共查询到20条相似文献,搜索用时 15 毫秒
1.
de Poot SA Westgeest M Hostetter DR Van Damme P Plasman K Demeyer K Broekhuizen R Gevaert K Craik CS Bovenschen N 《The Biochemical journal》2011,437(3):431-442
Cytotoxic lymphocyte protease GrM (granzyme M) is a potent inducer of tumour cell death and a key regulator of inflammation. Although hGrM (human GrM) and mGrM (mouse GrM) display extensive sequence homology, the substrate specificity of mGrM remains unknown. In the present study, we show that hGrM and mGrM have diverged during evolution. Positional scanning libraries of tetrapeptide substrates revealed that mGrM is preferred to cleave after a methionine residue, whereas hGrM clearly favours a leucine residue at the P1 position. The kinetic optimal non-prime subsites of both granzymes were also distinct. Gel-based and complementary positional proteomics showed that hGrM and mGrM have a partially overlapping set of natural substrates and a diverged prime and non-prime consensus cleavage motif with leucine and methionine residues being major P1 determinants. Consistent with positional scanning libraries of tetrapeptide substrates, P1 methionine was more frequently used by mGrM as compared with hGrM. Both hGrM and mGrM cleaved α-tubulin with similar kinetics. Strikingly, neither hGrM nor mGrM hydrolysed mouse NPM (nucleophosmin), whereas human NPM was hydrolysed efficiently by GrM from both species. Replacement of the putative P1'-P2' residues in mouse NPM with the corresponding residues of human NPM restored cleavage of mouse NPM by both granzymes. This further demonstrates the importance of prime sites as structural determinants for GrM substrate specificity. GrM from both species efficiently triggered apoptosis in human but not in mouse tumour cells. These results indicate that hGrM and mGrM not only exhibit divergent specificities but also trigger species-specific functions. 相似文献
2.
Survey of immune-related, mannose/fucose-binding C-type lectin receptors reveals widely divergent sugar-binding specificities 总被引:1,自引:0,他引:1
C-type lectins (CTLs) are proteins that contain one or more carbohydrate-recognition domains (CRDs) that require calcium for sugar binding and share high degree of sequence homology and tertiary structure. CTLs whose CRD contain EPN (Glu-Pro-Asn) tripeptide motifs have potential to bind mannose (Man), N-acetylglucosamine (GlcNAc), glucose (Glc) and l-fucose (Fuc), whereas those with QPD (Glu-Pro-Asp) tripeptide motifs bind galactose (Gal) and N-acetylgalactosamine (GalNAc). We report here for the first time a direct comparison of monosaccharide (and some di- and trisaccharides)-binding characteristics of 11 EPX-containing (X = N, S or D) immune-related CTLs using a competition assay and an enzyme-linked immunosorbent assay, and neoglycoproteins as ligand. The EPX CTLs studied are DC-SIGN, L-SIGN, mSIGNR1, human and mouse mannose receptors, Langerin, BDCA-2, DCIR, dectin-2, MCL and MINCLE. We found that: (1) they all bound Man and Fuc; (2) binding of Glc and GlcNAc varied considerably among these lectins, but was always less than Man and Fuc; (3) in general, Gal and GalNAc were not bound. However, dectin-2, DCIR and MINCLE showed ability to bind Gal/GalNAc; (4) DC-SIGN, L-SIGN, mSIGNR1 and Langerin showed enhanced binding of Manα2Man over Man, whereas all others showed no enhancement; (5) DC-SIGN bound Le(x) trisaccharide structure, which has terminal Gal and Fuc residues, more avidly than Fuc, whereas L-SIGN, mSIGNR1, DCIR and MINCLE bound Le(x) less avidly than Fuc. BDCA-2, dectin-2, Langerin, MCL and mannose receptor did not bind Le(x) at all. 相似文献
3.
《Cell research》2005,(8)
INTRODUCTION The leaf organs of higher plants can be classified as simple or compound leaves. Compound leaves are found in distantly related groups, and differ from simple leaves in that each petiole bears multiple leaflets lacking auxiliary buds [1, 2]. … 相似文献
4.
