首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study investigated the effects of the finger extensor mechanism on the bone-to-bone contact forces at the interphalangeal and metacarpal joints and also on the forces in the intrinsic and extrinsic muscles during finger pressing. This was done with finger postures ranging from very flexed to fully extended. The role of the finger extensor mechanism was investigated by using two alternative finger models, one which omitted the extensor mechanism and another which included it. A six-camera three-dimensional motion analysis system was used to capture the finger posture during maximum voluntary isometric pressing. The fingertip loads were recorded simultaneously using a force plate system. Two three-dimensional biomechanical finger models, a minimal model without extensor mechanism and a full model with extensor mechanism (tendon network), were used to calculate the joint bone-to-bone contact forces and the extrinsic and intrinsic muscle forces. If the full model is assumed to be realistic, then the results suggest some useful biomechanical advantages provided by the tendon network of the extensor mechanism. It was found that the forces in the intrinsic muscles (interosseus group and lumbrical) are significantly reduced by 22% to 61% due to the action of the extensor mechanism, with the greatest reductions in more flexed postures. The bone-to-bone contact force at the MCP joint is reduced by 10% to 41%. This suggests that the extensor mechanism may help to reduce the risk of injury at the finger joints and also to moderate the forces in intrinsic muscles. These apparent biomechanical advantages may be a result of the extensor mechanism''s distinctive interconnected fibrous structure, through which the contraction of the intrinsic muscles as flexors of the MCP joint can generate extensions at the DIP and PIP joints.  相似文献   

2.
A novel technique to estimate the contribution of finger extensor tendons to joint moment generation was proposed. Effective static moment arms (ESMAs), which represent the net effects of the tendon force on joint moments in static finger postures, were estimated for the 4 degrees of freedom (DOFs) in the index finger. Specifically, the ESMAs for the five tendons contributing to the finger extensor apparatus were estimated by directly correlating the applied tendon force to the measured resultant joint moments in cadaveric hand specimens. Repeated measures analysis of variance revealed that the finger posture, specifically interphalangeal joint angles, had significant effects on the measured ESMA values in 7 out of 20 conditions (four DOFs for each of the five muscles). Extensor digitorum communis and extensor indicis proprius tendons were found to have greater MCP ESMA values when IP joints are flexed, whereas abduction ESMAs of all muscles except extensor digitorum profundus were mainly affected by MCP flexion. The ESMAs were generally smaller than the moment arms estimated in previous studies that employed kinematic measurement techniques. Tendon force distribution within the extensor hood and dissipation into adjacent structures are believed to contribute to the joint moment reductions, which result in smaller ESMA values.  相似文献   

3.
The role of the intrinsic finger flexor muscles was investigated during finger flexion tasks. A suspension system was used to measure isometric finger forces when the point of force application varied along fingers in a distal-proximal direction. Two biomechanical models, with consideration of extensor mechanism Extensor Mechanism Model (EMM) and without consideration of extensor mechanism Flexor Model (FM), were used to calculate forces of extrinsic and intrinsic finger flexors. When the point of force application was at the distal phalanx, the extrinsic flexor muscles flexor digitorum profundus, FDP, and flexor digitorum superficialis, FDS, accounted for over 80% of the summed force of all flexors, and therefore were the major contributors to the joint flexion at the distal interphalangeal (DIP), proximal interphalangeal (PIP), and metacarpophalangeal (MCP) joints. When the point of force application was at the DIP joint, the FDS accounted for more than 70% of the total force of all flexors, and was the major contributor to the PIP and MCP joint flexion. When the force of application was at the PIP joint, the intrinsic muscle group was the major contributor for MCP flexion, accounting for more than 70% of the combined force of all flexors. The results suggest that the effects of the extensor mechanism on the flexors are relatively small when the location of force application is distal to the PIP joint. When the external force is applied proximally to the PIP joint, the extensor mechanism has large influence on force production of all flexors. The current study provides an experimental protocol and biomechanical models that allow estimation of the effects of extensor mechanism on both the extrinsic and intrinsic flexors in various loading conditions, as well as differentiating the contribution of the intrinsic and extrinsic finger flexors during isometric flexion.  相似文献   

