首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The objectives of this study were to characterize the active and passive contributions to joint kinetics during walking in healthy young and older adults, and assess whether isokinetic ankle strength is associated with ankle power output during walking. Twenty healthy young (18–35 years) and 20 healthy older (65–85 years) adults participated in this study. We measured subject-specific passive-elastic joint moment–angle relationships in the lower extremity and tested maximum isokinetic ankle strength at 30 deg/s. Passive moment–angle relationships were used to estimate active and passive joint moment, power, and work quantities during walking at 80%, 100% and 120% of preferred walking speed. There were no significant differences in walking speed, step length, or cadence between the older and young adults. However, the older adults produced significantly more net positive work at the hip but less net positive work at the ankle at all walking speeds. Passive contributions to hip and ankle work did not significantly differ between groups, inferring that the older adults generated the additional hip work actively. Maximum isokinetic ankle strength was significantly less in the older adults, and correlated with peak positive plantar-flexor power at both the preferred and fast walking speeds. The results of this study suggest that age-related shifts in joint kinetics do not arise as a result of increased passive hip joint stiffness, but seem to be reflected in plantar-flexor weakness.  相似文献   

2.
An increase in gear ratio of the limb extensor muscles during joint extension has been suggested to be a mechanism that facilitates optimal power production by skeletal muscles. The objectives of this study were to: (1) measure gear ratios at the wrist, elbow, shoulder, ankle, knee, and hip joints of jumping dogs, (2) compute the work performed by each of these joints, and (3) measure muscle shortening velocity for a joint exhibiting an increasing gear ratio during joint extension. The gear ratio out-lever was computed by dividing the ground reaction force (GRF) moment by the GRF, whereas the in-lever was directly measured as the perpendicular distance from the joint center to the line of action of the extensor muscle. In addition, changes in fascicle length were measured from the vastus lateralis muscle using sonomicrometry. Of the joints examined, only the gear ratios at the shoulder and knee joints increased during jumping in a manner that could facilitate peak power production of actively shortening muscles. The vastus lateralis was found to shorten at an average velocity of 3.20 muscle lengths per second. This is similar to estimates of shortening velocity that produce peak muscular power in mammals the size of dogs. Additionally, the knee extensors were found to produce a large proportion (26.6%) of the positive external work of the limbs. These observations suggest that dynamic gearing in jumping dogs may allow the extensor muscles of the knee joint to shorten in a way that maximizes their power production.  相似文献   

3.
At self-selected walking speeds, elderly compared with young adults generate decreased joint torques and powers in the lower extremity. These differences may be actual gait-limiting factors and neuromuscular adaptations with age or simply a consciously selected motor pattern to produce a slower gait. The purpose of the study was to compare joint torques and powers of young and elderly adults walking at the same speed. Twelve elderly and fourteen young adults (ages 69 and 21 yr) walked at 1.48 m/s over a force platform while being videotaped. Hip, knee, and ankle torques and powers were calculated from the reaction force and kinematic data. A support torque was calculated as the sum of the three joint torques. Extensor angular impulse during stance and positive work at each joint were derived from the torques and powers. Step length was 4% shorter and cadence was 4% higher in elderly adults (both P < 0.05) compared with young adults. Support angular impulse was nearly identical between groups, but elderly adults had 58% greater angular impulse and 279% more work at the hip, 50% less angular impulse and 39% less work at the knee, and 23% less angular impulse and 29% less work at the ankle compared with young adults (t-test, all P < 0.05). Age caused a redistribution of joint torques and powers, with the elderly using their hip extensors more and their knee extensors and ankle plantar flexors less than young adults when walking at the same speed. Along with a reduction in motor and sensory functions, the natural history of aging causes a shift in the locus of function in motor performance.  相似文献   