Recent studies on leaf development demonstrate that the mechanism on the adaxial-abaxial polarity pattern formation could be well conserved among the far-related species, in which PHANTASTICA (PAHN)-Iike genes play important roles. In this study, we explored the conservation and diversity on functions of PHAN-Iike genes during the compound leaf development in Lotusjaponicus, a papilionoid legume. Two PHAN-Iike genes in L. japonicus, LjPHANa and LjPHANb, were found to originate from a gene duplication event and displayed different expression patterns during compound leaf development. Two mutants, reduced leafletsl (rell) and reduced leaflets3 (rel3), which exhibited decreased adaxial identity of leaflets and reduced leaflet initiation, were identified and investigated. The expression patterns of both LjPHANs in rel mutants were altered and correlated with abnormalities of compound leaves. Our data suggest that LjPHANa and LjPHANb play important but divergent roles in regulating adaxial-abaxial polarity of compound leaves in L. japonicus. 相似文献
5.
Mikako Ito Junko Miyamoto Yumiko Mori Satoru Fujimoto Toshiki Uchiumi Mikiko Abe Akihiro Suzuki Satoshi Tabata Kiichi Fukui 《Journal of plant research》2000,113(4):435-442
Lotus Japonicus , Miyakojima MG-20 and Gifu B-129. The genome sizes of Miyakojima and Gifu were determined as 472.1 and 442.8 Mbp, respectively.
Both the accessions were diploid (2n=12) and six chromosomes were identified and characterized based on the condensation patterns and the locations of rDNA loci.
The obvious polymorphism observed in the genome size and the chromosome morphology between the two accessions, revealed specific
accumulation of heterochromatin in Miyakojima or elimination in Gifu. The chromosomes L. japonicus were numbered according to their length. A quantitative chromosome map was also developed by the imaging methods using the
digital data of the condensation pattern. 45S rDNA loci were localized on chromosomes A and F, and 5S rDNA locus was localized
on chromosome A by fluorescence in situ hybridization (FISH). Identification of the chromosome and genome sizes and development of the quantitative chromosome map
represent significant contribution to the L. japonicus genome project as the basic information.
Received 29 August 2000/ Accepted in revised form 17 October 2000 相似文献
6.
7.
8.
9.
《Journal of Plant Interactions》2013,8(3):179-186
Abstract Interactions between three genotypes (Ljsym 71-1, Ljsym 71-2 and Ljsym 72) of Lotus japoicus and one isolate from each of four species of arbuscular mycorrhizal fungi (Glomus sp. R-10, Glomus intraradices, Glomus etunicatum, and Gigaspora margarita) were investigated and compared with the wild-type ‘Gifu’ B-129. All the three genotypes showed no or defective internal colonization after inoculation with these AM fungi. In Ljsym72 mutant, the AM fungi produced deformed appressoria on the root surface, but failed to form any internal structures (internal hyphae, arbuscules and vesicles) except only in Glomus intraradices. The Ljsym71-1 and Ljsym71-2 mutants had more deformed appressoria and occasionally formed internal hyphae, arbuscules and vesicles, depending on AM fungi used. Wild-type ‘Gifu’ (nod+myc+) plants had typical colonization. The colonization of mutants by several fungi varied and provides a basis for studying recognition and compatibility between plants and mycorrhizal fungal species. These mutants also will be useful in studies of the genetics of the symbiosis between plant species and AM fungi. 相似文献
10.
Proteome reference maps of the Lotus japonicus nodule and root 总被引:1,自引:0,他引:1
Svend Dam Thomas F. Dyrlund Anna Ussatjuk Bjarne Jochimsen Kasper Nielsen Nicolas Goffard Miguel Ventosa Andrea Lorentzen Vikas Gupta Stig U. Andersen Jan J. Enghild Clive W. Ronson Peter Roepstorff Jens Stougaard 《Proteomics》2014,14(2-3):230-240
11.