4.
A slightly flexed human middle finger can balance an external force on the fingertip. Internal stabilization is also possible, which means that the externally unloaded finger can be kept stiff. We want to analyse whether in these situations the intrinsic hand muscles are needed. Distances from tendons to flexion axes are taken from the literature and are substituted in the moment equilibrium equations of a two-dimensional finger model. Diagrams illustrate the statically indeterminate problem of solving tendon forces. The possibilities for equilibrium without intrinsics appear to depend mainly on four tendon-to-joint distances. These distances determine to which of two groups a finger belongs: (1) one in which intrinsics are not necessary for internal stabilization nor for balancing a force on the fingertip in any direction in the sagittal plane; (2) one in which, without intrinsics, internal stabilization is impossible and only dorso-distally directed forces on the fingertip can be balanced.  相似文献   

5.
Objective estimates of fingertip force reduction following peripheral nerve injuries would assist clinicians in setting realistic expectations for rehabilitating strength of grasp. We quantified the reduction in fingertip force that can be biomechanically attributed to paralysis of the groups of muscles associated with low radial and ulnar palsies. We mounted 11 fresh cadaveric hands (5 right, 6 left) on a frame, placed their forefingers in a functional posture (neutral abduction, 45° of flexion at the metacarpophalangeal and proximal interphalangeal joints, and 10° at the distal interphalangeal joint) and pinned the distal phalanx to a six-axis dynamometer. We pulled on individual tendons with tensions up to 25% of maximal isometric force of their associated muscle and measured fingertip force and torque output. Based on these measurements, we predicted the optimal combination of tendon tensions that maximized palmar force (analogous to tip pinch force, directed perpendicularly from the midpoint of the distal phalanx, in the plane of finger flexion–extension) for three cases: non-paretic (all muscles of forefinger available), low radial palsy (extrinsic extensor muscles unavailable) and low ulnar palsy (intrinsic muscles unavailable). We then applied these combinations of tension to the cadaveric tendons and measured fingertip output. Measured palmar forces were within 2% and 5° of the predicted magnitude and direction, respectively, suggesting tendon tensions superimpose linearly in spite of the complexity of the extensor mechanism. Maximal palmar forces for ulnar and radial palsies were 43 and 85% of non-paretic magnitude, respectively (p<0.05). Thus, the reduction in tip pinch strength seen clinically in low radial palsy may be partly due to loss of the biomechanical contribution of forefinger extrinsic extensor muscles to palmar force. Fingertip forces in low ulnar palsy were 9° further from the desired palmar direction than the non-paretic or low radial palsy cases (p<0.05).  相似文献   

6.
The development of a biomechanical model for a human finger is faced with many challenges, such as extensor mechanism complexity, statistical indeterminacy and suitability of computational processes. Motivation for this work was to develop a computer model that is able to predict the internal loading patterns of tendons and joint surfaces experienced by the human finger, while mitigating these challenges. Proposed methodology was based on a non-linear optimising mathematical technique with a criterion of boundary conditions and equality equations, maximised against unknown parameters to reduce statistical indeterminacy. Initial validation was performed via the simulation of one dynamic and two static postures case studies. Past models and experiments were used, based on published literature, to verify the proposed model's methodology and results. The feasibility of the proposed methodology was deemed satisfactory as the simulated results were concordant with in-vivo results for the extrinsic flexors.  相似文献   

7.
The extensor tendons to the fingers were studied in dissections of 50 fresh cadaveric hands, and the divisions of the tendons, as well as the communications (juncturae), were analyzed. The pattern of distribution most frequently observed was as follows. The extensor digitorum communis provided one tendon to the index finger, one to the middle finger, two to the ring finger, and none to the little finger. The extensor indicis exhibited one tendon, whereas the extensor digiti minimi exhibited two tendons. The extensor indicis tendon was always observed to lack a junctura tendinum. The extensor indicis was absent in both hands of one cadaver. A tendon slip from the extensor digiti minimi to the ring finger was observed in one hand. All surgeons must bear in mind the existence of these variations when performing common tendon transfers.  相似文献   

