首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We show that the activity of an ion channel is correlated with the phase state of the lipid bilayer hosting the channel. By measuring unitary conductance, dwell times, and open probability of the K+ channel KcsA as a function of temperature in lipid bilayers composed of POPE and POPG in different relative proportions, we obtain that all those properties show a trend inversion when the bilayer is in the transition region between the liquid-disordered and the solid-ordered phase. These data suggest that the physical properties of the lipid bilayer influence ion channel activity likely via a fine-tuning of its conformations. In a more general interpretative framework, we suggest that other parameters such as pH, ionic strength, and the action of amphiphilic drugs can affect the physical behavior of the lipid bilayer in a fashion similar to temperature changes resulting in functional changes of transmembrane proteins.  相似文献   

2.
The actions of alcohols and anesthetics on ion channels are poorly understood. Controversy continues about whether bilayer restructuring is relevant to the modulatory effects of these surface active agents (SAAs). Some voltage-gated K channels (Kv), but not KvAP, have putative low affinity alcohol-binding sites, and because KvAP structures have been determined in bilayers, KvAP could offer insights into the contribution of bilayer mechanics to SAA actions. We monitored KvAP unitary conductance and macroscopic activation and inactivation kinetics in PE:PG/decane bilayers with and without exposure to classic SAAs (short-chain 1-alkanols, cholesterol, and selected anesthetics: halothane, isoflurane, chloroform). At levels that did not measurably alter membrane specific capacitance, alkanols caused functional changes in KvAP behavior including lowered unitary conductance, modified kinetics, and shifted voltage dependence for activation. A simple explanation is that the site of SAA action on KvAP is its entire lateral interface with the PE:PG/decane bilayer, with SAA-induced changes in surface tension and bilayer packing order combining to modulate the shape and stability of various conformations. The KvAP structural adjustment to diverse bilayer pressure profiles has implications for understanding desirable and undesirable actions of SAA-like drugs and, broadly, predicts that channel gating, conductance and pharmacology may differ when membrane packing order differs, as in raft versus nonraft domains.  相似文献   

3.
Summary In cultured bovine aortic endothelial cells, elementary K+ currents were studied in cell-attached and inside-out patches using the standard patch-clamp technique. Two different cationic channels were found, a large channel with a mean unitary conductance of 150±10 pS and a small channel with a mean unitary conductance of 12.5±1.1 pS. The 150-pS channel proved to be voltag- and Ca2+-activatable and seems to be a K+ channel. Its open probability increased on membrane depolarization and, at a given membrane potential, was greatly enhanced by elevating the Ca2+ concentration at the cytoplasmic side of the membrane from 10–7 to 10–4 m. 150-pS channels were not influenced by the patch configuration in that patch excision neither induced rundown nor evoked channel activity in silent cell-attached patches. However, they were only seen in two out of 55 patches. The 12-pS channel was predominant, a nonselective cationic channel with almost the same permeability for K+ and Na+ whose open probability was minimal near –60 mV but increased on membrane hyperpolarization. An increase in internal Ca2+ from 10–7 to 10–4 m left the open probability unchanged. Although the K+ selectivity of the 150-pS channels remains to be elucidated, it is concluded that they may be involved in controlling Ca2+-dependent cellular functions. Under physiological conditions, 12-pS nonselective channels may provide an inward cationic pathway for Na+.  相似文献   

4.
Functional biological synthetic composite (BSC) membranes were made using phospholipids, biological membrane proteins and permeable synthetic supports or membranes. Lipid bilayers were formed on porous polycarbonate (PC), polyethylene terephthalate (PETE) and poly (l-lactic acid) (PLLA) membranes and in 10-100 μm laser-drilled pores in a 96-well plastic plate as measured by increased resistance or decreased currents. Bilayers in 50 μm and smaller pores were stable for up to 4 h as measured by resistance changes or a current after gramicidin D reconstitution. Biological membrane transport reconstitution was then carried out. Using vesicles containing Kv1.5 K+ channels, K+ currents and decreased resistance were measured across bilayers in 50 μm pores in the plastic plate and PLLA membranes, respectively, which were inhibited by compound B, a Kv1.5 K+ channel inhibitor. Functional reconstitution of Kv1.5 K+ channels was successful. Incorporation of membrane proteins in functional form in stable permeable membrane-supported lipid bilayers is a simple technology to create BSC membranes that mimic biological function which is readily adaptable for high throughput screening.  相似文献   