Uricase (nodulin-35) cDNA, LjUr, was isolated from nodules of a model legume, Lotus japonicus. LjUr expression was most abundant in nodules, although it was detected in nonsymbiotic tissues as well, particularly in roots. Expression in nodules was detected in uninfected cells, nodule parenchyma, and, more intensely, in vascular bundles. Phylogenetic analysis of uricase sequences from various legumes indicated that uricases of amide- and ureide-transporting legumes form two distinct clades. LjUr is in the cluster of amide-transport legumes even though L. japonicus bears determinate nodules. 相似文献
12.
Rat liver cytosolic proteins were photoaffinity labeled with the synthetic steroid [3H]methyltrienolone in order to identify and characterize hepatic proteins that may participate in the intracellular binding and transport of steroid hormones and other sterols. A male-specific and a female-specific sterol-binding protein (SBP) that migrated to the 4 S region of a sucrose gradient and had similar molecular weights (male-specific 34-kDa protein (SBP34), female-specific 31-kDa protein (SBP31] were thus identified. Experiments were undertaken to determine the biochemical basis for the sex-specific expression of these two proteins. In vivo hormonal manipulations established that the female-specific expression of SBP31 could, in part, be accounted for by the suppressive effects of androgen on SBP31 levels in male rats. In contrast, androgen stimulated expression of the male-specific SBP34, while estrogen and the estrogen-regulated continuous plasma growth hormone profile that is characteristic of adult female rats were suppressive toward this protein. Unlike several other androgen-dependent hepatic proteins, however, SBP34 did not require an intact pituitary for androgen-stimulated expression, nor was its expression stimulated by the intermittent pulses of plasma growth hormone that are characteristic of adult male rats. SBP34 and SBP31 were not induced but were suppressed to various extents by dexamethasone, phenobarbital, and clofibrate, drugs that are known to induce other hepatic proteins involved in steroid binding and metabolism. Competition experiments revealed that SBP31 has a relatively broad ligand specificity, with significant competition for [3H]methyltrienolone binding exhibited by bile acids (chenodeoxycholic acid and lithocholic acid) and a range of steroid hormones (progesterone, estradiol, testosterone, and 5 alpha-dihydrotestosterone) when present in the low micromolar range. No binding was detected with this protein toward cholesterol, triamcinolone acetonide, 5 alpha-androstan-3 alpha,17 beta-diol, cholic acid, and deoxycholic acid. In contrast, SBP34 exhibited greater binding specificity, with competition for [3H]methyltrienolone binding observed only with primary bile acids (cholic acid and chenodeoxycholic acid) and their metabolites (deoxycholic acid and lithocholic acid). On the basis of these binding specificities and the relatively high concentration of bile acids found in the liver, it is proposed that SBP31 and SBP34 function in the intracellular binding and/or transport of bile acids. 相似文献
13.
生物胺受体被认为是一类重要的药物靶标,用生物信息学手段寻找它的配基结合位点并分析其功能,对于药物设计具有重要的指导意义。从整体上结合可变性、疏水性和保守性构建了受体的2D螺旋横切面模型,预测出其可能的配基结合区Ⅰ、Ⅱ,其中TM3、TM4以及TM7在配基结合中起关键作用,E-Ⅱ环也参与了配基结合这一过程,这是对以往普遍认为只有TM参与配基结合的延伸。从局部上寻找了生物胺受体及其子受体的motif,提出了父家族可变子家族保守motif概念,即父家族可变区中出现的子家族保守的motif最后结合整体与局部分析结果分析了各motif的功能,预测了行使配基结合功能的motif及其相应位点,结果证明与突变实验结果有很好的吻合度。 相似文献
14.
Molecular and Biochemical Characterization of the Parvulin-Type PPIases in Lotus japonicus 下载免费PDF全文
Evangelia D. Kouri Nikolaos E. Labrou Spiros D. Garbis Katerina I. Kalliampakou Catalina Stedel Maria Dimou Michael K. Udvardi Panagiotis Katinakis Emmanouil Flemetakis 《Plant physiology》2009,150(3):1160-1173
15.
