共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Alaa Elkordy Eikan Mishima Kuniyasu Niizuma Yasutoshi Akiyama Miki Fujimura Teiji Tominaga Takaaki Abe 《Journal of neurochemistry》2018,146(5):560-569
3.
4.
Recent results have identified a diversity of small RNAs in a wide range of organisms. In this work, we demonstrate that Saccharomyces cerevisiae contains a small RNA population consisting primarily of tRNA halves and rRNA fragments. Both 5′ and 3′ fragments of tRNAs are detectable by Northern blot analysis, suggesting a process of endonucleolytic cleavage. tRNA and rRNA fragment production in yeast is most pronounced during oxidative stress conditions, especially during entry into stationary phase. Similar tRNA fragments are also observed in human cell lines and in plants during oxidative stress. These results demonstrate that tRNA cleavage is a conserved aspect of the response to oxidative stress. 相似文献
5.
Qiufen He Xiao He Yun Xiao Qiong Zhao Zhenzhen Ye Limei Cui Ye Chen Min-Xin Guan 《The Journal of biological chemistry》2021,297(2)
Mammalian mitochondrial tRNA (mt-tRNA) plays a central role in the synthesis of the 13 subunits of the oxidative phosphorylation complex system (OXPHOS). However, many aspects of the context-dependent expression of mt-tRNAs in mammals remain unknown. To investigate the tissue-specific effects of mt-tRNAs, we performed a comprehensive analysis of mitochondrial tRNA expression across five mice tissues (brain, heart, liver, skeletal muscle, and kidney) using Northern blot analysis. Striking differences in the tissue-specific expression of 22 mt-tRNAs were observed, in some cases differing by as much as tenfold from lowest to highest expression levels among these five tissues. Overall, the heart exhibited the highest levels of mt-tRNAs, while the liver displayed markedly lower levels. Variations in the levels of mt-tRNAs showed significant correlations with total mitochondrial DNA (mtDNA) contents in these tissues. However, there were no significant differences observed in the 2-thiouridylation levels of tRNALys, tRNAGlu, and tRNAGln among these tissues. A wide range of aminoacylation levels for 15 mt-tRNAs occurred among these five tissues, with skeletal muscle and kidneys most notably displaying the highest and lowest tRNA aminoacylation levels, respectively. Among these tissues, there was a negative correlation between variations in mt-tRNA aminoacylation levels and corresponding variations in mitochondrial tRNA synthetases (mt-aaRS) expression levels. Furthermore, the variable levels of OXPHOS subunits, as encoded by mtDNA or nuclear genes, may reflect differences in relative functional emphasis for mitochondria in each tissue. Our findings provide new insight into the mechanism of mt-tRNA tissue-specific effects on oxidative phosphorylation. 相似文献
6.
7.
tRFs(tRNA-derived RNA fragments)是来源于tRNA的小分子非编码RNA,由前体tRNA或成熟tRNA经加工和修饰而成,在生物界中广泛存在。tRFs深度测序结果表明,tRFs可能并不是由tRNA随机裂解产生的,而是通过某个特定机制生成。根据来源不同,tRFs可被分为tRF-1、tRF-2、tRF-3、tRF-5和tiR。tRFs具有类似于miRNA的调控功能,并能参与调控基因转录和翻译,细胞增殖以及细胞应激反应。新近研究表明,乳腺癌细胞中某些特异性的tRFs(如tRFGlyTCC和tRFAspGTC),可通过与Y-box结合蛋白1(Y box binding protein 1, YB-1)结合进而抑制癌细胞的生长和转移。另有研究表明,tRFs还可通过细胞色素c介导的信号转导途径来发挥其抑制癌细胞凋亡的功能。由此可见,tRFs在调控癌症发生发展过程中也具有重要调控作用,然而其机制仍不清楚。本文综述了tRFs结构和分布、生物学功能及其作用机制的研究现状,旨在为tRFs相关研究提供参考。 相似文献
8.
