deep squat depth. Heavier barbell loads are required to train the hip extensors and ankle plantar flexors. In designing resistance training programs with multi-joint exercises, how external factors influence RME of different muscle groups should be considered to meet training objectives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号