4.
The pirouette turn is often initiated in neutral and externally rotated hip positions by dancers. This provides an opportunity to investigate how dancers satisfy the same mechanical objectives at the whole-body level when using different leg kinematics. The purpose of this study was to compare lower extremity control strategies during the turn initiation phase of pirouettes performed with and without hip external rotation. Skilled dancers (n=5) performed pirouette turns with and without hip external rotation. Joint kinetics during turn initiation were determined for both legs using ground reaction forces (GRFs) and segment kinematics. Hip muscle activations were monitored using electromyography. Using probability-based statistical methods, variables were compared across turn conditions as a group and within-dancer. Despite differences in GRFs and impulse generation between turn conditions, at least 90% of each GRF was aligned with the respective leg plane. A majority of the net joint moments at the ankle, knee, and hip acted about an axis perpendicular to the leg plane. However, differences in shank alignment relative to the leg plane affected the distribution of the knee net joint moment when represented with respect to the shank versus the thigh. During the initiation of both turns, most participants used ankle plantar flexor moments, knee extensor moments, flexor and abductor moments at the push leg׳s hip, and extensor and abductor moments at the turn leg׳s hip. Representation of joint kinetics using multiple reference systems assisted in understanding control priorities.  相似文献   

5.
While it is widely speculated that obesity causes increased loads on the knee leading to joint degeneration, this concept is untested. The purpose of the study was to identify the effects of obesity on lower extremity joint kinetics and energetics during walking. Twenty-one obese adults were tested at self-selected (1.29m/s) and standard speeds (1.50m/s) and 18 lean adults were tested at the standard speed. Motion analysis and force platform data were combined to calculate joint torques and powers during the stance phase of walking. Obese participants were more erect with 12% less knee flexion and 11% more ankle plantarflexion in self-selected compared to standard speeds (both p<0.02). Obese participants were still more erect than lean adults with approximately 6 degrees more extension at all joints (p<0.05, for each joint) at the standard speed. Knee and ankle torques were 17% and 11% higher (p<0.034 and p<0.041) and negative knee work and positive ankle work were 68% and 11% higher (p<0.000 and p<0.048) in obese participants at the standard speed compared to the slower speed. Joint torques and powers were statistically identical at the hip and knee but were 88% and 61% higher (both p<0.000) at the ankle in obese compared to lean participants at the standard speed. Obese participants used altered gait biomechanics and despite their greater weight, they had less knee torque and power at their self-selected walking speed and equal knee torque and power while walking at the same speed as lean individuals. We propose that the ability to reorganize neuromuscular function during gait may enable some obese individuals to maintain skeletal health of the knee joint and this ability may also be a more accurate risk indicator for knee osteoarthritis than body weight.  相似文献   

6.
Eight experienced male cyclists (C), eight well-trained male runners (R), and eight less-trained male noncyclists (LT) were tested under multiple cadence and power output conditions to determine: (1) if the cadence at which lower extremity net joint moments are minimized (cost function cadence) was associated with preferred pedaling cadence (PC), (2) if the cost function cadence increased with increases in power output, and (3) if the association is generalizable across groups differing in cycling experience and aerobic power. Net joint moments at the hip, knee, and ankle were computed from video records and pedal reaction force data using 2-D inverse dynamics. The sum of the average absolute hip, knee, and ankle joint moments defined a cost function at each power output and cadence and provided the basis for prediction of the cadence which minimized net joint moments for each subject at each power output. The cost function cadence was not statistically different from the PC at each power output in all groups. As power output increased, however, the cost function cadence increased for all three subject groups (86 rpm at 100 W, 93 rpm at 150 W, 98 rpm at 200 W, and 96 rpm at 250 W). PC showed little change (R) or a modest decline (C, LT) with increasing power output. Based upon the similarity in the mean data but different trends in the cost function cadence and PC in response to changes in power output as well as the lack of significant correlations between these two variables, it was concluded that minimiking net joint moments is a factor modestly associated with preferred cadence selection.  相似文献   

7.
Lack of the necessary magnitude of energy dissipation by lower extremity joint muscles may be implicated in elevated impact stresses present during landing from greater heights. These increased stresses are experienced by supporting tissues like cartilage, ligaments and bones, thus aggravating injury risk. This study sought to investigate frontal plane kinematics, kinetics and energetics of lower extremity joints during landing from different heights. Eighteen male recreational athletes were instructed to perform drop-landing tasks from 0.3- to 0.6-m heights. Force plates and motion-capture system were used to capture ground reaction force and kinematics data, respectively. Joint moment was calculated using inverse dynamics. Joint power was computed as a product of joint moment and angular velocity. Work was defined as joint power integrated over time. Hip and knee joints delivered significantly greater joint power and eccentric work (p<0.05) than the ankle joint at both landing heights. Substantial increase (p<0.05) in eccentric work was noted at the hip joint in response to increasing landing height. Knee and hip joints acted as key contributors to total energy dissipation in the frontal plane with increase in peak ground reaction force (GRF). The hip joint was the top contributor to energy absorption, which indicated a hip-dominant strategy in the frontal plane in response to peak GRF during landing. Future studies should investigate joint motions that can maximize energy dissipation or reduce the need for energy dissipation in the frontal plane at the various joints, and to evaluate their effects on the attenuation of lower extremity injury risk during landing.  相似文献   

