首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Arteries are often subjected to torsion due to body movement and surgical procedures. While it is essential that arteries remain stable and patent under twisting loads, the stability of arteries under torsion is poorly understood. The goal of this work was to experimentally investigate the buckling behavior of arteries under torsion and to determine the critical buckling torque, the critical buckling twist angle, and the buckling shape. Porcine common carotid arteries were slowly twisted in vitro until buckling occurred while subjected to a constant axial stretch ratio (1.1, 1.3, 1.5 (in vivo level) and 1.7) and lumen pressure (20, 40, 70 and 100 mmHg). Upon buckling, the arteries snapped to form a kink. For a group of six arteries, the axial stretch ratio significantly affected the critical buckling torque (\(p<0.002\)) and the critical buckling twist angle (\(p<0.001\)). Lumen pressure also significantly affected the critical buckling torque (\(p<0.001\)) but had no significant effect on the critical twist angle (\(p=0.067\)). Convex material constants for a Fung strain energy function were determined and fit well with the axial force, lumen pressure, and torque data measured pre-buckling. The material constants are valid for axial stretch ratios, lumen pressures, and rotation angles of 1.3–1.5, 20–100 mmHg, and 0–270\(^\circ \), respectively. The current study elucidates the buckling behavior of arteries under torsion and provides new insight into mechanical instability of blood vessels.  相似文献   

2.
A recorded muscular torque at one joint is a resultant torque corresponding to the participation of both agonist and antagonist muscles. This study aimed to examine the effect of aging on the mechanical contributions of both plantar- and dorsi-flexors to the resultant maximal voluntary contraction (MVC) torques exerted at the ankle joint, in dorsi-flexion (DF) and plantar-flexion (PF). The estimation of isometric agonist and antagonist torques by means of an EMG biofeedback technique was made with nine young (mean age 24 years) and nine older (mean age 80 years) men. While there was a non-significant age-related decline in the measured resultant DF MVC torque (?15%; p = 0.06), there was a clear decrease in the estimated agonist MVC torque exerted by the dorsi-flexors (?39%; p = 0.001). The DF-to-PF resultant MVC torque ratio was significantly lower in young than in older men (0.25 vs. 0.31; p = 0.006), whereas the DF-to-PF agonist MVC torque ratio was no longer different between the two populations (0.38 vs. 0.35; p > 0.05). Thus, agonist MVC torques in PF and DF would be similarly affected by aging, which could not be deduced when only resultant torques were examined.  相似文献   

3.
Cervical intervertebral body fusion devices (IBFDs) are utilized to provide stability while fusion occurs in patients with cervical pathology. For a manufacturer to market a new cervical IBFD in the United States, substantial equivalence to a cervical IBFD previously cleared by FDA must be established through the 510(k) regulatory pathway. Mechanical performance data are typically provided as part of the 510(k) process for IBFDs. We reviewed all Traditional 510(k) submissions for cervical IBFDs deemed substantially equivalent and cleared for marketing from 2007 through 2014. To reduce sources of variability in test methods and results, analysis was restricted to cervical IBFD designs without integrated fixation, coatings, or expandable features. Mechanical testing reports were analyzed and results were aggregated for seven commonly performed tests (static and dynamic axial compression, compression-shear, and torsion testing per ASTM F2077, and subsidence testing per ASTM F2267), and percentile distributions of performance measurements were calculated. Eighty-three (83) submissions met the criteria for inclusion in this analysis. The median device yield strength was 10,117 N for static axial compression, 3680 N for static compression-shear, and 8.6 N m for static torsion. Median runout load was 2600 N for dynamic axial compression, 1400 N for dynamic compression-shear, and ±1.5 N m for dynamic torsion. In subsidence testing, median block stiffness (Kp) was 424 N/mm. The mechanical performance data presented here will aid in the development of future cervical IBFDs by providing a means for comparison for design verification purposes.  相似文献   