5.
Abstract

Guanine nucleotide binding (G) proteins are heterotrimers that couple a wide range of receptors to ionic channels. The coupling may be indirect, via cytoplasmic agents, or direct, as has been shown for two K+ channels and two Ca2+ channels. One example of direct G protein gating is the atrial muscarinic K+ channel K+ [ACh], an inwardly rectifying K1 channel with a slope conductance of 40 pS in symmetrical isotonic K+ solutions and a mean open lifetime of 1.4 ms at potentials between -40 and - 100 mV. Another is the clonal GH, muscarinic or somatostatin K+ channel, also inwardly rectifying but with a slope conductance of 55 pS. AG protein, G., purified from human red blood cells WC) activates K+[ACh] channels at subpicomolar concentrations; its a subunit is equi-potent. Except for being irreversible, their effects on gating precisely mimic physiological gating produced by muscarinic agonists. The αk effects are general and are similar in atria from adult guinea pig, neonatal rat, and chick embryo. The hydrophilic βγ from transducin has no effect while hydropho-bic βγ from brain, hRBCs, or retina has effects at nanomolar concentrations which in our hands cannot be disSociated from detergent effects. An anti-αk monoclonal antibody blocks muscarinic activation, supporting the concept that the physiological mediator is the a subunit not the βγ dimer. The techniques of molecular biology are now being used to specify G protein gating. A “bacterial” αi-3 expressed in Escherichia coli using a pT7 expression system mimics the gating produced by hRBC αk.  相似文献   

6.
Syringomycin E channel: a lipidic pore stabilized by lipopeptide?   总被引:2,自引:0,他引:2       下载免费PDF全文
Highly reproducible ion channels of the lipopeptide antibiotic syringomycin E demonstrate unprecedented involvement of the host bilayer lipids. We find that in addition to a pronounced influence of lipid species on the open-channel ionic conductance, the membrane lipids play a crucial role in channel gating. The effective gating charge, which characterizes sensitivity of the conformational equilibrium of the syringomycin E channels to the transmembrane voltage, is modified by the lipid charge and lipid dipolar moment. We show that the type of host lipid determines not only the absolute value but also the sign of the gating charge. With negatively charged bilayers, the gating charge sign inverts with increased salt concentration or decreased pH. We also demonstrate that the replacement of lamellar lipid by nonlamellar with the negative spontaneous curvature inhibits channel formation. These observations suggest that the asymmetric channel directly incorporates lipids. The charges and dipoles resulting from the structural inclusion of lipids are important determinants of the overall energetics that underlies channel gating. We conclude that the syringomycin E channel may serve as a biophysical model to link studies of ion channels with those of lipidic pores in membrane fusion.  相似文献   

7.
Chromaffin granules are involved in catecholamine synthesis and traffic in the adrenal glands. The transporting membrane proteins of chromaffin granules play an important role in the ion homeostasis of these organelles. In this study, we characterized components of the electrogenic 86Rb+ flux observed in isolated chromaffin granules. In order to study single channel activity, chromaffin granules from the bovine adrenal medulla were incorporated into planar lipid bilayers. Four types of cationic channel were found, each with a different conductance. The unitary conductances of the potassium channels are 360 ± 10 pS, 220 ± 8 pS, 152 ± 8 pS and 13 ± 3 pS in a gradient of 450/150 mM KCl, pH 7.0. A multiconductance potassium channel with a conductivity of 110 ± 8 pS and 31 ± 4 pS was also found. With the exception of the 13 pS conductance channel, all are activated by depolarizing voltages. One type of chloride channel was also found. It has a unitary conductance of about 250 pS in a gradient of 500/150 mM KCl, pH 7.0.  相似文献   