Identification and characterization of NBS-encoding disease resistance genes in Lotus japonicus 总被引:1,自引:0,他引:1
Xiaoyu Li Ying Cheng Wei Ma Yang Zhao Haiyang Jiang Ming Zhang 《Plant Systematics and Evolution》2010,289(1-2):101-110
Nucleotide-binding site (NBS) disease resistance genes play an important role in defending plants from a range of pathogens and insect pests. Consequently, NBS-encoding genes have been the focus of a number of recent studies in molecular disease resistance breeding programs. However, little is known about NBS-encoding genes in Lotus japonicus. In this study, a full set of disease resistance (R) candidate genes encoding NBS from the complete genome of L. japonicus was identified and characterized using structural diversity, chromosomal locations, conserved protein motifs, gene duplications, and phylogenetic relationships. Distinguished by N-terminal motifs and leucine-rich repeat motifs (LRRs), 92 regular NBS genes of 158 NBS-coding sequences were classified into seven types: CC-NBS-LRR, TIR-NBS-LRR, NBS-LRR, CC-NBS, TIR-NBS, NBS, and NBS-TIR. Phylogenetic reconstruction of NBS-coding sequences revealed many NBS gene lineages, dissimilar from results for Arabidopsis but similar to results from research on rice. Conserved motif structures were also analyzed to clarify their distribution in NBS-encoding gene sequences. Moreover, analysis of the physical locations and duplications of NBS genes showed that gene duplication events of disease resistance genes were lower in L. japonicus than in rice and Arabidopsis, which may contribute to the relatively fewer NBS genes in L. japonicus. Sixty-three NBS-encoding genes with clear conserved domain character were selected to check their gene expression levels by semi-quantitative RT-PCR. The results indicated that 53 of the genes were most likely to be acting as the active genes, and exogenous application of salicylic acid improved expression of most of the R genes. 相似文献
16.
Witchweeds (Striga spp.) and broomrapes (Orobanche spp.) are obligate root parasitic plants on economically important field and horticultural crops. The parasites' seeds are induced to germinate by root-derived chemical signals. The radicular end is transformed into a haustorium which attaches, penetrates the host root and establishes connection with the vascular system of the host. Reactions of Lotus japonicus, a model legume for functional genomics, were studied for furthering the understanding of host-parasite interactions. Lotus japonicus was compatible with Orobanche aegyptiaca, but not with Orobanche minor, Striga hermonthica and Striga gesnerioides. Orobanche minor successfully penetrated Lotus japonicus roots, but failed to establish connections with the vascular system. Haustoria in Striga hermonthica attached to the roots, but penetration and subsequent growth of the endophyte in the cortex were restricted. Striga gesnerioides did not parasitize Lotus japonicus. Among seven mutants of Lotus japonicus (castor-5, har1-5, alb1-1, ccamk-3, nup85-3, nfr1-3 and nsp2-1) with altered characteristics in relation to rhizobial nodulation and mycorrhizal colonization, castor-5 and har1-5 were parasitized by Orobanche aegyptiaca with higher frequency than the wild type. In contrast, Orobanche aegyptiaca tubercle development was delayed on the mutants nup85-3, nfr1-3 and nsp2-1. These results suggest that nodulation, mycorrhizal colonization and infection by root parasitic plants in Lotus japonicus may be modulated by similar mechanisms and that Lotus japonicus is a potential model legume for studying plant-plant parasitism. 相似文献
17.
18.