8.
Mechanical analysis of the landing phase in heel-toe running.   总被引:3,自引:0,他引:3  
Results of mechanical analyses of running may be helpful in the search for the etiology of running injuries. In this study a mechanical analysis was made of the landing phase of three trained heel-toe runners, running at their preferred speed and style. The body was modeled as a system of seven linked rigid segments, and the positions of markers defining these segments were monitored using 200 Hz video analysis. Information about the ground reaction force vector was collected using a force plate. Segment kinematics were combined with ground reaction force data for calculation of the net intersegmental forces and moments. The vertical component of the ground reaction force vector Fz was found to reach a first peak approximately 25 ms after touch-down. This peak occurs because, in the support leg, the vertical acceleration of the knee joint is not reduced relative to that of the ankle joint by rotation of the lower leg, so that the support leg segments collide with the floor. Rotation of the support upper leg, however, reduces the vertical acceleration of the hip joint relative to that of the knee joint, and thereby plays an important role in limiting the vertical forces during the first 40 ms. Between 40 and 100 ms after touch-down, the vertical forces are mainly limited by rotation of the support lower leg. At the instant that Fz reaches its first peak, net moments about ankle, knee and hip joints of the support leg are virtually zero. The net moment about the knee joint changed from -100 Nm (flexion) at touch-down to +200 Nm (extension) 50 ms after touch-down. These changes are too rapid to be explained by variations in the muscle activation levels and were ascribed to spring-like behavior of pre-activated knee flexor and knee extensor muscles. These results imply that the runners investigated had no opportunity to control the rotations of body segments during the first part of the contact phase, other than by selecting a certain geometry of the body and muscular (co-)activation levels prior to touch-down.  相似文献   

9.
Two-dimensional analyses of sprint kinetics are commonly undertaken but often ignore the metatarsalphalangeal (MTP) joint and model the foot as a single segment. Due to the linked-segment nature of inverse dynamics analyses, the aim of this study was to investigate the effect of ignoring the MTP joint on the calculated joint kinetics at the other stance leg joints during sprinting. High-speed video and force platform data were collected from four to five trials for each of three international athletes. Resultant joint moments, powers, and net work at the stance leg joints during the first stance phase after block clearance were calculated using three different foot models. By ignoring the MTP joint, peak extensor moments at the ankle, knee, and hip were on average 35% higher (p < .05 for each athlete), 40% lower (p < .05), and 9% higher (p > .05), respectively, than those calculated with the MTP joint included. Peak ankle and knee joint powers and net work at all joints were also significantly (p < .05) different. By ignoring a genuine MTP joint plantar flexor moment, artificially high peak ankle joint moments are calculated, and these also affect the calculated joint kinetics at the knee.  相似文献   

10.
This study investigated the lower extremity torque's active and passive features during the walk-to-run gait transition with continuously increased walking speed. Fourteen volunteers participated in the experiment. Kinematic and kinetic data were collected synchronously. Five strides leading up the gait transition were examined. Peaks of the passive (e.g., contact) and active (e.g., generalized muscle torques), along with net joint torque, and time to peak torques exhibited significant differences at the last stride before gait transition, compared to the first four strides, at the ankle, knee, and hip joints, respectively. Selected peak joint active and passive torques showed significant and opposite trends at critical events within a stride cycle: such ankle joint right after heel-contact, knee joint during weight acceptance, and both hip and knee joints right before toe-off. The magnitude and the corresponding time to active and passive peak torque changed in a nonlinear pattern before the transition from walk to run. The lower extremity segment-interaction during gait transition appeared to be an active reorganization exemplified by the interaction between the lower extremity's active and passive torque components.  相似文献   