8.
A dynamic model for finger interphalangeal coordination   总被引:2,自引:1,他引:2  
In this paper a dynamic model to investigate interphalangeal coordination in the human finger is proposed. Suitable models which describe the relationship between the tendon displacement and the joint angles have been chosen and incorporated into the skeletal dynamic model. A kinematic and kinetic model for interphalangeal coordination is suggested. Digital computer simulations are carried out to study interphalangeal (IP) flexion. Moreover, the effect of two different optimization methods is contrasted. The two optimization algorithms are employed to obtain a set of feasible values for the forces in the tendons or muscles of the finger.  相似文献   

9.
The aim of the study was to investigate the influence of a preceding flexion or extension movement on the static interaction of human finger flexor tendons and pulleys concerning flexion torque being generated. Six human fresh frozen cadaver long fingers were mounted in an isokinetic movement device for the proximal interphalangeal (PIP) joint. During flexion and extension movement both flexor tendons were equally loaded with 40 N while the generated moment was depicted simultaneously at the fingertip. The movement was stopped at various positions of the proximal interphalangeal joint to record dynamic and static torque. The static torque was always greater after a preceding extension movement compared to a preceding flexion movement in the corresponding same position of the joint. This applied for the whole arc of movement of 0–105°. The difference between static extension and flexion torque was maximal 11% in average at about 83° of flexion. Static torque was always smaller than dynamic torque during extension movement and always greater than dynamic torque during flexion movement. The kind of preceding movement therefore showed an influence to the torque being generated in the proximal interphalangeal joint. The effect could be simulated on a mechanical finger device.  相似文献   

10.
The use of a biomechanical model for human grasp modelling is presented. A previously validated biomechanical model of the hand has been used. The equilibrium of the grasped object was added to the model through the consideration of a soft contact model. A grasping posture generation algorithm was also incorporated into the model. All the geometry was represented using a spherical extension of polytopes (s-topes) for efficient collision detection. The model was used to simulate an experiment in which a subject was asked to grasp two cylinders of different diameters and weights. Different objective functions were checked to solve the indeterminate problem. The normal finger forces estimated by the model were compared to those experimentally measured. The popular objective function sum of the squared muscle stresses was shown not suitable for the grasping simulation, requiring at least being complemented by task-dependent grasp quality measures.  相似文献   

11.
The present work displayed the first quantitative data of forces acting on tendons and pulleys during specific sport-climbing grip techniques. A three-dimensional static biomechanical model was used to estimate finger muscle tendon and pulley forces during the "slope" and the "crimp" grip. In the slope grip the finger joints are flexed, and in the crimp grip the distal interphalangeal (DIP) joint is hyperextended while the other joints are flexed. The tendons of the flexor digitorum profundus and superficialis (FDP and FDS), the extensor digitorum communis (EDC), the ulnar and radial interosseus (UI and RI), the lumbrical muscle (LU) and two annular pulleys (A2 and A4) were considered in the model. For the crimp grip in equilibrium conditions, a passive moment for the DIP joint was taken into account in the biomechanical model. This moment was quantified by relating the FDP intramuscular electromyogram (EMG) to the DIP joint external moment. Its intensity was estimated at a quarter of the external moment. The involvement of this parameter in the moment equilibrium equation for the DIP joint is thus essential. The FDP-to-FDS tendon-force ratio was 1.75:1 in the crimp grip and 0.88:1 in the slope grip. This result showed that the FDP was the prime finger flexor in the crimp grip, whereas the tendon tensions were equally distributed between the FDP and FDS tendons in the slope grip. The forces acting on the pulleys were 36 times lower for A2 in the slope grip than in the crimp grip, while the forces acting on A4 were 4 times lower. This current work provides both an experimental procedure and a biomechanical model that allows estimation of tendon tensions and pulley forces crucial for the knowledge about finger injuries in sport climbing.  相似文献   

