首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mechanism of action of nonsteroidal anti-inflammatory drugs (NSAIDs) is inhibition of specific prostaglandin (PG) synthesis by inhibition of cyclooxygenase (COX) enzymes. The two COX isoenzymes show 60 % similarity. It is known that the nonspecific side effects of conventional NSAIDs are physiologically caused by inhibition of the COX-1 enzyme. Therefore, the use of COX-2 selective inhibitors is seen to be a more beneficial approach in reducing these negative effects. However, some of the existing COX-2 selective inhibitors show cardiovascular side effects. Therefore, studies on the development of new selective COX-2 inhibitors remain necessary. It is important to develop new COX-2 inhibitors in the field of medicinal chemistry. Accordingly, novel N-acyl hydrazone derivatives were synthesized as new COX-2 inhibitors in this study. The hydrazone structure, also known for its COX activity, is important in terms of many biological activities and was preferred as the main structure in the design of these compounds. A methyl sulfonyl pharmacophore was added to the structure in order to increase the affinity for the polar side pocket present in the COX-2 enzyme. It is known that methyl sulfonyl groups are suitable for polar side pockets. The synthesis of the compounds ( 3a – 3j ) was characterized by spectroscopic methods. Evaluation of in vitro COX-1/COX-2 enzyme inhibition was performed by fluorometric method. According to the enzyme inhibition results, the obtained compounds displayed the predicted selectivity for COX-2 enzyme inhibition. Compound 3j showed important COX-2 inhibition with a value of IC50=0.143 uM. Interaction modes between the COX-2 enzyme and compound 3j were investigated by docking studies.  相似文献   

2.
A series of 1,4- and 1,5-diaryl substituted 1,2,3-triazoles was synthesized by either Cu(I)-catalyzed or Ru(II)-catalyzed 1,3-dipolar cycloaddition reactions between 1-azido-4-methane-sulfonylbenzene 9 and a panel of various para-substituted phenyl acetylenes (4-H, 4-Me, 4-OMe, 4-NMe2, 4-Cl, 4-F). All compounds were used in in vitro cyclooxygenase (COX) assays to determine the combined electronic and steric effects upon COX-1 and COX-2 inhibitory potency and selectivity. Structure-activity relationship studies showed that compounds having a vicinal diaryl substitution pattern showed more potent COX-2 inhibition (IC50 = 0.03–0.36 μM) compared to their corresponding 1,3-diaryl-substituted counterparts (IC50 = 0.15 to >10.0 μM). In both series, compounds possessing an electron-withdrawing group (Cl and F) at the para-position of one of the aryl rings displayed higher COX-2 inhibition potency and selectivity as determined for compounds containing electron-donating groups (Me, OMe, NMe2). The obtained data show, that the central carbocyclic or heterocyclic ring system as found in many COX-2 inhibitors can be replaced by a central 1,2,3-triazole unit without losing COX-2 inhibition potency and selectivity. The high COX-2 inhibition potency of some 1,2,3-triazoles having a vicinal diaryl substitution pattern along with their ease in synthesis through versatile Ru(II)-catalyzed click chemistry make this class of compounds interesting candidates for further design and synthesis of highly selective and potent COX-2 inhibitors.  相似文献   

3.
Microsomal prostaglandin E synthase-1 (mPGES-1) is an inducible prostaglandin E synthase that catalyzes the conversion of prostaglandin PGH2 to PGE2 and represents a novel target for therapeutic treatment of inflammatory disorders. It is essential to identify mPGES-1 inhibitor with novel scaffold as new hit or lead compound for the purpose of the next-generation anti-inflammatory drugs. Herein we report the discovery of sulfonamido-1,2,3-triazole-4,5-dicarboxylic derivatives as a novel class of mPGES-1 inhibitors identified through fragment-based virtual screening and in vitro assays on the inhibitory activity of the actual compounds. 1-[2-(N-Phenylbenzenesulfonamido)ethyl]-1H-1,2,3-triazole-4,5-dicarboxylic acid (6f) inhibits human mPGES-1 (IC50 of 1.1 μM) with high selectivity (ca.1000-fold) over both COX-1 and COX-2 in a cell-free assay. In addition, the activity of compound 6f was again tested at 10 μM concentration in presence of 0.1% Triton X-100 and found to be reduced to 1/4 of its original activity without this detergent. Compared to the complete loss of activity of nuisance inhibitor with the detergent, therefore, compound 6f would be regarded as a partial nuisance inhibitor of mPGES-1 with a novel scaffold for the optimal design of more potent mPGES-1 inhibitors.  相似文献   

