首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Undue exposure to antimicrobials has led to the acquisition and development of sophisticated bacterial resistance mechanisms, such as efflux pumps, which are able to expel or reduce the intracellular concentration of various antibiotics, making them ineffective. Therefore, inhibiting this mechanism is a promising way to minimize the phenomenon of resistance in bacteria. In this sense, the present study sought to evaluate the activity of the Carvacrol (CAR) and Thymol (THY) terpenes as possible Efflux Pump Inhibitors (EPIs), by determining the Minimum Inhibitory Concentration (MIC) and the association of these compounds in subinhibitory concentrations with the antibiotic Norfloxacin and with Ethidium Bromide (EtBr) against strains SA-1199 (wild-type) and SA-1199B (overexpresses NorA) of Staphylococcus aureus. In order to verify the interaction of the terpenes with the NorA efflux protein, an in silico molecular modeling study was carried out. The assays used to obtain the MIC of CAR and THY were performed by broth microdilution, while the Efflux Pump inhibitory test was performed by the MIC modification method of the antibiotic Norfloxacin and EtBr. docking was performed using the Molegro Virtual Docker (MVD) program. The results of the study revealed that CAR and THY have moderate bacterial activity and are capable of reducing the MIC of Norfloxacin antibiotic and EtBr in strains of S. aureus carrying the NorA efflux pump. The docking results showed that these terpenes act as possible competitive NorA inhibitors and can be investigated as adjuvants in combined therapies aimed at reducing antibiotic resistance.

  相似文献   

2.
《Phytomedicine》2015,22(4):469-476
Six compounds (16), isolated from the methanol extract of the roots of the African medicinal plant Zanthoxylum capense Thunb. (Rutaceae), and seven ester derivatives (713) were evaluated for their antibacterial activities and modulatory effects on the MIC of antibiotics (erythromycin, oxacillin, and tetracycline) and ethidium bromide (EtBr) against a Staphylococcus aureus reference strain (ATCC 6538). Using the same model, compounds 113 were also assessed for their potential as efflux pump inhibitors by a fluorometric assay that measures the accumulation of the broad range efflux pump substrate EtBr. Compounds 8 and 11 were further evaluated for their antibacterial, modulatory and EtBr accumulation effects against four additional S. aureus strains, which included two clinical methicillin-resistant S. aureus (MRSA) strains. Compounds (113) have not shown antibacterial activity at the concentration ranges tested. When evaluated against S. aureus ATCC 6538, oxychelerythrine (1) a benzophenanthridine alkaloid, showed the highest modulatory activity enhancing the susceptibility of this strain to all the tested antibiotics from two to four-fold. Ailanthoidiol diacetate (8) and ailanthoidiol di-2-ethylbutanoate (11) were also good modulators when combined with EtBr, increasing the bacteria susceptibility by four and two-fold, respectively. In the EtBr accumulation assay, using ATCC 6538 strain, the phenylpropanoid (+)-ailanthoidiol (6) and most of its ester derivatives (811) exhibited higher activity than the positive control verapamil. The highest effects were found for compounds 8 and 11 that also increased the accumulation of EtBr, using S. aureus ATCC 25923 as model. Furthermore, both compounds (8, 11) were able to enhance the ciprofloxacin activity against the MRSA clinical strains tested, causing a reduction of the antibiotic MIC values from two to four-fold. The EtBr accumulation assay revealed that this modulation activity was not due to an inhibition of efflux pumps mechanism.These results suggested that Z. capense constituents may be valuable as leads for restoring antibiotic activity against MRSA strains.  相似文献   

3.
Four echinomycin antibiotics were isolated from the culture broth of a marine streptomycete, and their structures were determined by a combination of chemical and spectroscopic analyses. Antibiotic activities were measured against drug-resistant and biofilm-forming strains of Staphylococcus aureus and Enterococcus faecalis. Minimum inhibitory concentrations ranging from 0.01 μM to greater than 14 μM clearly defined structure–activity relationships for antibiotic potency. Echinomycin was the most active compound with a MIC of 0.03 μM against methicillin-resistant S. aureus and 0.01 μM against biofilm-forming E. faecalis.  相似文献   