Aleksandra P Pitera Maria Szaruga SewYeu PeakChew Steven W Wingett Anne Bertolotti 《The EMBO journal》2022,41(11)
Halofuginone (HF) is a phase 2 clinical compound that inhibits the glutamyl‐prolyl‐tRNA synthetase (EPRS) thereby inducing the integrated stress response (ISR). Here, we report that halofuginone indeed triggers the predicted canonical ISR adaptations, consisting of attenuation of protein synthesis and gene expression reprogramming. However, the former is surprisingly atypical and occurs to a similar magnitude in wild‐type cells, cells lacking GCN2 and those incapable of phosphorylating eIF2α. Proline supplementation rescues the observed HF‐induced changes indicating that they result from inhibition of EPRS. The failure of the GCN2‐to‐eIF2α pathway to elicit a measurable protective attenuation of translation initiation allows translation elongation defects to prevail upon HF treatment. Exploiting this vulnerability of the ISR, we show that cancer cells with increased proline dependency are more sensitive to halofuginone. This work reveals that the consequences of EPRS inhibition are more complex than anticipated and provides novel insights into ISR signaling, as well as a molecular framework to guide the targeted development of halofuginone as a therapeutic. 相似文献
9.
Application of a charge/size two-dimensional gel electrophoresis system to the analysis of the penicillin-binding proteins of Escherichia coli 总被引:2,自引:0,他引:2
Phenylalanine-specific tRNA from yeast was hydrolysed with cobra venom ribonuclease in the double-stranded regions and the fragments isolated. The 'dissected' molecules with nicks in positions 28 and 41 were reconstructed from supplementary fragments and treated with T-4 RNA ligase. A phosphodiester bond between two fragments was formed when the fragment combination (1-28) + (29-76) was used. A strong discrimination in the ligation yield between different nick positions in the same helix is shown. 相似文献
10.
Hui-Yan Lei Xiao-Long Zhou Zhi-Rong Ruan Wei-Cheng Sun Gilbert Eriani En-Duo Wang 《The Journal of biological chemistry》2015,290(43):26314-26327
Nine aminoacyl-tRNA synthetases (aaRSs) and three scaffold proteins form a super multiple aminoacyl-tRNA synthetase complex (MSC) in the human cytoplasm. Domains that have been added progressively to MSC components during evolution are linked by unstructured flexible peptides, producing an elongated and multiarmed MSC structure that is easily attacked by proteases in vivo. A yeast two-hybrid screen for proteins interacting with LeuRS, a representative MSC member, identified calpain 2, a calcium-activated neutral cysteine protease. Calpain 2 and calpain 1 could partially hydrolyze most MSC components to generate specific fragments that resembled those reported previously. The cleavage sites of calpain in ArgRS, GlnRS, and p43 were precisely mapped. After cleavage, their N-terminal regions were removed. Sixty-three amino acid residues were removed from the N terminus of ArgRS to form ArgRSΔN63; GlnRS formed GlnRSΔN198, and p43 formed p43ΔN106. GlnRSΔN198 had a much weaker affinity for its substrates, tRNAGln and glutamine. p43ΔN106 was the same as the previously reported p43-derived apoptosis-released factor. The formation of p43ΔN106 by calpain depended on Ca2+ and could be specifically inhibited by calpeptin and by RNAi of the regulatory subunit of calpain in vivo. These results showed, for the first time, that calpain plays an essential role in dissociating the MSC and might regulate the canonical and non-canonical functions of certain components of the MSC. 相似文献
11.
《Molecular cell》2021,81(16):3323-3338.e14
- Download : Download high-res image (136KB)
- Download : Download full-size image
12.