4.
5.
Colorectal cancer is a major cause of mortality and whilst up to 80% of sporadic colorectal tumours are considered preventable, trends toward increasing obesity suggest the potential for a further increase in its worldwide incidence. Novel methods of colorectal cancer prevention and therapy are therefore of considerable importance. Non-steroidal anti-inflammatory drugs (NSAIDs) are chemopreventive against colorectal cancer, mainly through their inhibitory effects on the cyclooxygenase isoform COX-2. COX enzymes represent the committed step in prostaglandin biosynthesis and it is predominantly increased COX-2-mediated prostaglandin-E2 (PGE2) production that has a strong association with colorectal neoplasia, by promoting cell survival, cell growth, migration, invasion and angiogenesis. COX-1 and COX-2 inhibition by traditional NSAIDs (for example, aspirin) although chemopreventive have some side effects due to the role of COX-1 in maintaining the integrity of the gastric mucosa. Interestingly, the use of COX-2 selective NSAIDs has also shown promise in the prevention/treatment of colorectal cancer while having a reduced impact on the gastric mucosa. However, the prolonged use of high dose COX-2 selective inhibitors is associated with a risk of cardiovascular side effects. Whilst COX-2 inhibitors may still represent viable adjuvants to current colorectal cancer therapy, there is an urgent need to further our understanding of the downstream mechanisms by which PGE2 promotes tumorigenesis and hence identify safer, more effective strategies for the prevention of colorectal cancer. In particular, PGE2 synthases and E-prostanoid receptors (EP1–4) have recently attracted considerable interest in this area. It is hoped that at the appropriate stage, selective (and possibly combinatorial) inhibition of the synthesis and signalling of those prostaglandins most highly associated with colorectal tumorigenesis, such as PGE2, may have advantages over COX-2 selective inhibition and therefore represent more suitable targets for long-term chemoprevention. Furthermore, as COX-2 is found to be overexpressed in cancers such as breast, gastric, lung and pancreatic, these investigations may also have broad implications for the prevention/treatment of a number of other malignancies.  相似文献   

6.
Arachidonic acid metabolism through cyclooxygenase (COX) pathways leads to the generation of biologically active eicosanoids. Eicosanoid expression levels vary during development and progression of gastrointestinal (GI) malignancies.COX-2 is the major COX-isoform responsible for G.I. cancer development/progression. COX-2 expression increases during progression from a normal to cancerous state. Evidence from observational studies has demonstrated that chronic NSAID use reduces the risk of cancer development, while both incidence and risk of death due to G.I. cancers were significantly reduced by daily aspirin intake. A number of randomized controlled trials (APC trial, Prevention of Sporadic Adenomatous Polyps trial, APPROVe trial) have also shown a significant protective effect in patients receiving selective COX-2 inhibitors. However, chronic use of selective COX-2 inhibitors at high doses was associated with increased cardiovascular risk, while NSAIDs have also been associated with increased risk. More recently, downstream effectors of COX-signaling have been investigated in cancer development/progression. PGE2, which binds to both EP and PPAR receptors, is the major prostanoid implicated in the carcinogenesis of G.I. cancers. The role of TXA2 in G.I. cancers has also been examined, although further studies are required to uncover its role in carcinogenesis. Other prostanoids investigated include PGD2 and its metabolite 15d-PGJ2, PGF and PGI2. Targeting these prostanoids in G.I. cancers has the promise of avoiding cardiovascular toxicity associated with chronic selective COX-2 inhibition, while maintaining anti-tumor reactivity.A progressive sequence from normal to pre-malignant to a malignant state has been identified in G.I. cancers. In this review, we will discuss the role of the COX-derived prostanoids in G.I. cancer development and progression. Targeting these downstream prostanoids for chemoprevention and/or treatment of G.I. cancers will also be discussed. Finally, we will highlight the latest pre-clinical technologies as well as avenues for future investigation in this highly topical research field.  相似文献   