4.
Tortuous aneurysmal arteries are often associated with a higher risk of rupture but the mechanism remains unclear. The goal of this study was to analyze the buckling and post-buckling behaviors of aneurysmal arteries under pulsatile flow. To accomplish this goal, we analyzed the buckling behavior of model carotid and abdominal aorta with aneurysms by utilizing fluid-structure interaction (FSI) method with realistic waveforms boundary conditions. FSI simulations were done under steady-state and pulsatile flow for normal (1.5) and reduced (1.3) axial stretch ratios to investigate the influence of aneurysm, pulsatile lumen pressure and axial tension on stability. Our results indicated that aneurysmal artery buckled at the critical buckling pressure and its deflection nonlinearly increased with increasing lumen pressure. Buckling elevates the peak stress (up to 118%). The maximum aneurysm wall stress at pulsatile FSI flow was (29%) higher than under static pressure at the peak lumen pressure of 130 mmHg. Buckling results show an increase in lumen shear stress at the inner side of the maximum deflection. Vortex flow was dramatically enlarged with increasing lumen pressure and artery diameter. Aneurysmal arteries are more susceptible than normal arteries to mechanical instability which causes high stresses in the aneurysm wall that could lead to aneurysm rupture.  相似文献   

5.
Research has shown that mechanical stress stimulation can cause airway remodeling. We investigate the effects of mechanical stretch on the expression of the airway remodeling-associated factors interleukin-13 (IL-13) and matrix metalloprotein-9 (MMP-9) and signaling pathways in human bronchial epithelioid (16HBE) cells under mechanical stretch. A Flexcell FX-4000 Tension System with a flexible substrate was applied to stretch 16HBE cells at a 15% elongation amplitude and 1 Hz frequency, with stretching for 0.5 h, 1 h, 1.5 h and 2 h. The experimental group with higher IL-13, MMP-9, and TRPC1 expression and higher Ca2+ levels was selected for performing intervention experiment. These cells were pretreated with the transient receptor potential canonical 1 (TRPC1) channel antagonist SKF96365 and TRPC1-specific siRNA, and then mechanical stretch was applied. Our results provided evidences that mechanical pressure significantly increased IL-13, MMP-9, and TRPC1 protein and mRNA expression levels and intracellular Ca2+ fluorescence intensity at 4 time points compared with the control group. The peak IL-13, MMP-9, and TRPC1 expression levels were observed at 0.5 h after exposure to mechanical pressure. IL-13 and MMP-9 expression levels and Ca2+ fluorescence intensity in the stretch+SKF96365 group and in the stretch+TRPC1 siRNA group were significantly lower than those were in the mechanical stretch group. By incubating the cells with the intracellular calcium chelator BAPTA-AM, the expression of IL-13 and MMP9 was significantly decreased, and the expression level of TRPC1 remained unchanged. These observations suggest that mechanical stretch may induce an influx of Ca2+ and up-regulation of IL-13 and MMP-9 expression in 16HBE cells via activation of TRPC1.  相似文献   

6.
Study of the mechanics of trunk twisting is special interest given epidemiological evidence linking occupational twisting to increased incidence of low back pain. An anatomically detailed, three-dimensional model of the trunk (rib cage, pelvis, five lumbar vertebrae and 50 muscles), was used to predict maximum axial trunk torque. Predicted axial torques were compared with measured torques. Thirty-one (10 male and 21 female) subjects performed maximum effort isometric twisting exertions, at 0° of twist and ±30° of twist together with dynamic exertions, at 30° s−1 and 60° s−1. Females were able to generate approximately two-thirds of the torque of males (males, 97 Nm; females 60 Nm, isometric at 0°). When the trunk was prerotated to 30°, subjects were able to generate greater torque when the effort was toward the 0° position (approximately 105 Nm by males and 68 Nm by females). Experimental data indicated that velocity of rotation and amount of twist are important modulators of axial torque. Changes in muscle length were demonstrated to be minimal from model output as most muscle length changes during a twist from 0° to 30°, measured between the pelvis and the shoulder harness, were less than 1%, although some portions of the abdominal obliques underwent a length excursion of 5%. The small changes in the individual muscle force components that contribute to twist, i.e. the muscle unit vector about the axial twist axis and its moment arm that change as a function of twisted position, do not entirely account for the measured differences in torque, suggesting that additional mechanisms influence axial torque generation.  相似文献   