Kosuta S Held M Hossain MS Morieri G Macgillivary A Johansen C Antolín-Llovera M Parniske M Oldroyd GE Downie AJ Karas B Szczyglowski K 《The Plant journal : for cell and molecular biology》2011,67(5):929-940
SYMRK is a leucine-rich-repeat (LRR)-receptor kinase that mediates intracellular symbioses of legumes with rhizobia and arbuscular mycorrhizal fungi. It participates in signalling events that lead to epidermal calcium spiking, an early cellular response that is typically considered as central for intracellular accommodation and nodule organogenesis. Here, we describe the Lotus japonicus symRK-14 mutation that alters a conserved GDPC amino-acid sequence in the SYMRK extracellular domain. Normal infection of the epidermis by fungal or bacterial symbionts was aborted in symRK-14. Likewise, epidermal responses of symRK-14 to bacterial signalling, including calcium spiking, NIN gene expression and infection thread formation, were significantly reduced. In contrast, no major negative effects on the formation of nodule primordia and cortical infection were detected. Cumulatively, our data show that the symRK-14 mutation uncouples the epidermal and cortical symbiotic program, while indicating that the SYMRK extracellular domain participates in transduction of non-equivalent signalling events. The GDPC sequence was found to be highly conserved in LRR-receptor kinases in legumes and non-legumes, including the evolutionarily distant bryophytes. Conservation of the GDPC sequence in nearly one-fourth of LRR-receptor-like kinases in the genome of Arabidopsis thaliana suggests, however, that this sequence might also play an important non-symbiotic function in this plant. 相似文献
19.
Legumes can establish a symbiosis with rhizobia and form root nodules that function as an apparatus for nitrogen fixation. Nodule development is regulated by several phytohormones including auxin. Although accumulation of auxin is necessary to initiate the nodulation of indeterminate nodules, the functions of auxin on the nodulation of determinate nodules have been less characterized. In this study, the functions of auxin in nodule development in Lotus japonicus have been demonstrated using an auxin responsive promoter and auxin inhibitors. We found that the lenticel formation on the nodule surface was sensitive to the auxin defect. Further analysis indicated that failure in the development of the vascular bundle of the determinate nodule, which was regulated by auxin, was the cause of the disappearance of lenticels.Key words: auxin, lenticel, Lotus japonicus, nodulation, symbiotic nitrogen fixationLegumes (Fabaceae) constitute the third largest plant family with around 700 genera and 20,000 species.1 Legume plants form root nodules through symbiosis with a soil microbe called rhizobia. This plant-microbe symbiosis in nodules mediates an harmonized exchange of chemical signals between host plants and rhizobia.2 Nodules are biologically divided into two different groups, i.e., indeterminate nodules and determinate nodules. Indeterminate nodules, represented by Trifolium repens (white clover) and Medicago truncatula, are initiated from the inner cortex to form a persistent nodule meristem, which allows continuous growth, and leads to the formation of elongated nodules, whereas in determinate legumes, nodules are mostly developed from outer cortical cells and form spherical nodules.3Auxin is one of the most important regulators for nodule development. Since the possible involvement of auxin in nodule formation was first reported by Thimann,4 auxin distribution during nodulation has been studied in particular with indeterminate nodules.5 However, little is known about auxin involvement in determinate nodule formation. To evaluate auxin functions in the determinate nodulation of legume plants, we performed an auxin-responsive promoter analysis in detail. Using GH3:GUS transformed Lotus japonicus (a kind gift from Dr. Herman P. Spaink, Leiden State University, Netherlands),6 we detected auxin signals throughout the nodulation process, e.g., at the basal and front part of the nodule primordia, circumjacent to the infection zone of the young developing nodules (Fig. 1), and at the nodule vascular bundle in mature nodules. We also investigated the effect of several auxin inhibitors, including newly synthesized auxin antagonist PEO-IAA (kindly provided by Dr. Hayashi, Okayama University of Science, Japan),7 on the nodulation of L. japonicus, and revealed that auxin was required for forming a nodule vascular bundle and lenticels (Fig. 2).8Open in a separate windowFigure 1GH3:GUS expression in determinate nodule at 