首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Inflammation-mediated disorders are on the rise and hence, there is an urgent need for the design and synthesis of new anti-inflammatory drugs with higher affinity and specificity for their potential targets. The current study presents an effective and new protocol for the synthesis of thienyl-pyrazoles through 3 + 2 annulations using a recyclable heterogeneous catalyst Amberlyst-15. Chalcones 3(a-g) prepared from 3-methylthiophene-2-carbaldehyde and acetophenones by Claisen-Schmidt approach reacted with semicarbazide hydrochloride 4 in the presence of Amberlyst-15 in acetonitrile at room temperature producing thienyl-pyrazole carboxamides 5(a-h) in good yields. Alternatively, the compounds 5(a-h) were prepared by conventional method using acetic acid (30%) medium. Structures of synthesized new pyrazoles were confirmed by spectral and crystallographic studies. All the new compounds were evaluated for their in vitro inhibition of Phospholipase A2 from Vipera russelli and preliminary studies revealed that, amongst the designed series, compounds 5b, 5c and 5h showed promising inhibition. Further, the compounds exhibited linear mixed-type inhibition behavior for the sPLA2 enzyme indicating that they bind to an allosteric site distinct from either the calcium or substrate binding site on the enzyme. These kinetic conclusions were further validated by macromolecular rigid-body docking whereby compounds 5c and 5h showed binding to distinct pockets on the protein. These findings present a promising series of lead molecules that can serve as prototypes for the treatment of inflammatory related disorders.  相似文献   

2.
A new series of pyrazole-hydrazone derivatives 4a-i were designed and synthesized, their chemical structures were confirmed by IR, 1H NMR, 13C NMR, MS spectral data and elemental analysis. IC50 values for all prepared compounds to inhibit COX-1, COX-2 and 5-LOX enzymes were determined in vitro. Compounds 4a (IC50 = 0.67 μM) and 4b (IC50 = 0.58 μM) showed better COX-2 inhibitory activity than celecoxib (IC50 = 0.87 μM) with selectivity index (SI = 8.41, 10.55 in sequent) relative to celecoxib (SI = 8.85). Also, compound 4a and 4b exhibited superior inhibitory activity against 5-LOX (IC50 = 1.92, 2.31 μM) higher than zileuton (IC50 = 2.43 μM). All target pyrazoles were screened for their ability to reduce nitric oxide production in LPS stimulated peritoneal macrophages. Compounds 4a, 4b, 4f and 4i displayed concentration dependent reduction and were screened for in vivo anti-inflammatory activity using carrageenan-induced rat paw edema assay. Compound 4f showed the highest anti-inflammatory activity (% edema inhibition = 15–20%) at all doses when compared to reference drug celecoxib (% edema inhibition = 15.7–17.5%). Docking studies were carried out to investigate the interaction of target compounds with COX-2 enzyme active site.  相似文献   

3.
A group of cyclic imides (110) was designed for evaluation as a selective COX-2 inhibitors and investigated in vivo for their anti-inflammatory activity. Compounds 6a, 6b, 8a, 8b, 9a, 9b, 10a and 10b were proved to be potent COX-2 inhibitors with IC50 range of 0.1–4.0 μM. In vitro COX-1/COX-2 inhibition structure–activity studies identified compound 8a as a highly potent (IC50 = 0.1 μM), and an extremely selective [COX-2 (SI) > 1000] comparable to celecoxib [COX-2 (SI) > 384], COX-2 inhibitor that showed superior anti-inflammatory activity (ED50 = 72.4 mg/kg) relative to diclofenac (ED50 = 114 mg/kg). Molecular modeling was carried out through docking the designed compounds into the COX-2 binding site to predict if these compounds have analogous binding mode to the COX-2 inhibitors. The study showed that the homosulfonamide fragment of 8a inserted deep inside the 2°-pocket of the COX-2 active site, where the SO2NH2 group underwent H-bonding interaction with Gln192(2.95 Å), Phe518(2.82 Å) and Arg513(2.63 and 2.73 Å). Docking study of the synthesized compound 8a into the active site of COX-2 revealed a similar binding mode to SC-558, a selective COX-2 inhibitor.  相似文献   