8.
Summary Intact adrenal chromaffin granules and purified granule membrane ghosts were allowed to fuse with acidic phospholipid planar bilayer membranes in the presence of Ca2+ (1 mm). From both preparations, we were able to detect a large conductance potassium channel (ca. 160 pS in symmetrical 400 mm K+), which was highly selective for K+ over Na+ (P k/P Na = 11) as estimated from the reversal potential of the channel current. Channel activity was unaffected by charybdotoxin, a blocker of the [Ca2+] activated K+ channel of large conductance. Furthermore, this channel proved quite different from the previously described channels from other types of secretory vesicle preparations, not only in its selectivity and conductance, but also in its insensitivity to both calcium and potential across the bilayer. We conclude that the chromaffin granule membrane contains a K+-selective channel with large conductance. We suggest that the role of this channel may include ion movement during granule assembly or recycling, and do not rule out events leading to exocytosis.  相似文献   

9.
Ryanodine receptor channels (RyR) are key components of striated muscle excitation-contraction coupling, and alterations in their function underlie both inherited and acquired disease. A full understanding of the disease process will require a detailed knowledge of the mechanisms and structures involved in RyR function. Unfortunately, high-resolution structural data, such as exist for K+-selective channels, are not available for RyR. In the absence of these data, we have used modeling to identify similarities in the structural elements of K+ channel pore-forming regions and postulated equivalent regions of RyR. This has identified a sequence of residues in the cytosolic cavity-lining transmembrane helix of RyR (G4864LIIDA4869 in RyR2) analogous to the glycine hinge motif present in many K+ channels. Gating in these K+ channels can be disrupted by substitution of residues for the hinge glycine. We investigated the involvement of glycine 4864 in RyR2 gating by monitoring properties of recombinant human RyR2 channels in which this glycine is replaced by residues that alter gating in K+ channels. Our data demonstrate that introducing alanine at position 4864 produces no significant change in RyR2 function. In contrast, function is altered when glycine 4864 is replaced by either valine or proline, the former preventing channel opening and the latter modifying both ion translocation and gating. Our studies reveal novel information on the structural basis of RyR gating, identifying both similarities with, and differences from, K+ channels. Glycine 4864 is not absolutely required for channel gating, but some flexibility at this point in the cavity-lining transmembrane helix is necessary for normal RyR function.  相似文献   

10.
Summary We have incorporated into planar lipid bilayer membranes a voltage-dependent, anion-selective channel (VDAC) obtained fromParamecium aurelia. VDAC-containing membranes have the following properties: (1) The steady-state conductance of a many-channel membrane is maximal when the transmembrane potential is zero and decreases as a steep function of both positive and negative voltage. (2) The fraction of time that an individual channel stays open is strongly voltage dependent in a manner that parallels the voltage dependence of a many-channel membrane. (3) The conductance of the open channel is about 500 pmho in 0.1 to 1.0m salt solutions and is ohmic. (4) The channel is about 7 times more permeable to Cl than to K+ and is impermeable to Ca++. The procedure for obtaining VDAC and the properties of the channel are highly reproducible.VDAC activity was found, upon fractionation of the paramecium membranes, to come from the mitochondria. We note that the published data on mitochondrial Cl permeability suggest that there may indeed be a voltage-dependent Cl permeability in mitochondria.The method of incorporating VDAC into planar lipid bilayers may be generally useful for reconstituting biological transport systems in these membranes.  相似文献   

11.
Missense mutations at arginine residues in the S4 voltage-sensor domains of NaV1.4 are an established cause of hypokalemic periodic paralysis, an inherited disorder of skeletal muscle involving recurrent episodes of weakness in conjunction with low serum K+. Expression studies in oocytes have revealed anomalous, hyperpolarization-activated gating pore currents in mutant channels. This aberrant gating pore conductance creates a small inward current at the resting potential that is thought to contribute to susceptibility to depolarization in low K+ during attacks of weakness. A critical component of this hypothesis is the magnitude of the gating pore conductance relative to other conductances that are active at the resting potential in mammalian muscle: large enough to favor episodes of paradoxical depolarization in low K+, yet not so large as to permanently depolarize the fiber. To improve the estimate of the specific conductance for the gating pore in affected muscle, we sequentially measured Na+ current through the channel pore, gating pore current, and gating charge displacement in oocytes expressing R669H, R672G, or wild-type NaV1.4 channels. The relative conductance of the gating pore to that of the pore domain pathway for Na+ was 0.03%, which implies a specific conductance in muscle from heterozygous patients of ∼10 µS/cm2 or 1% of the total resting conductance.Unexpectedly, our data also revealed a substantial decoupling between gating charge displacement and peak Na+ current for both R669H and R672G mutant channels. This decoupling predicts a reduced Na+ current density in affected muscle, consistent with the observations that the maximal dV/dt and peak amplitude of the action potential are reduced in fibers from patients with R672G and in a knock-in mouse model of R669H. The defective coupling between gating charge displacement and channel activation identifies a previously unappreciated mechanism that contributes to the reduced excitability of affected fibers seen with these mutations and possibly with other R/X mutations of S4 of NaV, CaV, and KV channels associated with human disease.  相似文献   