7.
A new series of cyclooxygenase-2 (COX-2) inhibitors with gamma-pyrone as central scaffold unit has been synthesized and their biological activities were evaluated against cyclooxygenase inhibitory activity. The changes of physical properties of the molecules were performed according to the medicinal chemistry principles and moderate oral anti-inflammatory activity was obtained with this series of inhibitors.  相似文献   

8.
Selective inhibition of cyclooxygenase (COX)-2 enzyme is an important achievement when looking for potent anti-inflammatory agents, with fewer gastrointestinal side effects. In this work, a new series of cinnamic acid derivatives, namely hexylamides, have been designed, synthesized and evaluated in human blood for their inhibitory activity of COX-1 and COX-2 enzymes. From this, new structure-activity relationships were built, showing that phenolic hydroxyl groups are essential for both COX-1 and COX-2 inhibition. Furthermore, the presence of bulky hydrophobic di-tert-butyl groups in the phenyl ring strongly contributes for selective COX-2 inhibition. In addition, a correlation with the theoretical log P has been carried out, showing that lipophilicity is particularly important for COX-2 inhibition. Further, a plasma protein binding (PPB) prediction has been performed revealing that PPB seems to have no influence in the activity of the studied compounds. From the whole study, effective selective inhibitors of COX-2 were found, namely compound 9 (IC50 = 3.0 ± 0.3 μM), 10 (IC50 = 2.4 ± 0.6 μM) and 23 (IC50 = 1.09 ± 0.09 μM). Those can be considered starting point hit compounds for further optimization as potential non-steroidal anti-inflammatory drugs.  相似文献   

9.
Using fragment based and structure based drug discovery strategies a series of novel Sortilin inhibitors has been identified. The inhibitors are based on the N-substituted 1,2,3-triazol-4-one/ol heterocyclic template. X-ray crystallography shows that the 1,2,3-triazol-4-one/ol acts as a carboxylic acid isostere, making a bi-dentate interaction with an arginine residue of Sortilin, an interaction which has not been previously characterised for this heterocycle.  相似文献   

10.
AimsCyclooxygenase-2 (COX-2)-controlled production of prostaglandin E2 (PGE2) has been implicated in cell growth and metastasis in many cancers. Recent studies have found that COX-2 is co-expressed with survivin in many cancers. Survivin is a member of the inhibitor-of-apoptosis protein family. Some COX-2 inhibitors (e.g., celecoxib) can reduce the expression of survivin. However, little is known about the mechanism of PGE2-mediated expression of survivin. This study was designed to uncover the effect of PGE2 on survivin expression in hepatocellular carcinoma cells.Main methodsThe effects of PGE2 and EP1 agonist on survivin expression were examined in HUH-7 and HepG2 cells. Plasmid transfection and EP1 siRNA were used to regulate the expression of COX-2 and the EP1 receptor protein.Key findingsPGE2 treatment increased survivin expression 2.3-fold. COX-2 overexpression resulted in a similar level of survivin upregulation. However, this effect was suppressed by treatment with celecoxib. EP1 receptor transfection or treatment with a selective EP1 agonist mimicked the effect of PGE2 treatment. Conversely, the PGE2-induced upregulation of survivin was blocked by treatment with a selective EP1 antagonist or siRNA against the EP1 receptor. The phosphorylation of EGFR and Akt were elevated in EP1 agonist-treated cells, and both EGFR and PI3K inhibitors suppressed the upregulation of survivin induced by PGE2 or EP1 agonist.SignificancePGE2 regulates survivin expression in hepatocellular carcinoma cells through the EP1 receptor by activating the EGFR/PI3K pathway. Targeting the PGE2/EP1/survivin signaling pathway may aid the development of new therapeutic strategies for both the prevention and treatment of this cancer.  相似文献   