4.
A new series of 1,2-diaryl-4-substituted-benzylidene-5-4H-imidazolone derivatives 10a-h was designed and synthesized for evaluation as selective COX-2 inhibitors, anti-inflammatory agents and as analgesic agents. All compounds were more selective for COX-2 isozyme and showed good in vivo anti-inflammatory activity. Compounds 10a, 10b, 10e and 10f were the most COX-2 selective compounds (S.I. = 10.76, 10.87, 8.69 and 9.14 respectively), the most potent anti-inflammatory derivatives (ED50 = 65.7, 60.2, 76.3 and 107.4 μmol/kg respectively) in comparison with Celecoxib (COX-2 S.I. = 8.61, ED50 = 82.2 μmol/kg) and were less ulcerogenic (ulcer indexes = 1.22–3.02) than Ibuprofen (ulcer index = 20.25) and comparable to Celecoxib (ulcer index = 2.93). The four derivatives (10a, 10b, 10e and 10f) showed considerable analgesic activities which are clearly parallel to their anti-inflammatory activities.  相似文献   

5.
Two new series of 4,6-diaryl-3-cyanopyridine 4a-r and 1,3,5-triaryl-2-pyrazolines 6a-f and were prepared. The new compounds were evaluated for their in vitro COX-2 selectivity and in vivo anti-inflammatory activity. Compounds 4o,r and 6d,f had moderate to high selectivity index (S.I.) compared to celecoxib (selectivity indexes of 4.5, 3.14, 4.79 and 3.21, respectively) and also, showed in vivo anti-inflammatory activity approximately equal to or higher than celecoxib (edema inhibition % = 60.5, 64.5, 59.3 and 59.3, after 3 h, respectively) and the effective anti-inflammatory doses were (ED50 = 10.1, 7.8, 8.46 and 10.7 mg/kg respectively, celecoxib ED50 = 10.8 mg/kg) and ulcerogenic liability were determined for these compounds which showed promising activity by being more potent than celecoxib with nearly negligible ulcerogenic liability compared to celecoxib (reduction in ulcerogenic liability versus celecoxib = 85, 82, 74 and 67%, respectively).  相似文献   

6.
Ten new cinnamic acid derivatives containing a 2-aminothiazole substructure were designed and synthesized. This series of compounds exhibited good thermostabilities as demonstrated by thermogravimetric analysis. In coagulation assays (prothrombin time, activated partial thromboplastin time and thrombin time) in vitro, most compounds demonstrated excellent activities to promote blood coagulation. Among the studied series, compounds N1, N4, N5 and W5 exhibited a significant coagulation activity. Further studies indicated that compound N5 (IC50 = 1.87 μmol/L) displayed the most suitable efficacy of promoting platelet aggregation than the clinically used haemostatic drug etamsylate (IC50 = 46.22 μmol/L). Furthermore, the relationship between the functional groups of the compounds and the corresponding blood coagulant activity was explored in this study.  相似文献   

7.
Chemical investigation of leaves and heartwood of Dalbergia boehmii resulted in the isolation of two new phenolic compounds, designated dalbergestan (1) and dalbergichromone (2), along with eleven known compounds, carpachromene (3), proanthocyanidin A-2 (4); piceatannol (5); biochanin A (6); macckiain (7); homopterocarpin (8); angolensin (9); medicarpin (10); 2′,7-dihydroxy-4′,5′-dimethoxyisoflavone (11); 2′-methoxyformononetin (12); and genistein (13). The structures of the new compounds were elucidated on the basis of extensive spectroscopic analyses including, IR, UV, 1D and 2D – NMR as well as HRMS data. Some of the isolated compounds were evaluated for their in vitro insulin secretion activity on isolated mice islets, leishmanicidal activity against L. major (DESTO) promastigotes and in vitro cytotoxicity on MCF-7 cell lines. All tested compounds were inactive on glucose-stimulated insulin secretion at stimulatory glucose (20.0 mM) from MIN6 cells. Compounds 3 (IC50, 70.0 μg/ml), 6 (IC50, 60.3 μg/ml), 7 (IC50, 86.5 μg/ml) and 13 (IC50, 62.6 μg/ml) exhibited low leishmanicidal activity while compound 12 (IC50, 56.8 μg/ml) displayed a moderate activity. Compounds 3 and 5 were found to be active against MCF-7 at 50 μM with IC50 value 33.2 ± 3.79 μg/ml and 42.64 ± 5.05 μg/ml respectively.  相似文献   