Rayakorn Yutthanasirikul Takanori Nagano Haruhiko Jimbo Yukako Hihara Takashi Kanamori Takuya Ueda Takamitsu Haruyama Hiroki Konno Keisuke Yoshida Toru Hisabori Yoshitaka Nishiyama 《The Journal of biological chemistry》2016,291(11):5860-5870
Translational elongation is susceptible to inactivation by reactive oxygen species (ROS) in the cyanobacterium Synechocystis sp. PCC 6803, and elongation factor G has been identified as a target of oxidation by ROS. In the present study we examined the sensitivity to oxidation by ROS of another elongation factor, EF-Tu. The structure of EF-Tu changes dramatically depending on the bound nucleotide. Therefore, we investigated the sensitivity to oxidation in vitro of GTP- and GDP-bound EF-Tu as well as that of nucleotide-free EF-Tu. Assays of translational activity with a reconstituted translation system from Escherichia coli revealed that GTP-bound and nucleotide-free EF-Tu were sensitive to oxidation by H2O2, whereas GDP-bound EF-Tu was resistant to H2O2. The inactivation of EF-Tu was the result of oxidation of Cys-82, a single cysteine residue, and subsequent formation of both an intermolecular disulfide bond and sulfenic acid. Replacement of Cys-82 with serine rendered EF-Tu resistant to inactivation by H2O2, confirming that Cys-82 was a target of oxidation. Furthermore, oxidized EF-Tu was reduced and reactivated by thioredoxin. Gel-filtration chromatography revealed that some of the oxidized nucleotide-free EF-Tu formed large complexes of >30 molecules. Atomic force microscopy revealed that such large complexes dissociated into several smaller aggregates upon the addition of dithiothreitol. Immunological analysis of the redox state of EF-Tu in vivo showed that levels of oxidized EF-Tu increased under strong light. Thus, resembling elongation factor G, EF-Tu appears to be sensitive to ROS via oxidation of a cysteine residue, and its inactivation might be reversed in a redox-dependent manner. 相似文献
13.
Hagen Schwenzer Frank Jühling Alexander Chu Laura J. Pallett Thomas F. Baumert Mala Maini Ariberto Fassati 《Cell reports》2019,26(12):3416-3428.e5
14.
G. A. Zhouravleva S. E. Moskalenko S. V. Chabelskaya M. Philippe S. G. Inge-Vechtomov 《Molecular Biology》2006,40(4):647-653
We have earlier characterized Saccharomyces cerevisiae strains with mutations of essential SUP45 and SUP35, which code for translation termination factors eRF1 and eRF3, respectively. In this work, the sup45 and sup35 nonsense mutants were compared with respect to the levels of eight tRNAs: tRNATyr, tRNAGln, tRNATrp, tRNALeu, tRNAArg (described as potential suppressor tRNAs), tRNAPro, tRNAHis, and tRNAGly. The mutants did not display a selective increase in tRNAs, capable of a noncanonical read-through at stop codons. Most of the mutations increased the level of all tRNAs under study. The mechanisms providing for the viability of the sup45 and sup35 nonsense mutants are discussed. 相似文献
15.
The folding of tRNA fragments (tRFs) into G-quadruplex structures and the implications of G-quadruplexes in translational inhibition have been studied mainly in mammalian systems. To increase our knowledge of these phenomena, we determined the influence of human and plant tRFs and model G-quadruplexes on translation in rabbit reticulocyte lysate and wheat germ extract. The efficiency of translational inhibition in the mammalian system was strongly associated with the type of G-quadruplex topology. In the plant system, the ability of a small RNA to adopt the G-quadruplex conformation was not sufficient to repress translation, indicating the importance of other structural determinants. 相似文献
16.
Jacob Gubbens Soo Jung Kim Zhongying Yang Arthur E. Johnson William R. Skach 《RNA (New York, N.Y.)》2010,16(8):1660-1672
Amber suppressor tRNAs are widely used to incorporate nonnatural amino acids into proteins to serve as probes of structure, environment, and function. The utility of this approach would be greatly enhanced if multiple probes could be simultaneously incorporated at different locations in the same protein without other modifications. Toward this end, we have developed amber, opal, and ochre suppressor tRNAs derived from Escherichia coli, and yeast tRNACys that incorporate a chemically modified cysteine residue with high selectivity at the cognate UAG, UGA, and UAA stop codons in an in vitro translation system. These synthetic tRNAs were aminoacylated in vitro, and the labile aminoacyl bond was stabilized by covalently attaching a fluorescent dye to the cysteine sulfhydryl group. Readthrough efficiency (amber > opal > ochre) was substantially improved by eRF1/eRF3 inhibition with an RNA aptamer, thus overcoming an intrinsic hierarchy in stop codon selection that limits UGA and UAA termination suppression in higher eukaryotic translation systems. This approach now allows concurrent incorporation of two different modified amino acids at amber and opal codons with a combined apparent readthrough efficiency of up to 25% when compared with the parent protein lacking a stop codon. As such, it significantly expands the possibilities for incorporating nonnative amino acids for protein structure/function studies. 相似文献
17.