11.
12.
Hydrogen sulfide (H2S) plays an important role in human physiology, exerting vasodilatory, neuromodulatory and anti-inflammatory effects. H2S has been implicated in the mechanism of gastrointestinal integrity but whether this gaseous mediator can affect hemorrhagic lesions induced by stress has been little elucidated. We studied the effect of the H2S precursor L-cysteine, H2S-donor NaHS, the H2S synthesizing enzyme (CSE) activity inhibitor- D,L-propargylglycine (PAG) and the gastric H2S production by CSE/CBS/3-MST activity in water immersion and restraint stress (WRS) ulcerogenesis and the accompanying changes in gastric blood flow (GBF). The role of endogenous prostaglandins (PGs) and sensory afferent nerves releasing calcitonin gene-related peptide (CGRP) in the mechanism of gastroprotection induced by H2S was examined in capsaicin-denervated rats and those pretreated with capsazepine to inhibit activity of vanilloid receptors (VR-1). Rats were pretreated with vehicle, NaHS, the donor of H2S and or L-cysteine, the H2S precursor, with or without the concurrent treatment with 1) nonselective (indomethacin) and selective cyclooxygenase (COX)-1 (SC-560) or COX-2 (rofecoxib) inhibitors. The expression of mRNA and protein for COX-1 and COX-2 were analyzed in gastric mucosa pretreated with NaHS with or without PAG. Both NaHS and L-cysteine dose-dependently attenuated severity of WRS-induced gastric lesions and significantly increased GBF. These effects were significantly reduced by pretreatment with PAG and capsaicin denervation. NaHS increased gastric H2S production via CSE/CBS but not 3-MST activity. Inhibition of COX-1 and COX-2 activity significantly diminished NaHS- and L-cysteine-induced protection and hyperemia. NaHS increased expression of COX-1, COX-2 mRNAs and proteins and raised CGRP mRNA expression. These effects of NaHS on COX-1 and COX-2 protein contents were reversed by PAG and capsaicin denervation. We conclude that H2S exerts gastroprotection against WRS-induced gastric lesions by the mechanism involving enhancement in gastric microcirculation mediated by endogenous PGs, sensory afferent nerves releasing CGRP and the activation of VR-1 receptors.  相似文献   

13.

Objective

Pro-inflammatory cytokines like Interleukin-1 beta (IL-1β) have been implicated in the pathophysiology of migraine and inflammatory pain. The trigeminal ganglion and calcitonin gene-related peptide (CGRP) are crucial components in the pathophysiology of primary headaches. 5-HT1B/D receptor agonists, which reduce CGRP release, and cyclooxygenase (COX) inhibitors can abort trigeminally mediated pain. However, the cellular source of COX and the interplay between COX and CGRP within the trigeminal ganglion have not been clearly identified.

Methods and Results

1. We used primary cultured rat trigeminal ganglia cells to assess whether IL-1β can induce the expression of COX-2 and which cells express COX-2. Stimulation with IL-1β caused a dose and time dependent induction of COX-2 but not COX-1 mRNA. Immunohistochemistry revealed expression of COX-2 protein in neuronal and glial cells. 2. Functional significance was demonstrated by prostaglandin E2 (PGE2) release 4 hours after stimulation with IL-1β, which could be aborted by a selective COX-2 (parecoxib) and a non-selective COX-inhibitor (indomethacin). 3. Induction of CGRP release, indicating functional neuronal activation, was seen 1 hour after PGE2 and 24 hours after IL-1β stimulation. Immunohistochemistry showed trigeminal neurons as the source of CGRP. IL-1β induced CGRP release was blocked by parecoxib and indomethacin, but the 5-HT1B/D receptor agonist sumatriptan had no effect.