8.
A combinatorial library of β-chlorovinyl chalcones (4) were synthesized by Claisen–Schmidt condensation reaction. Catalytic reaction of substituted 3-chloro-3-phenyl-propenal (2) and 1-(2,4-dimethoxy-phenyl)-ethanone or 1-(4-methoxy-phenyl)-ethanone (3) in alkaline conditions furnished the target compound 5-chloro-1-(2,4-dimethoxy-phenyl)-5-phenyl-penta-2,4-dien-1-one (4). The synthesized compounds were screened for their biological activity viz. anticancer, anti-inflammatory and antimicrobial activities. Synthesized compounds 4g and 4h revealed promising anti-inflammatory activity (66–67% TNF-α and 95–97% IL-6 inhibitory activity at 10 μM). Cytotoxicity of the compounds checked using CCK-8 cell lines and found to be nontoxic to slightly toxic. Furthermore, the anticancer activity (30–40%) was shown by compounds 4d, 4e, 4h and 4b at 10 μM concentrations against ACHN followed by Calu 1, Panc1, HCT116 and H460 cell lines. Some of the compounds 4d, 4e, 4a, 4i and 4b revealed promising antimicrobial activity at MIC 50–100 μg/mL against selected pathogenic bacteria and fungi.  相似文献   

9.
Chalcones have been identified as interesting compounds with cytotoxicity, anti-inflammatory and antioxidant properties. In the present study, simple methoxychalcones were synthesized by Claisen–Schmidt condensation reaction and evaluated for above biological activities. The structures of the compounds were established by IR, 1H NMR and mass spectral analysis. The data revealed that compound 3s (99–100% at 10 μM concentration) completely inhibit the selected five human cancer cell lines as compared to standard flavopiridol and gemcitabine (70–90% at 700 nM and 500 nM concentrations, respectively), followed by 3a, 3n, 3o, 3p, 3q, 3r. Among the tested compounds 3l, 3m, 3r, and 3s exhibited promising anti-inflammatory activity against TNF-α and IL-6 with 90–100% inhibition at 10 μM concentration. DPPH free radical scavenging activity was given by the compounds 3o, 3n, 3l, 3r, 3m, 3a, 3p, 3c and 3s at 1 mM concentration. Overall, 3s was obtained as lead compound with promising anticancer, anti-inflammatory and antioxidant activities. Bioavailability of compounds were checked by in vitro cytotoxicity study and confirmed to be nontoxic. The structure activity relationship (SAR) and in silico drug relevant properties (HBDs, HBAs, PSA, c Log P, ionization potential, molecular weight, EHOMO and ELUMO) further confirmed that the compounds were potential candidates for future drug discovery study.  相似文献   

10.
A series of 5-methanesulphonamido benzimidazole derivatives were designed by combining the structural features of clinically useful anti-inflammatory drugs (nimesulide and rofecoxib) and antiulcer drugs (lansoprazole, omeprazole, etc.) based on physicochemical and 3D similarity studies. The compounds were evaluated for their anti-inflammatory activity in carrageenan induced rat paw edema model taking rofecoxib and indomethacin as standard drugs. In vitro antioxidant activity of the compounds was assessed by potassium ferricyanide reducing power (PFRAP) assay. The compounds 9, 10 and 11 showed anti-inflammatory activity comparable to the standard group and were also non-ulcerogenic at the test doses. Compounds 611 exhibited good antioxidant effect in the concentration range (1.0–50.0 µmol/ml. Preliminary theoretical ADME profiling of the compounds based on computation of selected physicochemical properties showed an excellent compliance with Lipinski’s rule.  相似文献   