6 dpi. (A) GUS staining was observed in the central cylinder of the root vascular bundle and in the nodule. (B) Cross section of (A). GUS expression was observed around the infection zone of the nodule. Bars = 100 µm.Open in a separate windowFigure 2The effect of auxin inhibitor on nodule surface. (A) Typical mature nodule of L. japonicus at 21 dpi. Lenticels are pointed out by yellow arrowheads. (B) The treatment of auxin inhibitor (NPA 100 µM) inhibited lenticel formation on the nodule surface. Bars = 500 µm.In indeterminate legumes, auxin is accumulated at the site of rhizobia inoculation.9 This is caused by the inhibition of polar auxin transport by accumulation of flavonoids around the infection site, which are known as regulators of auxin transport. When flavonoid biosynthesis is reduced by the gene silencing of chalcone synthase, which catalyzes the first step of flavonoid synthesis, M. truncatula was unable to inhibit polar auxin transport and resulted in reduced nodule number.10,11 A similar phenotype was observed when the auxin transporter gene was silenced.12 In addition, treatment of polar auxin transport inhibitors such as NPA and TIBA induce pseudonodule formation,9 suggesting that auxin accumulation is required for nodulation of indeterminate legumes. In contrast, the treatment of polar auxin transport inhibitors in determinate nodules did not induce a nodule-like structure, suggesting a different function of auxin between indeterminate and determinate nodules. It is, however, of interest to investigate the involvement of flavonoids in determinate nodule formation, because several genes in the flavonoid biosynthesis pathway are upregulated at 2 dpi (days post inoculation) in L. japonicus.13Lenticels regulate gas permeability of nodules.14 Under low oxygen or water-logged conditions, they develop more extensively, whereas they collapse, or develop very little during insufficient water conditions, or under high oxygen pressure.14,15 Because lenticel development on the nodule surface is accompanied with the nodule vascular bundle, growth regulators supplied from the vascular system likely facilitate lenticel development.15 Our data suggests that auxin is necessary to form the nodule vascular bundle, and in fact, auxin itself is one of the candidates of growth substances that control lenticel formation. It is necessary to analyze mutants, which lack in lenticel formation, but can form a nodule vascular bundle, for clarification of further mechanisms of lenticel development. 相似文献
20.
Inna Rozman Grinberg Oren Yaniv Lizett Ortiz de Ora Iván Muñoz-Gutiérrez Almog Hershko Oded Livnah Edward A. Bayer Ilya Borovok Felix Frolow Raphael Lamed Milana Voronov-Goldman 《Proteins》2019,87(11):917-930
Cellulolytic clostridia use a highly efficient cellulosome system to degrade polysaccharides. To regulate genes encoding enzymes of the multi-enzyme cellulosome complex, certain clostridia contain alternative sigma I (σI) factors that have cognate membrane-associated anti-σI factors (RsgIs) which act as polysaccharide sensors. In this work, we analyzed the structure-function relationship of the extracellular sensory elements of Clostridium (Ruminiclostridium) thermocellum and Clostridium clariflavum (RsgI3 and RsgI4, respectively). These elements were selected for comparison, as each comprised two tandem PA14-superfamily motifs. The X-ray structures of the PA14 modular dyads from the two bacterial species were determined, both of which showed a high degree of structural and sequence similarity, although their binding preferences differed. Bioinformatic approaches indicated that the DNA sequence of promoter of sigI/rsgI operons represents a strong signature, which helps to differentiate binding specificity of the structurally similar modules. The σI4-dependent C. clariflavum promoter sequence correlates with binding of RsgI4_PA14 to xylan and was identified in genes encoding xylanases, whereas the σI3-dependent C. thermocellum promoter sequence correlates with RsgI3_PA14 binding to pectin and regulates pectin degradation-related genes. Structural similarity between clostridial PA14 dyads to PA14-containing proteins in yeast helped identify another crucial signature element: the calcium-binding loop 2 (CBL2), which governs binding specificity. Variations in the five amino acids that constitute this loop distinguish the pectin vs xylan specificities. We propose that the first module (PA14A) is dominant in directing the binding to the ligand in both bacteria. The two X-ray structures of the different PA14 dyads represent the first reported structures of tandem PA14 modules. 相似文献