4.
Pseudomonas aeruginosa is one of the major nosocomial pathogen that can causes a wide variety of acute and chronic infections P. aeruginosa is a dreaded bacteria not just because of the high intrinsic and acquired antibiotic resistance rates but also the biofilm formation and production of multiple virulence factors. We investigated the in vitro activities of antibiotics (ceftazidime, tobramycin, ciprofloxacin, doripenem, piperacillin and colistin) and antimicrobial cationic peptides (AMPs; LL-37, CAMA: cecropin(1–7)-melittin A(2–9) amide, melittin, defensin and magainin-II) alone or in combination against biofilms of laboratory strain ATCC 27853 and 4 clinical strains of P. aeruginosa. The minimum inhibitory concentrations (MIC), minimum bactericidal concentration (MBC) and minimum biofilm eradication concentrations (MBEC) were determined by microbroth dilution technique. The MBEC values of antibiotics and AMPs were 80–>5120 and 640–>640 mg/L, respectively. When combined with the LL-37 or CAMA at 1/10× MBEC, the MBEC values of antibiotics that active against biofilms, were decreased up to 8-fold. All of the antibiotics, and AMPs were able to inhibit the attachment of bacteria at the 1/10× MIC and biofilm formation at 1× or 1/10× MIC concentrations. Time killing curve studies showed 3-log10 killing against biofilms in 24 h with almost all studied antibiotics and AMPs. Synergism were seen in most of the studied combinations especially CAMA/LL-37 + ciprofloxacin against at least one or two strains’ biofilms. Since biofilms are not affected the antibiotics at therapeutic concentrations, using a combination of antimicrobial agents including AMPs, or inhibition of biofilm formation by blocking the attachment of bacteria to surfaces might be alternative methods to fight with biofilm associated infections.  相似文献   

5.
MsrA, an efflux pump belonging to ATP‐binding cassette (ABC) transporter family that conferred resistance to macrolides, was detected in Staphylococcus aureus strains. Herein, we report the isolation of phytoconstituents from Piper cubeba fruit methanol extract and investigated their efflux pump inhibitory potential against S. aureus MsrA pump. Four isolated compounds, viz. pellitorine, sesamin, piperic acid and tetrahydropiperine studied in combination with erythromycin in S. aureus RN4220, exhibited 2–8‐fold reduction in minimum inhibitory concentration (MIC) of erythromycin. Pellitorine and sesamin decreased MIC of erythromycin by 8‐fold. The real‐time fluorometry‐based efflux and accumulation studies of ethidium bromide (EtBr) on S. aureus RN4220 in the presence of these compounds showed reduced efflux and enhanced uptake, thus indicating inhibition of the efflux pump. Pellitorine showed significant post‐antibiotic effect of erythromycin. The results revealed that the primary mechanism of action of these compounds involves steady ATP production impairment.  相似文献   

6.
Two different series of N-substituted imidazolium oximes and their monoquaternary salts were synthesized and biologically tested with respect to their ability to inhibit growth a diverse panel of antibiotic susceptible Gram-positive and antibiotic resistant Gram-negative bacteria as well fungal strains. The newly synthesized compounds were analyzed by spectral studies to confirm their structure. The preliminary results showed that all compounds tested possess promising antimicrobial potential against both susceptible Gram-positive and antibiotic resistant Gram-negative isolates, exhibiting a wide range of MIC values from 0.14 to 100.0 μg/mL. The structure–activity relationship demonstrates that the p-methylphenyl and p-fluorophenyl groups in monoquaternary salts 6 and 7 attached directly to the imidazolium ring could be essential for observed remarkable inhibitory profiles against clinically important pathogens Pseudomonas aeruginosa (MIC = 0.14 μg/mL) and Klebsiella pneumoniae (MIC = 1.56 μg/mL). Furthermore, the broth microdilution assay was then used to investigate the antiresistance efficacy of compound 7 against fourteen extended-spectrum β-lactamase (ESBL)-producing strains in comparison to eight clinically relevant antibiotics. Compound 7 exhibited a remarkable antiresistance profiles ranging between 0.39 and 12.50 μg/mL against all of ESBL-producing strains, which leads to the suggestion that may be interesting candidate for development of new antimicrobials to combat multidrug resistant Gram-negative bacteria.  相似文献   