We isolated and characterized a cDNA for the N-terminal half of the eukaryotic initiation of translation factor 2 (cIF2) during a screen of chicken osteoblast cDNAs. The apparent size of the message for this protein, approximately 5.6 kb, is slightly larger in size than that for human IF2 (hIF2). There is a high degree of sequence similarity between the human and chicken N-terminal portions of the protein that extends to the encoding nucleotide sequence. The tissue specific expression pattern for cIF2 and hIF2 are similar, being moderately abundant in brain, liver, and skeletal muscle, and detectable in kidney, chondrocytes, and freshly isolated osteoblasts. The ratio of message for cIF2 to that of beta-actin was 0.10 and 0.18 for liver and brain. Message levels peak in osteoblasts between 8 and 12 days of culture, coinciding with high levels of matrix protein synthesis. At peak expression, the ratio of cIF2:beta-actin for 8 day osteoblasts was 0.76. Treatment of osteoblast cultures with cycloheximide markedly reduces the level of cIF2 message indicating that novel protein synthesis is required for its expression. Hybridization of RNA samples from either chicken osteoblasts or a human osteoblast cell line with a probe for a subunit of human eukaryotic initiation of translation factor 2 (eIF2alpha), the housekeeping initiation factor, indicates that levels of eIF2 remain low. With hIF2, cIF2 represents the only other vertebrate homolog of IF2 for which a major portion of the coding sequence has been identified. This is the first report of regulated expression for a eukaryotic IF2 and is the first demonstration of its abundance in osteoblasts. 相似文献
18.
We have previously identified an ESE in NF1 exon 37 whose disruption by the pathological mutation c.6792C>G caused aberrant splicing. We now investigate the RNA-protein complexes affected by the c.6792C>G mutation observing that this concurrently decreases the affinity for the positive splicing factor YB-1 and increases the affinity for the negative splicing factors, hnRNPA1, hnRNPA2 and a new player in these type of complexes, DAZAP1. Our findings highlight the complexity of the interplay between positive and negative factors in the exon inclusion/skipping outcome. Furthermore, our observations stress the role of a wide genomic context in NF1 exon 37 definition. 相似文献
19.
20.
Robert J. Trachman III Luiz F.M. Passalacqua Adrian R. Ferr-DAmar 《The Journal of biological chemistry》2022,298(6)
Unlike most riboswitches, which have one cognate effector, the bacterial yjdF riboswitch binds to diverse azaaromatic compounds, only a subset of which cause it to activate translation. We examined the yjdF aptamer domain by small-angle X-ray scattering and found that in the presence of activating ligands, the RNA adopts an overall shape similar to that of tRNA. Sequence analyses suggested that the yjdF aptamer is a homolog of tRNALys, and that two of the conserved loops of the riboswitch are equivalent to the D-loop and T-loop of tRNA, associating to form an elbow-like tertiary interaction. Chemical probing indicated that this association is promoted by activating ligands such as chelerythrine and harmine. In its native mRNA context, activator ligands stabilize the tRNA-like fold of the yjdF aptamer, outcompeting the attenuated state in which its T-loop base pairs to the Shine–Dalgarno element of the mRNA. Moreover, we demonstrate that the liganded aptamer itself activates translation, as authentic tRNAs, when grafted into mRNA, can potently activate translation. Taken together, our data demonstrate the ability of tRNA to function as a small-molecule responsive cis regulatory element. 相似文献