12.
Posture-dependent trunk function data are important for appropriate normalization of submaximal trunk exertions, and is also necessary to define a more precise and specific use for strength testing in the prevention and diagnosis of spinal disorders. The aim of the current study was to quantify maximal effort trunk muscle extensor activity and trunk isometric extension torque over a functional range of sagittal standing postures. Twenty healthy, young adult male and female subjects performed isometric extension tasks over a sagittal posture range of -20 degrees extension to +50 degrees flexion, in 10 degrees increments. Erector spinae muscle activity was recorded bilaterally at the level of L3 using surface EMG electrodes. Isometric trunk extension torque was measured using a trunk dynamometer. EMG and trunk torque differed significantly between genders, but there were no differences between male and female subjects when the data were normalized with respect to the upright posture. For the combined male and female population, upright posture normalized L3 EMG activity (EMGn) and trunk extension torque (Tn) increased 1.7-fold and 3.5-fold, respectively, over the 70 degrees range of sagittal postures examined. The ratio (Tn/EMGn) increased two-fold (0.83 to 1.67) from -20 degrees extension to +50 degrees flexion, indicating that the neuromuscular efficiency increases with flexion. Trunk extension torque normalized with respect to the upright posture was linearly and positively correlated (r = 0.59, P < 0.001) to similarly normalized L3 EMG activity. This relatively weak correlation suggests that trunk muscle synergism and/or intrinsic muscle length-tension relationships are also modulated by posture. This study provides data that can be used to estimate trunk extensor muscle function over a broad range of sagittal postures. Our findings indicate that appropriate postural normalization of trunk extensor EMG activity is necessary for studies where submaximal trunk exertions are performed over a range of upright postures.  相似文献   

13.
A marker-based kinematic hand model to quantify finger postures was developed and compared to manual goniometric measurements. The model was implemented with data collected from static postures of five subjects. The metacarpal phalangeal (MCP) and proximal interphalangeal (PIP) joints were positioned in flexion of approximately 30, 60, and 90 degrees for 5 subjects. Wrist flexion/extension and ulnar/radial deviations were also examined. The model-based angles for the MCP and PIP joints were not statistically equivalent to the goniometric measurements, with differences of -1.8 degrees and +3.5 degrees, respectively. Differences between the two measurement methods for the MCP and PIP were found to be a function of the posture (i.e., 150, 120, or 90 degree blocks) used. Wrist measurements differed by -4.0 degrees for ulnar/radial deviation and +5.2 degrees for flexion/extension. Much of the difference between the model and goniometric measurements is believed due to inaccuracies in the goniometric measurements. The proposed model is useful for future investigations of finger-intensive activities by supplying accurate and unbiased measures of joint angles.  相似文献   

14.
This study examined the impact of lower extremity joint stiffnesses and simulated joint contractures on the muscle effort required to maintain static standing postures after a spinal cord injury (SCI). Static inverse computer simulations were performed with a three-dimensional 15 degree of freedom musculoskeletal model placed in 1600 different standing postures. The required lower extremity muscle forces were calculated through an optimization routine that minimized the sum of the muscle stresses squared, which was used as an index of the muscle effort required for each standing posture. Joint stiffnesses were increased and decreased by 100 percent of their nominal values, and contractures were simulated to determine their effects on the muscle effort for each posture. Nominal muscle and passive properties for an individual with a SCI determined the baseline muscle effort for comparisons. Stiffness changes for the ankle plantar flexion/dorsiflexion, hip flexion/extension, and hip abduction/adduction directions had the largest effect on reducing muscle effort by more than 5 percent, while changes in ankle inversion/eversion and knee flexion/extension had the least effect. For erect standing, muscle effort was reduced by more than 5 percent when stiffness was decreased at the ankle plantar flexion/dorsiflexion joint or hip flexion/extension joint. With simulated joint contractures, the postural workspace area decreased and muscle effort was not reduced by more than 5 percent for any posture. Using this knowledge, methods can be developed through the use of orthoses, physical therapy, surgery or other means to appropriately augment or diminish these passive moments during standing with a neuroprosthesis.  相似文献   