12.
Two classes of small homologous basic proteins, mamba snake dendrotoxins (DTX) and bovine pancreatic trypsin inhibitor (BPTI), block the large conductance Ca2+-activated K+ channel (BKCa, KCa1.1) by production of discrete subconductance events when added to the intracellular side of the membrane. This toxin-channel interaction is unlikely to be pharmacologically relevant to the action of mamba venom, but as a fortuitous ligand-protein interaction, it has certain biophysical implications for the mechanism of BKCa channel gating. In this work we examined the subconductance behavior of 9 natural dendrotoxin homologs and 6 charge neutralization mutants of δ-dendrotoxin in the context of current structural information on the intracellular gating ring domain of the BKCa channel. Calculation of an electrostatic surface map of the BKCa gating ring based on the Poisson-Boltzmann equation reveals a predominantly electronegative surface due to an abundance of solvent-accessible side chains of negatively charged amino acids. Available structure-activity information suggests that cationic DTX/BPTI molecules bind by electrostatic attraction to site(s) on the gating ring located in or near the cytoplasmic side portals where the inactivation ball peptide of the β2 subunit enters to block the channel. Such an interaction may decrease the apparent unitary conductance by altering the dynamic balance of open versus closed states of BKCa channel activation gating.  相似文献   

13.
The inhibitory glycine receptor (GlyR) of rat spinal cord contains an intrinsic transmembrane channel mediating agonist-gated anion flux. Here, synthetic peptides modelled after the predicted transmembrane domains M2 and M4 of its ligand-binding subunit were incorporated into lipid vesicle membranes and black lipid bilayers to analyze their channel forming capabilities. Both types of peptides prohibited the establishment of, or dissipated, preexisting transmembrane potentials in the vesicle system. Incorporation of peptide M2 into the black lipid bilayer elicited randomly gated single channel events with various conductance states and life-times. Peptide M4 increased the conductance of the bilayer without producing single channels. Exchange of the terminal arginine residues of peptide M2 by glutamate resulted in a significant shift towards cation selectivity of the respective channels as compared to peptide M2. In conclusion, the peptide channels observed differed significantly from native GlyR in both conductivity and ion-selectivity indicating that individual synthetic transmembrane segments are not sufficient to mimic a channel protein composed of subunits with multiple transmembrane segments.  相似文献   

14.
Two classes of small homologous basic proteins, mamba snake dendrotoxins (DTX) and bovine pancreatic trypsin inhibitor (BPTI), block the large conductance Ca2+-activated K+ channel (BKCa, KCa1.1) by production of discrete subconductance events when added to the intracellular side of the membrane. This toxin-channel interaction is unlikely to be pharmacologically relevant to the action of mamba venom, but as a fortuitous ligand-protein interaction, it has certain biophysical implications for the mechanism of BKCa channel gating. In this work we examined the subconductance behavior of 9 natural dendrotoxin homologs and 6 charge neutralization mutants of δ-dendrotoxin in the context of current structural information on the intracellular gating ring domain of the BKCa channel. Calculation of an electrostatic surface map of the BKCa gating ring based on the Poisson-Boltzmann equation reveals a predominantly electronegative surface due to an abundance of solvent-accessible side chains of negatively charged amino acids. Available structure-activity information suggests that cationic DTX/BPTI molecules bind by electrostatic attraction to site(s) on the gating ring located in or near the cytoplasmic side portals where the inactivation ball peptide of the β2 subunit enters to block the channel. Such an interaction may decrease the apparent unitary conductance by altering the dynamic balance of open versus closed states of BKCa channel activation gating.  相似文献   