11.
The aim of the present study was to analyze the net joint moment distribution, joint forces and kinematics during cycling to exhaustion. Right pedal forces and lower limb kinematics of ten cyclists were measured throughout a fatigue cycling test at 100% of POMAX. The absolute net joint moments, resultant force and kinematics were calculated for the hip, knee and ankle joint through inverse dynamics. The contribution of each joint to the total net joint moments was computed. Decreased pedaling cadence was observed followed by a decreased ankle moment contribution to the total joint moments in the end of the test. The total absolute joint moment, and the hip and knee moments has also increased with fatigue. Resultant force was increased, while kinematics has changed in the end of the test for hip, knee and ankle joints. Reduced ankle contribution to the total absolute joint moment combined with higher ankle force and changes in kinematics has indicated a different mechanical function for this joint. Kinetics and kinematics changes observed at hip and knee joint was expected due to their function as power sources. Kinematics changes would be explained as an attempt to overcome decreased contractile properties of muscles during fatigue.  相似文献   

12.
Inertial load can affect the control of a dynamic system whenever parts of the system are accelerated ordeclerated. During steady-state pedating, because within-cycle variations in crank angular acceleration still exist, the amount of crank inertia present (which varies widely with road-riding gear ratio) may affect the within-cycle coordination of muscles. However, the effect of inertial load on steady-state pedaling coordination is almos always assumed to be negligible, since the net mechanical energy per cycle developed by muscles only depends on the constant cadence and workload. This study tests the hypothesis that under steady-state conditions, the net joint torques produced by muscles at the hip, knee, and ankle are unaffected by crank inertial load. To perform the investigation, we constructed a pedaling apparatus which could emulate the low inertial load of a standard ergometer or the high inertial load of a road bicycle in high gear. Crank angle and bilateral pedal force and angle data were collected from ten subjects instructed to pedal steadily (i.e. constant speed across cycles) and smoothly (i.e. constant speed within a cycle) against both inertias at a constant workload. Virtually no statistically significant changes were found in the net hip and knee muscle joint torques calculated from an inverse dynamics analysis. Though the net ankle muscle joint torque, as well as the one- and two-legged crank torque, showed statistically significant increases at the higher inertia, the changes were small. In contrast, large statistically significant reductions were found in crank kinematic variability both within a cycle and between cycles (i.e. cadence), primarily because a larger inertial load means a slower crank dynamic response. Nonetheless, the reduction in cadence variability was somewhat attenuated by a large statistically significant increase in one-legged crank torque variability. We suggest, therefore, that muscle coordination during steady-state pedaling is largely unaffected, though less well regulated, when crank inertial load is increased.  相似文献   

13.
Diabetic patients have an altered gait strategy during walking and are known to be at high risk of falling, especially when diabetic peripheral neuropathy is present. This study investigated alterations to lower limb joint torques during walking and related these torques to maximum strength in an attempt to elucidate why diabetic patients are more likely to fall. 20 diabetic patients with moderate/severe peripheral neuropathy (DPN), 33 diabetic patients without peripheral neuropathy (DM), and 27 non-diabetic controls (Ctrl) underwent gait analysis using a motion analysis system and force plates to measure kinetic parameters. Lower limb peak joint torques and joint work done (energy expenditure) were calculated during walking. The ratio of peak joint torques and individual maximum joint strengths (measured on a dynamometer) was then calculated for 59 of the 80 participants to yield the ‘operating strength’ for those participants. During walking DM and DPN patients showed significantly reduced peak torques at the ankle and knee. Maximum joint strengths at the knee were significantly less in both DM and DPN groups than Ctrls, and for the DPN group at the ankle. Operating strengths were significantly higher at the ankle in the DPN group compared to the Ctrls. These findings show that diabetic patients walk with reduced lower limb joint torques; however due to a decrement in their maximum ability at the ankle and knee, their operating strengths are higher. This allows less reserve strength if responding to a perturbation in balance, potentially increasing their risk of falling.  相似文献   

14.
The objective of the study was to investigate the adjustment of running mechanics by wearing five different types of running shoes on tartan compared to barefoot running on grass focusing on the gearing at the ankle and knee joints. The gear ratio, defined as the ratio of the moment arm of the ground reaction force (GRF) to the moment arm of the counteracting muscle tendon unit, is considered to be an indicator of joint loading and mechanical efficiency. Lower extremity kinematics and kinetics of 14 healthy volunteers were quantified three dimensionally and compared between running in shoes on tartan and barefoot on grass. Results showed no differences for the gear ratios and resultant joint moments for the ankle and knee joints across the five different shoes, but showed that wearing running shoes affects the gearing at the ankle and knee joints due to changes in the moment arm of the GRF. During barefoot running the ankle joint showed a higher gear ratio in early stance and a lower ratio in the late stance, while the gear ratio at the knee joint was lower during midstance compared to shod running. Because the moment arms of the counteracting muscle tendon units did not change, the determinants of the gear ratios were the moment arms of the GRF's. The results imply higher mechanical stress in shod running for the knee joint structures during midstance but also indicate an improved mechanical advantage in force generation for the ankle extensors during the push-off phase.  相似文献   