15.
The object of this study is to develop a three-dimensional mathematical model of the patello-femoral joint, which is modelled as two rigid bodies representing a moving patella and a fixed femur. Two-point contact was assumed between the femur and patella at the medial and lateral sides and in the analysis, the femoral and patellar articular surfaces were mathematically represented using Coons' bicubic surface patches. Model equations include six equilibrium equations and eleven constraints: six contact conditions, four geometric compatibility conditions, and the condition of a rigid patellar ligament; the model required the solution of a system of 17 nonlinear equations in 17 unknowns, its response describing the six-degress-of-freedom patellar motions and the forces acting on the patella. Patellar motions are described by six motion parameters representing the translations and rotations of the patella with respect to the femur. The forces acting on the patella include the medial and lateral component of patello-femoral contact and the patellar ligament force, all of which were represented as ratios to the quadriceps tendon force. The model response also includes the locations of the medial and lateral contact points on the femur and the patella. A graphical display of its response was produced in order to visualize better the motion of the components of the extensor mechanism.Model calculations show good agreement with experimental results available from the literature. The patella was found to move distally and posteriorly on the femoral condyles as the knee was flexed from full extension. Results indicate that the relative orientation of the patellar ligament with respect to the patella remains unchanged during this motion. The model also predicts a patellar flexion which always lagged knee flexion.Our calculations show that as the angle of knee flexion increased, the lateral contact point moved distally on the femur without moving significantly either medially or laterally. The medial contact point also moved distally on the femur but moved medially from full extension to about 40° of knee flexion, then laterally as the knee flexion angle increased. The lateral contact point on the patella did not change significantly in the medial and lateral direction as the knee was flexed; however, this point moved proximally toward the basis of the patella with knee flexion. The medial contact point also moved proximally on the patella with knee flexion, and in a similar manner the medial contact point on the patella moved distally with flexion from full extension to about 40° of flexion. However, as the angle of flexion increased, the medial contact point did not move significantly in the medial-lateral direction.Model calculations also show that during the simulated knee extension exercise, the ratio of the force in the patellar ligament to the force in the quadriceps tendon remains almost unchanged for the first 30° of knee flexion, then decreases as the angle of knee flexion increases. Furthermore, model results show that the lateral component of the patello-femoral contact force is always greater than the medial component, both components increasing with knee flexion.  相似文献   

16.
Wrist rotations about one wrist axis (e.g. flexion/extension) can affect the strength about another wrist axis (e.g. radial/ulnar deviation). This study used a musculoskeletal model of the distal upper extremity, and an optimization approach, to quantify the interaction effects of wrist flexion/extension (FE), radial/ulnar deviation (RUD) and forearm pronation/supination (PS) on wrist strength. Regression equations were developed to predict the relative changes in strength from the neutral posture, so that the changes in strength, due to complex and interacting wrist and forearm rotation postures, can be incorporated within future ergonomics assessments of wrist strength.  相似文献   

17.
Changes in posture alter the attentional demands of voluntary movement.   总被引:2,自引:0,他引:2  
Two simple experiments reveal that the ease with which an action is performed by the neuromuscular-skeletal system determines the attentional resources devoted to the movement. Participants were required to perform a primary task, consisting of rhythmic flexion and extension movements of the index finger, while being paced by an auditory metronome, in one of two modes of coordination: flex on the beat or extend on the beat. Using a classical dual-task methodology, we demonstrated that the time taken to react to an unpredictable visual probe stimulus (the secondary task) by means of a pedal response was greater when the extension phase of the finger movement sequence was made on the beat of the metronome than when the flexion phase was coordinated with the beat. In a second experiment, the posture of the wrist was manipulated in order to alter the operating lengths of muscles that flex and extend the index finger. The attentional demands of maintaining the extend-on-the-beat pattern of coordination were altered in a systematic fashion by changes in wrist posture, even though the effector used to respond to the visual probe stimulus was unaffected.  相似文献   