7.
8.
The main purpose of this study was to compare three methods of determining relative effort during sit-to-stand (STS). Fourteen young (mean 19.6 ± SD 1.2 years old) and 17 older (61.7 ± 5.5 years old) adults completed six STS trials at three speeds: slow, normal, and fast. Sagittal plane joint torques at the hip, knee, and ankle were calculated through inverse dynamics. Isometric and isokinetic maximum voluntary contractions (MVC) for the hip, knee, and ankle were collected and used for model parameters to predict the participant-specific maximum voluntary joint torque. Three different measures of relative effort were determined by normalizing STS joint torques to three different estimates of maximum voluntary torque. Relative effort at the hip, knee, and ankle were higher when accounting for variations in maximum voluntary torque with joint angle and angular velocity (hip = 26.3 ± 13.5%, knee = 78.4 ± 32.2%, ankle = 27.9 ± 14.1%) compared to methods which do not account for these variations (hip = 23.5 ± 11.7%, knee = 51.7 ± 15.0%, ankle = 20.7 ± 10.4%). At higher velocities, the difference in calculating relative effort with respect to isometric MVC or incorporating joint angle and angular velocity became more evident. Estimates of relative effort that account for the variations in maximum voluntary torque with joint angle and angular velocity may provide higher levels of accuracy compared to methods based on measurements of maximal isometric torques.  相似文献   

9.
We suggest short range stiffness (SRS) at the elbow joint as an alternative diagnostic for EMG to assess cocontraction.Elbow SRS is compared between obstetric brachial plexus lesion (OBPL) patients and healthy subjects (cross-sectional study design). Seven controls (median 28 years) and five patients (median 31 years) isometrically flexed and extended the elbow at rest and three additional torques [2.1, 4.3, 6.4 N m] while a fast stretch stimulus was applied. SRS was estimated in silico using a neuromechanical elbow model simulating the torque response from the imposed elbow angle.SRS was higher in patients (250 ± 36 N m/rad) than in controls (150 ± 21 N m/rad, p = 0.014), except for the rest condition. Higher elbow SRS suggested greater cocontraction in patients compared to controls. SRS is a promising mechanical alternative to assess cocontraction, which is a frequently encountered clinical problem in OBPL due to axonal misrouting.  相似文献   

10.
The purpose of this investigation was to answer the question, “Does Stronger Mean Faster?”. After a screening for elbow strength and speed, four groups of 8 subjects were selected for further investigation that fell into the extreme quartiles of the strength and speed continuums. The main investigation employed an apparatus that could freely rotate in the sagittal plane. Three isometric trials were performed at 60°, 90° and 120° of elbow extension. Dynamic trials were performed with relative resistances (0, 20, 40, 60 and 80%), determined from the lowest maximum isometric torque produced from the three joint angles mentioned above, and absolute resistances of 1.1 kg and 2.2 kg. A 1:1 relationship between strength and speed was not established (r = 0.498). Normalized peak power proved to be the best kinetic variable for predicting peak velocity (r ranging between 0.793 and 0.918). Individuals with similar peak torques were compared and the patterns of torque development, whether torques peaked early or late during the movement, physiologically agreed with known theoretically established mechanical responses. Similar velocities were also achieved with different peak torques demonstrating a timing issue. Estimated fibre-typing could not account for the performance differences.  相似文献   