15.
Summary Ion channels permeable to barium and calcium were reconstituted from theAplysia nervous system into phospholipid bilayers formed on the tips of patch electrodes. With asymmetrical concentrations of barium or calcium on the two sides of the bilayer, the single-channel currents reversed at the calculated barium or calcium reversal potentials, indicating that the channels were cation selective. Channels with conductances of 10, 25 and 36 pS were routinely observed. Calcium and barium were equally effective as charge carriers for the 36-pS channel, whereas magnesium was at least fifteenfold less effective. The gating of all three channels was independent of the voltage across the bilayer, but was affected by the dihydropyridine calcium channel agonist Bay K 8644 (Bay K). In the presence of Bay K but not in its absence, long discrete gating events were routinely observed, suggesting that the dihydropyridine increased the probability of long open states as it does for calcium channels in other systems.Bilayers invariably contained more than a single channel (or conductance state). This was observed even when theAplysia nervous system membranes were prepared in the presence of cytoskeleton disrupting agents, or when the membrane proteins were diluted extensively with exogenous phospholipid. Furthermore, transitions between conductance levels were observed with high frequency. These findings, together with the fact that all of the conductance states share certain properties including voltage-independence and sensitivity to Bay K, suggest that the apparent multiple channel types may in fact represent subconductance states of a single ion channel.  相似文献   

16.
Membrane vesicles, prepared from mouse NIH-3T3 fibroblasts and Chinese hamster ovary cells expressing high levels of cystic fibrosis transmembrane conductance regulator (CFTR), were fused with Mueller-Rudin planar lipid bilayers. Upon addition of the catalytic subunit of cAMP-dependent protein kinase and ATP, low conductance Cl(-)-selective ion channels were observed in 10 of 16 experiments. The channels had a linear current-voltage relationship and a unitary conductance of approximately 6.5 pS. The channels were more permeable to Cl- than to I- and showed no appreciable time-dependent voltage activation. In contrast, addition of cAMP-dependent protein kinase and ATP to lipid bilayers fused with vesicles prepared from mock transfected (n = 14) cells failed to activate Cl- channels. These data support the conclusion that CFTR is a Cl- channel. They indicate that it can be reconstituted in a planar lipid bilayer and that the biophysical and regulatory properties are very similar to those observed in the native cell membrane. These data also argue against the requirement for loosely associated factors for regulation or function of the channel.  相似文献   

17.
Replacement of an amino acid residue at position 130 -Gly by Cys- in the primary structure of Staphylococcus aureus alpha-toxin decreases the single-channel conductance induced by the toxin in planar lipid bilayers. Concomitantly, the pH value at which the channel becomes unable to discriminate between Cl and K+ ions is also decreased. By contrast, the pH dependence of the efficiency of the mutant toxin to form ion channels in lipid bilayers was unchanged (maximum efficiency at pH 5.5–6.0). The asymmetry and nonlinearity of the current-voltage characteristics of the channel were increased by the point mutation but the diameter of the water pore induced by the mutant toxin, evaluated in lipid bilayers and in erythrocyte membranes, was found to be indistinguishable from that formed by wild-type toxin and equal to 2.4–2.6 nm. Alterations at the ``trans mouth' were found to be responsible for all observed changes of the channel properties. This mouth is situated close to the surface of the second leaflet of a bilayer lipid membrane. The data obtained allows us to propose that the region around residue 130 in fact determines the main features of the ST-channel and takes part in the formation of the trans entrance of the channel. Received: 8 September 1995/Revised: 20 November 1996  相似文献   