Conclusion

We identified a COX-2 dependent pathway of cytokine induced CGRP release in trigeminal ganglia neurons that is not affected by 5-HT1B/D receptor activation. Activation of neuronal and glial cells in the trigeminal ganglion by IL-β leads to an elevated expression of COX-2 in these cells. Newly synthesized PGE2 (by COX-2) in turn activates trigeminal neurons to release CGRP. These findings support a glia-neuron interaction in the trigeminal ganglion and demonstrate a sequential link between COX-2 and CGRP. The results could help to explain the mechanism of action of COX-2 inhibitors in migraine.  相似文献   

14.
Nonselective cyclooxygenase (COX) inhibitors are potent tocolytic agents; however, they also have adverse fetal effects such as constriction of the fetal ductus arteriosus. Recently, selective COX-2 inhibitors have been used in the management of preterm labor in the hope of avoiding fetal complications. However, both COX-1 and -2 are expressed by cells of the ductus arteriosus. We used fetal lambs (0.88 gestation) to assess the ability of selective COX-2 inhibitors celecoxib and NS398 to affect the ductus arteriosus. Both selective COX-2 inhibitors decreased PGE(2) and 6ketoPGF(1alpha) production in vitro; both inhibitors constricted the isolated ductus in vitro. The nonselective COX-1/COX-2 inhibitor indomethacin produced a further reduction in PG release and an additional increase in ductus tension in vitro. We used a prodrug of celecoxib to achieve 1.4 +/- 0.6 microg/ml, mean +/- standard deviation, of the active drug in vivo. This concentration of celecoxib produced both an increase in pressure gradient and resistance across the ductus; celecoxib also decreased fetal plasma concentrations of PGE(2) and 6ketoPGF(1alpha). Indomethacin (0.7 +/- 0.2 microg/ml) produced a significantly greater fall in ductus blood flow than celecoxib and tended to have a greater effect on ductus resistence in vivo. We conclude that caution should be used when recommending COX-2 inhibitors for use in pregnant women, because COX-2 appears to play a significant role in maintaining patency of the fetal ductus arteriosus.  相似文献   

15.
Five ribofuranosyl pyrimidine nucleosides and their corresponding 1,2,3-triazole derivatives have been synthesized and characterized. Their inhibitory action to Ribonuclease A has been studied by biochemical analysis and X-ray crystallography. These compounds are potent competitive inhibitors of RNase A with low μM inhibition constant (Ki) values with the ones having a triazolo linker being more potent than the ones without. The most potent of these is 1-[(β-d-ribofuranosyl)-1,2,3-triazol-4-yl]uracil being with Ki = 1.6 μM. The high resolution X-ray crystal structures of the RNase A in complex with three most potent inhibitors of these inhibitors have shown that they bind at the enzyme catalytic cleft with the pyrimidine nucleobase at the B1 subsite while the triazole moiety binds at the main subsite P1, where P-O5′ bond cleavage occurs, and the ribose at the interface between subsites P1 and P0 exploiting interactions with residues from both subsites. The effect of a susbsituent group at the 5-pyrimidine position at the inhibitory potency has been also examined and results show that any addition at this position leads to a less efficient inhibitor. Comparative structural analysis of these RNase A complexes with other similar RNase A—ligand complexes reveals that the triazole moiety interactions with the protein form the structural basis of their increased potency. The insertion of a triazole linker between the pyrimidine base and the ribose forms the starting point for further improvement of these inhibitors in the quest for potent ribonucleolytic inhibitors with pharmaceutical potential.  相似文献   

16.
摘要 目的:寻找具有血栓素A2受体(Thromboxane A2 receptor,TP)抑制作用的选择性环氧合酶-2(Cyclooxygenase-2,COX-2)抑制剂,以期降低其心血管疾病风险。方法:本研究从公开数据库中获取了512种TP抑制剂,通过分子对接、分子动力学模拟和ADMET预测,筛选出化合物TP84。结果:分子对接结果显示,与先前获批的选择性COX-2抑制剂罗非昔布相比,TP84对COX-2的亲和力更高,对环氧合酶-1(Cyclooxygenase-1,COX-1)的亲和力更低;分子动力学模拟进一步表明,模拟过程中TP84与COX-1的结合不稳定,而TP84能稳定结合COX-2,与COX-2的结合自由能是COX-1的3倍;此外,根据ADMET预测,TP84的药物化学、吸收、分布、代谢、排泄和毒性处于类药物候选物的可接受范围内。结论:TP84是一种潜在的低心血管疾病风险选择性COX-2抑制剂。  相似文献   