15.
Humans hopping and running on elastic and damped surfaces maintain similar center-of-mass dynamics by adjusting stance leg mechanics. We tested the hypothesis that the leg transitions from acting like an energy-conserving spring on elastic surfaces to a power-producing actuator on damped surfaces during hopping due to changes in ankle mechanics. To test this hypothesis, we collected surface electromyography, video kinematics, and ground reaction force while eight male subjects (body mass: 76.2 +/- 1.7 kg) hopped in place on a range of damped surfaces. On the most damped surface, most of the mechanical work done by the leg appeared at the ankle (52%), whereas 23 and 25% appeared at the knee and hip, respectively. Hoppers extended all three joints during takeoff further than they flexed during landing and thereby did more net positive work on more heavily damped surfaces. Also, all three joints reached peak flexion sooner after touchdown on more heavily damped surfaces. Consequently, peak moment occurred during joint extension rather than at peak flexion as on elastic surfaces. These strategies caused the positive work during extension to exceed the negative work during flexion to a greater extent on more heavily damped surfaces. At the muscle level, surface EMG increased by 50-440% in ankle and knee extensors as surface damping increased to compensate for greater surface energy dissipation. Our findings, and those of previous studies of hopping on elastic surfaces, show that the ankle joint is the key determinant of both springlike and actuator-like leg mechanics during hopping in place.  相似文献   

16.
Power output and work in different muscle groups during ergometer cycling   总被引:1,自引:0,他引:1  
The aim of this study was to calculate the magnitude of the instantaneous muscular power output at the hip, knee and ankle joints during ergometer cycling. Six healthy subjects pedalled a weight-braked bicycle ergometer at 120 watts (W) and 60 revolutions per minute (rpm). The subjects were filmed with a cine camera, and pedal reaction forces were recorded from a force transducer mounted in the pedal. The muscular work at the hip, knee and ankle joint was calculated using a model based upon dynamic mechanics described elsewhere. The mean peak concentric power output was, for the hip extensors, 74.4 W, hip flexors, 18.0 W, knee extensors, 110.1 W, knee flexors, 30.0 W and ankle plantar flexors, 59.4 W. At the ankle joint, energy absorption through eccentric plantar flexor action was observed, with a mean peak power of 11.4 W and negative work of 3.4 J for each limb and complete pedal revolution. The energy production relationships between the different major muscle groups were computed and the contributions to the total positive work were: hip extensors, 27%; hip flexors, 4%; knee extensors, 39%; knee flexors, 10%; and ankle plantar flexors 20%.  相似文献   

17.
Objectives: Although overuse running injury risks for the ankle and knee are high, the effect of different shoe designs on Achilles tendon force (ATF) and Patellofemoral joint contact force (PTF) loading rates are unclear. Therefore, the primary objective of this study was to compare the ATF at the ankle and the PTF and Patellofemoral joint stress force (PP) at the knee using different running shoe designs (forefoot shoes vs. normal shoes). Methods: Fourteen healthy recreational male runners were recruited to run over a force plate under two shoe conditions (forefoot shoes vs. normal shoes). Sagittal plane ankle and knee kinematics and ground reaction forces were simultaneously recorded. Ankle joint mechanics (ankle joint angle, velocity, moment and power) and the ATF were calculated. Knee joint mechanics (knee joint angle velocity, moment and power) and the PTF and PP were also calculated. Results: No significant differences were observed in the PTF, ankle plantarflexion angle, ankle dorsiflexion power, peak vertical active force, contact time and PTF between the two shoe conditions. Compared to wearing normal shoes, wearing the forefoot shoes demonstrated that the ankle dorsiflexion angle, knee flexion velocity, ankle dorsiflexion moment extension, knee extension moment, knee extension power, knee flexion power and the peak patellofemoral contact stress were significantly reduced. However, the ankle dorsiflexion velocity, ankle plantarflexion velocity, ankle plantarflexion moment and Achilles tendons force increased significantly. Conclusions: These findings suggest that wearing forefoot shoes significantly decreases the patellofemoral joint stress by reducing the moment of knee extension, however the shoes increased the ankle plantarflexion moment and ATF force. The forefoot shoes effectively reduced the load on the patellofemoral joint during the stance phase of running. However, it is not recommended for new and novice runners and patients with Achilles tendon injuries to wear forefoot shoes.  相似文献   