18.
Multiple genes of the TASK subfamily of two-pore domain K+ channels are reported to be expressed in rat glomerulosa cells. To determine which TASK isoforms contribute to native leak channels controlling resting membrane potential, patch-clamp studies were performed to identify biophysical and pharmacological characteristics of macroscopic and unitary K+ currents diagnostic of recombinant TASK channel isoforms. Results indicate K+ conductance (gK+) is mediated almost exclusively by a weakly voltage-dependent (leak) K+ channel closely resembling TASK-3. Leak channels exhibited a unitary conductance approximating that expected for TASK-3 under the recording conditions employed, brief mean open times and a voltage-dependent open probability. Extracellular H+ induced voltage-independent inhibition of gK+, exhibiting an IC50 of 56 nM (pH 7.25) and a Hill coefficient of 0.75. Protons inhibited leak channel open probability (Po) by promoting a long-lived closed state (τ > 500 ms). Extracellular Zn2+ mimicked the effects of H+; inhibition of gK+ exhibited an IC50 of 41 μM with a Hill coefficient of 1.26, inhibiting channel gating by promoting a long-lived closed state. Ruthenium red (5 μM) inhibited gK+ by 75.6% at 0 mV. Extracellular Mg2+ induced voltage-dependent block of gK+, inhibiting unitary current amplitude without affecting mean open time. Bupivacaine induced voltage-dependent block of gK+, exhibiting IC50 values of 116 μM at −100 mV and 28 μM at 40 mV with Hill coefficients of 1 at both potentials. Halothane induced a voltage-independent stimulation of gK+ primarily by decreasing the leak channel closed-state dwell time.  相似文献   

19.
Ion conduction across the cellular membrane requires the simultaneous opening of activation and inactivation gates of the K+ channel pore. The bacterial KcsA channel has served as a powerful system for dissecting the structural changes that are related to four major functional states associated with K+ gating. Yet, the direct observation of the full gating cycle of KcsA has remained structurally elusive, and crystal structures mimicking these gating events require mutations in or stabilization of functionally relevant channel segments. Here, we found that changes in lipid composition strongly increased the KcsA open probability. This enabled us to probe all four major gating states in native-like membranes by combining electrophysiological and solid-state NMR experiments. In contrast to previous crystallographic views, we found that the selectivity filter and turret region, coupled to the surrounding bilayer, were actively involved in channel gating. The increase in overall steady-state open probability was accompanied by a reduction in activation-gate opening, underscoring the important role of the surrounding lipid bilayer in the delicate conformational coupling of the inactivation and activation gates.  相似文献   

20.
K channels mediate the selective passage of K+ across the plasma membrane by means of intimate interactions with ions at the pore selectivity filter located near the external face. Despite high conservation of the selectivity filter, the K+ transport properties of different K channels vary widely, with the unitary conductance spanning a range of over two orders of magnitude. Mutation of Pro475, a residue located at the cytoplasmic entrance of the pore of the small-intermediate conductance K channel Shaker (Pro475Asp (P475D) or Pro475Gln (P475Q)), increases Shaker’s reported ∼20-pS conductance by approximately six- and approximately threefold, respectively, without any detectable effect on its selectivity. These findings suggest that the structural determinants underlying the diversity of K channel conductance are distinct from the selectivity filter, making P475D and P475Q excellent probes to identify key determinants of the K channel unitary conductance. By measuring diffusion-limited unitary outward currents after unilateral addition of 2 M sucrose to the internal solution to increase its viscosity, we estimated a pore internal radius of capture of ∼0.82 Å for all three Shaker variants (wild type, P475D, and P475Q). This estimate is consistent with the internal entrance of the Kv1.2/2.1 structure if the effective radius of hydrated K+ is set to ∼4 Å. Unilateral exposure to sucrose allowed us to estimate the internal and external access resistances together with that of the inner pore. We determined that Shaker resistance resides mainly in the inner cavity, whereas only ∼8% resides in the selectivity filter. To reduce the inner resistance, we introduced additional aspartate residues into the internal vestibule to favor ion occupancy. No aspartate addition raised the maximum unitary conductance, measured at saturating [K+], beyond that of P475D, suggesting an ∼200-pS conductance ceiling for Shaker. This value is approximately one third of the maximum conductance of the large conductance K (BK) channel (the K channel of highest conductance), reducing the energy gap between their K+ transport rates to ∼1 kT. Thus, although Shaker’s pore sustains ion translocation as the BK channel’s does, higher energetic costs of ion stabilization or higher friction with the ion’s rigid hydration cage in its narrower aqueous cavity may entail higher resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号