11.
In search of potential therapeutics for inflammatory disease, we report herein the synthesis, characterization and anti-inflammatory activities of a new series of 1-{(5-substituted-1,3,4-oxadiazol-2-yl)methyl}-2-(morpholinomethyl)-1H-benzimidazoles (5a-r). The anti-inflammatory activity of the compounds was evaluated using carrageenan induced rat paw edema test. Some compounds showed excellent anti-inflammatory activity in carrageenan induced rat paw edema test. 1-{(5-(2-Chlorophenyl)-1,3,4-oxadiazol-2-yl)methyl}-2-(morpholinomethyl)-1H-benzimidazole (5g) showed maximum anti-inflammatory (74.17 ± 1.28% inhibition) with reduced ulcerogenic and lipid peroxidation profile and also showed significant COX-2 inhibition with IC50 values of 8.00 μM. Compounds 5o and 5q were also found to exhibit good COX-2 inhibition with IC50 values of 11.4 and 13.7 μM concentrations. Molecular docking study showed that morpholine and oxadiazole rings linked to the benzimidazole nucleus play an important role in binding with the COX-2.  相似文献   

12.
A series of novel 6-methoxy-2-(piperazin-1-yl)-4H-chromen-4-one and 5,7-dimethoxy-2-(piperazin-1-ylmethyl)-4H-chromen-4-one derivatives of biological interest were prepared and screened for their pro-inflammatory cytokines (TNF-α and IL-6) and antimicrobial activity (antibacterial and antifungal). Among all the compound screened (5aj and 10kt), the compounds 5c, 5g, 5h, 10l, 10m, 10n and 10r found to have promising anti-inflammatory activity (up to 65–87% TNF-α and 70–93% IL-6 inhibitory activity) at concentration of 10 μM with reference to standard dexamethasone (71% TNF-a and 84% IL-6 inhibitory activities at 1 μM) while the compounds 5b, 5i, 5j, 10s and 10t found to be potent antimicrobial agent showing even 2 to 2.5-fold more potency than that of standard ciprofloxacin and miconazole at the same MIC value of 10 μg/mL.  相似文献   

13.
In this paper, we have reported seventeen novel synthetic organic compounds derived from marine bromopyrrole alkaloids, exhibiting potential inhibition of biofilm produced by Gram-positive bacteria. Compound 5f with minimum biofilm inhibitory concentration (MBIC) of 0.39, 0.78 and 3.125 μg/mL against MSSA, MRSA and SE respectively, emerged as promising anti-biofilm lead compounds. In addition, compounds 5b, 5c, 5d, 5e, 5f, 5h, 5i and 5j revealed equal potency as that of the standard drug Vancomycin (MBIC = 3.125 μg/mL) against Streptococcus epidermidis. Notably, most of the synthesized compounds displayed better potency than Vancomycin indicating their potential as inhibitors of bacterial biofilm. The cell viability assay for the most active hybrid confirms its anti-virulence properties which need to be further researched.  相似文献   