11.
Background: Compared with visual torque-onset-detection (TOD), threshold-based TOD produces onset bias, which increases with lower torques or rates of torque development (RTD). Purpose: To compare the effects of differential TOD-bias on common contractile parameters in two torque-disparate groups. Methods: Fifteen boys and 12 men performed maximal, explosive, isometric knee-extensions. Torque and EMG were recorded for each contraction. Best contractions were selected by peak torque (MVC) and peak RTD. Visual-TOD-based torque-time traces, electromechanical delays (EMD), and times to peak RTD (tRTD) were compared with corresponding data derived from fixed 4-N m- and relative 5%MVC-thresholds. Results: The 5%MVC TOD-biases were similar for boys and men, but the corresponding 4-N m-based biases were markedly different (40.3 ± 14.1 vs. 18.4 ± 7.1 ms, respectively; p < 0.001). Boys–men EMD differences were most affected, increasing from 5.0 ms (visual) to 26.9 ms (4 N m; p < 0.01). Men’s visually-based torque kinetics tended to be faster than the boys’ (NS), but the 4-N m-based kinetics erroneously depicted the boys as being much faster to any given %MVC (p < 0.001). Conclusions: When comparing contractile properties of dissimilar groups, e.g., children vs. adults, threshold-based TOD methods can misrepresent reality and lead to erroneous conclusions. Relative-thresholds (e.g., 5% MVC) still introduce error, but group-comparisons are not confounded.  相似文献   

12.
It has been documented that mitosis orientation (MO) is guided by stress fibers (SFs), which are perpendicular to exogenous cyclic uniaxial stretch. However, the effect of mechanical forces on MO and the mechanism of stretch-induced SFs reorientation are not well elucidated to date. In the present study, we used murine 3T3 fibroblasts as a model, to investigate the effects of uniaxial stretch on SFO and MO utilizing custom-made stretch device. We found that cyclic uniaxial stretch induced both SFs and mitosis directions orienting perpendicularly to the stretch direction. The F-actin and myosin II blockages, which resulted in disoriented SFs and mitosis directions under uniaxial stretch, suggested a high correlation between SFO and MO. Y27632 (10 μM), ML7 (50 μM, or 75 μM), and blebbistatin (50 μM, or 75 μM) treatments resulted in SFO parallel to the principle stretch direction. Upon stimulating and inhibiting the phosphorylation of myosin light chain (p-MLC), we observed a monotonic proportion of SFO to the level of p-MLC. These results suggested that the level of cell contraction is crucial to the response of SFs, either perpendicular or parallel, to the external stretch. Showing the possible role of cell contractility in tuning SFO under external stretch, our experimental data are valuable to understand the predominant factor controlling SFO response to exogenous uniaxial stretch, and thus helpful for improving mechanical models.  相似文献   

13.
The sternocostal and clavicular regions of the pectoralis major are independently harvested to provide shoulder stability, but surgical decision making does not consider the biomechanical consequences that disinsertion of one fiber region over the other has on shoulder function. Differences in material properties between the fiber regions could influence which tissue is more optimal for surgical harvesting. The current study utilized ultrasound shear wave elastography (SWE) to investigate whether the in vivo material properties differ between the fiber regions. Shear wave velocities (SWVs) were collected from the sternocostal and clavicular fiber regions of the pectoralis major from ten healthy young male participants. Participants produced isometric shoulder torques of varying magnitudes (passive, 15%, and 30% MVC) and directions (horizontal and vertical adduction). Four shoulder positions encompassing different vertical abduction and external rotation angles were examined. One-way ANOVAs tested the hypotheses that differences in SWVs during rest existed between the fiber regions as a function of shoulder position, and differences in SWVs during contraction existed as a function of shoulder position and torque direction. In all shoulder positions, the clavicular region exhibited greater SWVs during rest than the sternocostal region (P < 0.001). In shoulder positions that did not include external rotation, the clavicular region exhibited greater SWVs during contraction when producing horizontal adduction torques (P < 0.001), while the sternocostal region exhibited greater SWVs during contraction when producing vertical adduction torques at 30% MVC (P < 0.01). Our results suggest that each fiber region of the pectoralis major provides unique contributions to passive and active shoulder function.  相似文献   