18.
The squat is an assessment of lower extremity alignment during movement, however there is little information regarding altered joint kinetics during poorly performed squats. The purpose of this study was to examine changes in joint kinetics and power from altered knee alignment during a squat. Thirty participants completed squats while displacing the knee medially, anteriorly, and with neutral alignment (control). Sagittal and frontal plane torques at the ankle, knee, and hip were altered in the descending and ascending phase of the squat in both the medial and anterior malaligned squat compared to the control squat. Ankle and trunk power increased and hip power decreased in the medial malaligned squat compared to the control squat. Ankle, knee, and trunk power increased and hip power decreased in the anterior malaligned squat compared to the control squat. Changes in joint torques and power during malaligned squats suggest that altered knee alignment increases ankle and trunk involvement to execute the movement. Increased anterior knee excursion during squatting may also lead to persistent altered loading of the ankle and knee. Sports medicine professionals using the squat for quadriceps strengthening must consider knee alignment to reduce ankle and trunk involvement during the movement.  相似文献   

19.
Soldiers regularly transport loads weighing >20 kg at slow speeds for long durations. These tasks elicit high energetic costs through increased positive work generated by knee and ankle muscles, which may increase risk of muscular fatigue and decrease combat readiness. This study aimed to determine how modifying where load is borne changes lower-limb joint mechanical work production, and if load magnitude and/or walking speed also affect work production. Twenty Australian soldiers participated, donning a total of 12 body armor variations: six different body armor systems (one standard-issue, two commercially available [cARM1-2], and three prototypes [pARM1-3]), each worn with two different load magnitudes (15 and 30 kg). For each armor variation, participants completed treadmill walking at two speeds (1.51 and 1.83 m/s). Three-dimensional motion capture and force plate data were acquired and used to estimate joint angles and moments from inverse kinematics and dynamics, respectively. Subsequently, hip, knee, and ankle joint work and power were computed and compared between armor types and walking speeds. Positive joint work over the stance phase significantly increased with walking speed and carried load, accompanied by 2.3–2.6% shifts in total positive work production from the ankle to the hip (p < 0.05). Compared to using cARM1 with 15 kg carried load, carrying 30 kg resulted in significantly greater hip contribution to total lower-limb positive work, while knee and ankle work decreased. Substantial increases in hip joint contributions to total lower-limb positive work that occur with increases in walking speed and load magnitude highlight the importance of hip musculature to load carriage walking.  相似文献   

20.
Lower extremity muscle strength training is a focus of rehabilitation following total hip arthroplasty (THA). Strength of the hip abductor muscle group is a predictor of overall function following THA. The purpose of this study was to investigate the effects of hip abductor strengthening following rehabilitation on joint contact forces (JCFs) in the lower extremity and low back during a high demand step down task. Five THA patients performed lower extremity maximum isometric strength tests and a stair descent task. Patient-specific musculoskeletal models were created in OpenSim and maximum isometric strength parameters were scaled to reproduce measured pre-operative joint torques. A pre-operative forward dynamic simulation of each patient performing the stair descent was constructed using their corresponding patient-specific model to predict JCFs at the ankle, knee, hip, and low back. The hip abductor muscles were strengthened with clinically supported increases (0–30%) above pre-operative values in a probabilistic framework to predict the effects on peak JCFs (99% confidence bounds). Simulated hip abductor strengthening resulted in lower peak JCFs relative to pre-operative for all five patients at the hip (18.9–23.8 ± 16.5%) and knee (20.5–23.8 ± 11.2%). Four of the five patients had reductions at the ankle (7.1–8.5 ± 11.3%) and low back (3.5–7.0 ± 5.3%) with one patient demonstrating no change. The reduction in JCF at the hip joint and at joints other than the hip with hip abductor strengthening demonstrates the dynamic and mechanical interdependencies of the knee, hip and spine that can be targeted in early THA rehabilitation to improve overall patient function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号