18.
In vivo patellofemoral forces in high flexion total knee arthroplasty   总被引:1,自引:0,他引:1  
This study compares the in vivo patellofemoral contact forces generated in high flexion fixed bearing posterior cruciate retaining Nexgen CR-Flex (PCR) and high flexion posterior stabilized Nexgen LPS-Flex (LPS) TKAs with that of normal knees from full knee extension to maximum weight bearing flexion. Ten patients with the PCR total knee arthroplasty (TKA), ten with the LPS TKA and seven patients having normal knees were fluoroscoped while performing a deep knee bend activity. In vivo femorotibial kinematics, obtained from 3D-to-2D registration technique, and patellar kinematics obtained by direct measurements from the fluoroscopic images were entered into a 3D inverse dynamics mathematical model to determine the in vivo contact forces at the knee. The variation in the patellofemoral and quadriceps forces with flexion were found to be similar across the three groups-increasing from full extension to 90 degrees of flexion, reaching a maximum between 90 degrees and 120 degrees of flexion and then decreasing until maximum flexion. At maximum knee flexion, these forces were found to be significantly lower in the normal knees than in the TKAs. The patellar ligament to quadriceps force ratio decreased with the increase in knee flexion while the patellofemoral to quadriceps force ratio increased. A strong correlation was found to exist between the patellofemoral forces, the femorotibial contact forces and the forces in the extensor mechanism. The PCR TKA in this study exhibited greater resemblance to the normal patients with respect to the patellofemoral forces than the LPS TKA though significant differences in the two implant types were not observed.  相似文献   

19.
Wrist splints are commonly prescribed to limit wrist motion and provide support at night and during inactive periods but are often used in the workplace. In theory, splinting the wrist should reduce wrist extensor muscle activity by stabilizing the joint and reducing the need for co-contraction to maintain posture. Ten healthy volunteers underwent a series of 24 10-s gripping trials with surface electromyography on 6 forearm muscles. Trials were randomized between splinted and nonsplinted conditions with three wrist postures (30 degrees flexion, neutral, and 30 degrees extension) and four grip efforts. Custom-made Plexiglas splints were taped to the dorsum of the hand and wrist. It was found that when simply holding the dynamometer, use of a splint led to a small (<1% MVE) but significant reduction in activity for all flexor muscles and extensor carpi radialis (all activity <4% maximum). At maximal grip, extensor muscle activity was significantly increased with the splints by 7.9-23.9% MVE. These data indicate that splinting at low-to-moderate grip forces may act to support the wrist against external loading, but appears counterproductive when exerting maximal forces. Wrist bracing should be limited to periods of no to light activity and avoided during tasks that require heavy efforts.  相似文献   

20.
Tip-pinch, in which the tips of the index finger and thumb pick up and hold a very fine object, plays an important role in the function of the hand. The objective of this study was to investigate how human subjects affect manipulabilities of the tips of the index finger and thumb within the flexion/extension plane of the finger in three different tip-pinch postures. The index finger and thumb of twenty male subjects, were modeled as linkages, based on measurement results obtained using two three-dimensional position measurement devices. The manipulabilities of the index finger and thumb were investigated in three tip-pinch postures, using three criteria indicating the form and posture of the manipulability ellipse of the linkage model. There were no significant differences (p > 0.05, ANOVA) in each criterion of each digit across the subjects, except for two criteria of the thumb. The manipulabilities of the index finger and thumb were separately similar across all subjects in tip-pinch postures. It was found that the manipulability for the cooperation of the index finger and thumb of all the subjects in tip-pinch depended on the posture of the index finger, but not on the posture of the thumb. In two-dimensional tip-pinch, it was possible that the index finger worked actively while the thumb worked passively to support the manipulation of the index finger.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号