14.
Artery bent buckling has been suggested as a possible mechanism that leads to artery tortuosity, which is associated with aging, hypertension, atherosclerosis, and other pathological conditions. It is necessary to understand the relationship between microscopic wall structural changes and macroscopic artery buckling behavior. To this end, the objectives of this study were to develop arterial buckling equations using a microstructure-based 4-fiber reinforced wall model, and to simulate the effects of vessel wall microstructural changes on artery buckling. Our results showed that the critical pressure increased nonlinearly with the axial stretch ratio, and the 4-fiber model predicted higher critical buckling pressures than what the Fung model predicted. The buckling equation using the 4-fiber model captured the experimentally observed reduction of critical pressure induced by elastin degradation and collagen fiber orientation changes in the arterial wall. These results improve our understanding of arterial stability and its relationship to microscopic wall remodeling, and the model provides a useful tool for further studies.  相似文献   

15.
We compared predicted passive finger joint torques from a biomechanical model that includes the exponential passive muscle force–length relationship documented in the literature with finger joint torques estimated from measures in ten adult volunteers. The estimated finger joint torques were calculated from measured right index fingertip force, joint postures, and anthropometry across 18 finger and wrist postures with the forearm muscles relaxed. The biomechanical model predicting passive finger joint torques included three extrinsic and three intrinsic finger muscles. The values for the predicted passive joint torques were much larger than the values calculated from the fingertip force and posture measures with an average RMS error of 7.6 N cm. Sensitivity analysis indicated that the predicted joint torques were most sensitive to passive force–length model parameters compared to anthropometric and postural parameters. Using Monte Carlo simulation, we determined a new set of values for the passive force–length model parameters that reduced the differences between the joint torques calculated from the two methods to an average RMS value of 0.5 N cm, a 94% average improvement of error from the torques predicted using the existing data. These new parameter values did vary across individuals; however, using an average set for the parameter values across subjects still reduced the average RMS difference to 0.8 N cm. These new parameters may improve dynamic modeling of the finger during sub-maximal force activities and are based on in vivo data rather than traditional in vitro data.  相似文献   

16.
IntroductionThe postnatal heart grows mostly in response to increased hemodynamic load. However, the specific biomechanical stimuli that stimulate cardiac growth as a reaction to increased hemodynamic load are still poorly understood. It has been shown that isolated neonatal rat cardiac myocytes normalize resting sarcomere length by adding sarcomeres in series when subjected to uniaxial static strain. Because there is experimental evidence that myocytes can distinguish the direction of stretch, it was postulated that myocytes also may normalize interfilament lattice spacing as a response to cross-fiber stretch.MethodsA growth law was proposed in which fiber axial growth was stimulated by fiber strain deviating from zero and fiber radial growth by cross-fiber strain (parallel to the wall surface) deviating from zero. Fiber radial growth rate constant was 1/3 of the fiber axial growth rate constant. The growth law was implemented in a finite element model of the newborn Sprague-Dawley rat residually stressed left ventricle (LV). The LV was subjected to an end-diastolic pressure of 1 kPa and about 25 weeks of normal growth was simulated.ResultsMost cellular and chamber dimension changes in the model matched experimentally measured ones: LV cavity and wall volume increased from 2.3 and 54 μl, respectively, in the newborn to 276 μl and 1.1 ml, respectively, in the adult rat; LV shape became more spherical; internal LV radius increased faster than wall thickness; and unloaded sarcomere lengths exhibited a transmural gradient. The major discrepancy with experiments included a reversed transmural gradient of cell length in the older rat.ConclusionA novel strain-based growth law has been presented that reproduced physiological postnatal growth in the rat LV.  相似文献   