14.
Three series of homologous dendritic amphiphiles—RCONHC(CH2CH2COOH)3, 1(n); ROCONHC(CH2CH2COOH)3, 2(n); RNHCONHC(CH2CH2COOH)3, 3(n), where R = n-CnH2n+1 and n = 13–22 carbon atoms—were assayed for their potential to serve as antimicrobial components in a topical vaginal formulation. Comparing epithelial cytotoxicities to the ability of these homologues to inhibit HIV, Neisseria gonorrhoeae, and Candida albicans provided a measure of their prophylactic/therapeutic potential. Measurements of the ability to inhibit Lactobacillus plantarum, a beneficial bacterium in the vagina, and critical micelle concentrations (CMCs), an indicator of the potential detergency of these amphiphiles, provided additional assessments of safety. Several amphiphiles from each homologous series had modest anti-HIV activity (EC50 = 110–130 μM). Amphiphile 2(18) had the best anti-Neisseria activity (MIC = 65 μM), while 1(19) and 1(21) had MICs against C. albicans of 16 and 7.7 μM, respectively. Two measures of safety showed promise as all compounds had relatively low cytotoxic activity (EC50 = 210–940 μM) against epithelial cells and low activity against L. plantarum, 1(n), 2(n), and 3(n) had MICs ? 490, 1300, and 940 μM, respectively. CMCs measured in aqueous triethanolamine and in aqueous potassium hydroxide showed linear dependences on chain length. As expected, the longest chain in each series had the lowest CMC—in triethanolamine: 1(21), 1500 μM; 2(22), 320 μM; 3(22), 340 μM, and in potassium hydroxide: 1(21), 130 μM; 3(22), 40 μM. The CMC in triethanolamine adjusted to pH 7.4 was 400 μM for 1(21) and 3900 μM for 3(16). The promising antifungal activity, low activity against L. plantarum, relatively high CMCs, and modest epithelial cytotoxicity in addition to their anti-Neisseria properties warrant further design studies with dendritic amphiphiles to improve their safety indices to produce suitable candidates for antimicrobial vaginal products.  相似文献   

15.
In our lead finding program, a series of 5-thioxo-[1,2,4]triazolo[1,5-a][1,3,5]triazin-7-ones and their 5-thio-alkyl derivatives were designed and synthesized which contained different substituents at ortho-position of 2-phenyl ring attached to the fused ring structure. The preliminary pharmacological evaluation demonstrated that the synthesized compounds exhibited a varying degree of inhibitory activity towards thymidine phosphorylase (TP), comparable to reference compound, 7-Deazaxanthine (7-DX, 2) (IC50 value = 42.63 μM). The study also inferred that the ortho-substituted group at the phenyl ring and 5-thio-alkyl moiety imparted steric hindrance effects in the binding site of the enzyme, leading to a reduced inhibitory response. In addition, compound 3a was identified as a mixed-type inhibitor of TP. Moreover, computational docking study was performed to illustrate the important structural information on the plausible ligand-enzyme binding interactions.  相似文献   

16.
Inhibition of α-glucosidase enzyme activity is a reliable approach towards controlling post-prandial hyperglycemia associated risk factors. During the current study, a series of dihydropyrano[2,3-c] pyrazoles (135) were synthesized and evaluated for their α-glucosidase inhibitory activity. Compounds 1, 4, 22, 30, and 33 were found to be the potent inhibitors of the yeast α-glucosidase enzyme. Mechanistic studies on most potent compounds reveled that 1, 4, and 30 were non-competitive inhibitors (Ki = 9.75 ± 0.07, 46 ± 0.0001, and 69.16 ± 0.01 μM, respectively), compound 22 is a competitive inhibitor (Ki = 190 ± 0.016 μM), while 33 was an uncompetitive inhibitor (Ki = 45 ± 0.0014 μM) of the enzyme. Finally, the cytotoxicity of potent compounds (i.e. compounds 1, 4, 22, 30, and 33) was also evaluated against mouse fibroblast 3T3 cell line assay, and no toxicity was observed. This study identifies non-cytotoxic novel inhibitors of α-glucosidase enzyme for further investigation as anti-diabetic agents.  相似文献   

17.
2-Pyrazolins 14a–l and pyrazoles 15a–l were designed as celecoxib analogs for the evaluation of their in vitro COX-1/COX-2 inhibitory activity and the in vivo anti-inflammatory activity. Compounds 14i, 15a, 15d and 15f were the most COX-2 selective derivatives (S.I. = 5.93, 6.08, 5.03 and 5.27 respectively) while the pyrazoline derivatives 14g and 14i exhibited the highest AI activity (ED50 = 190.5 and 160.1 μmol/kg po, respectively).  相似文献   