17.
In the present work, we report a new class of potent steroid sulphatase (STS) inhibitors based on 6-(1-phenyl-1H-1,2,3-triazol-4-yl)naphthalen-2-yl sulphamate derivatives. Within the set of new STS inhibitors, 6-(1-(1,2,3-trifluorophenyl)-1H-1,2,3-triazol-4-yl)naphthalen-2-yl sulphamate 3L demonstrated the highest activity in the enzymatic assay inhibiting the STS activity to 7.98% at 0.5 µM concentration. Furthermore, to verify whether the obtained STS inhibitors are able to pass through the cellular membrane effectively, cell line experiments have been carried out. We found that the lowest STS activities were measured in the presence of compound 3L (remaining STS activity of 5.22%, 27.48% and 99.0% at 100, 10 and 1 nM concentrations, respectively). The measured STS activities for Irosustat (used as a reference) were 5.72%, 12.93% and 16.83% in the same concentration range. Moreover, a determined IC50 value of 15.97 nM for 3L showed that this compound is a very promising candidate for further preclinical investigations.  相似文献   

18.
Cyclooxygenase enzymes (COX-1 and COX-2) catalyze the conversion of arachidonic acid to prostaglandin G2. The inhibitory activity of rapid, reversible COX inhibitors (ibuprofen, naproxen, mefenamic acid, and lumiracoxib) demonstrated a significant increase in potency and time dependence of inhibition against double tryptophan murine COX-2 mutants at the 89/90 and 89/119 positions. In contrast, the slow, time-dependent COX inhibitors (diclofenac, indomethacin, and flurbiprofen) were unaffected by those mutations. Further mutagenesis studies suggested that mutation at position 89 was principally responsible for the changes in inhibitory potency of rapid, reversible inhibitors, whereas mutation at position 90 may exert some effect on the potency of COX-2-selective diarylheterocycle inhibitors; no effect was observed with mutation at position 119. Several crystal structures with or without NSAIDs indicated that placement of a bulky residue at position 89 caused a closure of a gap at the lobby, and alteration of histidine to tryptophan at position 90 changed the electrostatic profile of the side pocket of COX-2. Thus, these two residues, especially Val-89 at the lobby region, are crucial for the entrance and exit of some NSAIDs from the COX active site.  相似文献   

19.
20.
Oral squamous cell carcinoma has a striking tendency to migrate and metastasize. Cyclooxygenase (COX)-2, the inducible isoform of prostaglandin (PG) synthase, has been implicated in tumor metastasis. However, the effects of COX-2 on human oral cancer cells are largely unknown. We found that overexpression of COX-2 or exogenous PGE2 increased migration and intercellular adhesion molecule 1 (ICAM)-1 expression in human oral cancer cells. Using pharmacological inhibitors, activators, and genetic inhibition of EP receptors, we discovered that the EP1 receptor, but not other PGE receptors, is involved in PGE2-mediated cell migration and ICAM-1 expression. PGE2-mediated migration and ICAM-1 up-regulation were attenuated by inhibitors of protein kinase C (PKC)δ, and c-Src. Activation of the PKCδ, c-Src, and AP-1 signaling pathway occurred after PGE2 treatment. PGE2-induced expression of ICAM-1 and migration activity were inhibited by a specific inhibitor, siRNA, and mutants of PKCδ, c-Src, and AP-1. In addition, migration-prone sublines demonstrated that cells with increased migration ability had higher expression of COX-2 and ICAM-1. Taken together, these results indicate that the PGE2 and EP1 interaction enhanced migration of oral cancer cells through an increase in ICAM-1 production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号