17.
Tortuous arteries are often associated with aging, hypertension, atherosclerosis, and degenerative vascular diseases, but the mechanisms are poorly understood. Our recent theoretical analysis suggested that mechanical instability (buckling) may lead to tortuous blood vessels. The objectives of this study were to determine the critical pressure of artery buckling and the effects of elastin degradation and surrounding matrix support on the mechanical stability of arteries. The mechanical properties and critical buckling pressures, at which arteries become unstable and deform into tortuous shapes, were determined for a group of five normal arteries using pressurized inflation and buckling tests. Another group of nine porcine arteries were treated with elastase (8 U/ml), and the mechanical stiffness and critical pressure were obtained before and after treatment. The effect of surrounding tissue support was simulated using a gelatin gel. The critical pressures of the five normal arteries were 9.52 kPa (SD 1.53) and 17.10 kPa (SD 5.11) at axial stretch ratios of 1.3 and 1.5, respectively, while model predicted critical pressures were 10.11 kPa (SD 3.12) and 17.86 kPa (SD 5.21), respectively. Elastase treatment significantly reduced the critical buckling pressure (P < 0.01). Arteries with surrounding matrix support buckled into multiple waves at a higher critical pressure. We concluded that artery buckling under luminal pressure can be predicted by a buckling equation. Elastin degradation weakens the arterial wall and reduces the critical pressure, which thus leads to tortuous vessels. These results shed light on the mechanisms of the development of tortuous vessels due to elastin deficiency.  相似文献   

18.
Type IV pili are long filamentous structures on the surface of bacteria, which can be rapidly assembled or disassembled with pilin subunits by molecular motors. They can generate force during retraction and are involved in many bacterial functions. Steered molecular dynamics simulations with coarse-grained MARTINI models are carried out to investigate the mechanical behaviors of pili under tension. Our study is the first to report a Young's modulus of 0.80 ± 0.07 GPa and a spring constant of 1294.6 ± 116.5 kJ mol−1 nm−2 for pilus. Our results show the mechanical responses of pili are different from those described by the worm-like chain model and the van der Waal's interactions play a critical role in the mechanical responses. Moreover, the effects of pulling rates and virtual spring constants of pilus on Young's modulus are studied and two distinct morphological stages with the conformational changes appear during the extension of pilus are observed. This work provide insight into the mechanics and the deformation mechanism of pilus assembly.  相似文献   

19.
Oxytocin (OT), a neurohypophysial nonapeptide, plays dual role as a neurotransmitter/neuromodulator and a hormone. It has also well known protective properties against ischemia/reperfusion organ damage. This study investigated the effect of OT on experimentally induced ovarian torsion/de-torsion ischemia/reperfusion (I/R) injury in rats. Sprague-Dawley rats were assigned to five treatment groups (n = 7/group): Group 1, sham-operated; Group 2, torsion; Group 3, 80 IU/kg of OT administration 30 min prior to torsion; Group 4, torsion/de-torsion; and Group 5, torsion followed by 80 IU/kg of OT administration 30 min prior to de-torsion. OT administration significantly decreased the tissue malondialdehyde (MDA) levels in both the torsion and OT group (Group 3), and torsion/de-torsion OT group (Group 5) in comparison with the torsion-only group (Group 2) and torsion/de-torsion group (Group 4). Histopathological finding scores including follicular degeneration, edema, hemorrhage, vascular congestion, and infiltration by inflammatory cells were found to be significantly decreased in the torsion and OT group (Group 3), and torsion/de-torsion OT group (Group 5) when compared with the torsion-only group (Group 2) and torsion/de-torsion group (Group 4). In conclusion, these results, verified with histopathologic evaluation and biochemical assays, suggest a probable protective role for OT in ischemia and I/R injury in rat ovaries.  相似文献   

20.
The stability of blood vessel under lumen pressure load is essential to the maintenance of normal arterial function. Previous mechanical models showed that blood vessels may buckle into a half sine wave but arteries and veins in vivo often demonstrate tortuous paths with multiple waves. The objective of this study was to analyze the buckling of blood vessels under lumen pressure with surrounding tissue support. Blood vessels were modeled as elastic cylindrical vessels within an elastic substrate. Buckling equations were established to determine the critical pressure and the wavelength. These equations and simulation results demonstrated that blood vessels do take higher order mode shapes when buckling inside an elastic substrate while they take the basal mode shape without the substrate. The wave number increases i.e. blood vessels take a higher mode shape, as the stiffness of the substrate increases. These results suggest that mechanical buckling is a possible mechanism for the development of tortuous blood vessels. The current model provides a powerful tool for further studying the tortuosity of arteries and veins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号