18.
A novel series of 2-(5-methyl-1,3-diphenyl-1H-pyrazol-4-yl)-5-phenyl-1,3,4-oxadiazoles 7(am) were synthesized either by cyclization of N′-benzoyl-5-methyl-1,3-diphenyl-1H-pyrazole-4-carbohydrazide 4a using POCl3 at 120 °C or by oxidative cyclization of hydrazones derived from various arylaldehyde and (E)-N′-benzylidene-5-methyl-1,3-diphenyl-1H-pyrazole-4-carbohydrazide 5(ad) using chloramine-T as oxidant. Newly synthesized compounds were characterized by analytical and spectral (IR, 1H NMR, 13C NMR and LC–MS) methods. The synthesized compounds were evaluated for their antimicrobial activity and were compared with standard drugs. The compounds demonstrated potent to weak antimicrobial activity. Among the synthesized compounds, compound 7m emerged as an effective antimicrobial agent, while compounds 7d, 7f, 7i and 7l showed good to moderate activity. The minimum inhibitory concentration of the compounds was in the range of 20–50 μg mL−1 against bacteria and 25–55 μg mL−1 against fungi. The title compounds represent a novel class of potent antimicrobial agents.  相似文献   

19.
A series of novel 4-substituted benzoxazolone derivatives was synthesized, characterized and evaluated as human soluble epoxide hydrolase (sEH) inhibitors and anti-inflammatory agents. Some compounds showed moderate sEH inhibitory activities in vitro, and two novel compounds, 3g and 4j, exhibited the highest activities with IC50 values of 1.72 and 1.07 μM, respectively. Structure–activity relationships (SARs) revealed that introduction of a lipophilic amino acid resulted in an obvious increase in the sEH inhibitory activity, especially for derivatives containing a phenyl (3d, IC50 = 2.67 μM), pyrrolidine (3g, IC50 = 1.72 μM), or sulfhydryl group (3e, IC50 = 3.02 μM). Several compounds (3a3g) were tested in vivo using a xylene-induced ear edema mouse model. Three compounds (3d, 3f, and 3g) showed strong anti-inflammatory activities in vivo which were higher than that of Chlorzoxazone, a reference drug widely used in the clinic. Our investigation provided a novel type of sEH inhibitor and anti-inflammatory agent that may lead to the discovery of a potential candidate for clinical use.  相似文献   

20.
Oxidative-stress induces inflammatory diseases. Further, infections caused by drug-resistant microbial strains are on the rise. This necessitates the discovery of novel small-molecules for intervention therapy. A series of 3-(2,3-dichlorophenyl)-1-(aryl)prop-2-en-1-ones are synthesized as intermediates via Claisen-Schmidt reaction approach. Subsequently, these intermediates were transformed into 2-pyrazolines by their reaction with phenylhydrazine hydrochlorides in methanol and few drops of acetic acid under reflux conditions. Synthesized compounds were characterized by spectroscopic, crystallographic and elemental analyses studies and then, were evaluated for their in vitro antimicrobial and anti-inflammatory activities. Amongst the series, 3-(4-chlorophenyl)-5-(2,3-dichlorophenyl)-1-phenyl-4,5-dihydro-1H-pyrazole (5e), 5-(2,3-dichlorophenyl)-3-(4-fluorophenyl)-1-phenyl-4,5-dihydro-1H-pyrazole (5c) and 5-(2,3-dichlorophenyl)-3-(4-methoxyphenyl)-1-phenyl-4,5-dihydro-1H-pyrazole (5h) showed significant inhibition of phospholipase A2 with IC50 values of 10.2, 11.1 and 11.9 µM, respectively. Protein structure modelling and docking studies indicated that the compounds showed binding to a highly conserved calcium-binding pocket on the enzyme. Further, compounds (5e), 1-(3-chlorophenyl)-5-(2,3-dichlorophenyl)-3-phenyl-4,5-dihydro-1H-pyrazole (5b), and 1-(3-chlorophenyl)-3-(4-chlorophenyl)-5-(2,3-dichlorophenyl)-4,5-dihydro-1H-pyrazole (5f) showed excellent antimicrobial activities against various bacterial and fungal strains. In conclusion, this study is a successful attempt at the synthesis and characterization of chalcone derivatives that can target phospholipase A2, an enzyme that is a prominent player in the physiological inflammatory cascade. Thus, these compounds show promise for development as next-generation nonsteroidal anti-inflammatory drugs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号