7.
Efflux pumps are one of the well established mechanisms that contribute to antibiotic resistance in bacteria, such as mycobacteria. As a result, the identification of efflux pump inhibitors is an attractive target in antimicrobial therapy. The isolated compounds, three diarylheptanoids, trans,trans-1,7-diphenylhepta-4,6-dien-3-one (1), (5R)-trans-1,7-diphenyl-5-hydroxyhept-6-en-3-one (2), (3S,5S)-trans-1,7-diphenylhept-1-ene-3,5-diol (3) and the flavonoid pinocembrin (4), from Alpinia katsumadai, Zingiberaceae, were examined for their antimycobacterial activity and their synergistic effects with different antibiotics against M. smegmatis mc(2) 155. Furthermore, these compounds were evaluated as potential EtBr efflux inhibitors. Although they showed weak antimycobacterial activities (MIC ≥ 64 mg/L), especially compound 1 revealed a significant activity on the EtBr accumulation and efflux as well as a synergistic effect in combination with rifampicin.  相似文献   

8.
Insects and their products are included in the traditional pharmacopoeia of various ethnic groups worldwide. In the Brazilian semiarid region can be highlighted the use of the termite Nasutitermes corniger for the treatment of various diseases. This study evaluated the ethanol extract of N. corniger and its nest as an antimicrobial agent and as a modulator of bacterial resistance against multidrug strains. The Minimum Inhibitory Concentration (MIC) of the extract on Staphylococcus aureus and Escherichia coli by microdilution was determined, as well as MIC of antibiotics in the presence and absence of extract. Despite having no significant antimicrobial activity (MIC  1000 μg mL−1), the extract showed additive activity to the antibiotic efficacy, significantly reducing its MIC. These results suggest that N. corniger and its nest are promising natural products for use in antimicrobial therapy.  相似文献   

9.
Drug efflux pumps confer multidrug resistance to dangerous pathogens which makes these pumps important drug targets. We have synthesised a novel series of compounds based on a 2-naphthamide pharmacore aimed at inhibiting the efflux pumps from Gram-negative bacteria. The archeatypical transporter AcrB from Escherichia coli was used as model efflux pump as AcrB is widely conserved throughout Gram-negative organisms. The compounds were tested for their antibacterial action, ability to potentiate the action of antibiotics and for their ability to inhibit Nile Red efflux by AcrB. None of the compounds were antimicrobial against E. coli wild type cells. Most of the compounds were able to inhibit Nile Red efflux indicating that they are substrates of the AcrB efflux pump. Three compounds were able to synergise with antibiotics and reverse resistance in the resistant phenotype. Compound A3, 4-(isopentyloxy)-2-naphthamide, reduced the MICs of erythromycin and chloramphenicol to the MIC levels of the drug sensitive strain that lacks an efflux pump. A3 had no effect on the MIC of the non-substrate rifampicin indicating that this compound acts specifically through the AcrB efflux pump. A3 also does not act through non-specific mechanisms such as outer membrane or inner membrane permeabilisation and is not cytotoxic against mammalian cell lines. Therefore, we have designed and synthesised a novel chemical compound with great potential to further optimisation as inhibitor of drug efflux pumps.  相似文献   

10.
Zuccagnia punctata Cav. (Fabaceae), a native plant from Argentina has been used traditionally as medicinal species. The aim of the study was to validate the antibiotic and anti-inflammatory potential of Z. punctata organic extract (ZpE) and the major compounds; 2′,4′-dihydroxy-3′-methoxychalcone (DHMC), 2′,4′-dihydroxychalcone (DHC), 7-hydroxyflavanone (7-HF) and 3,7-dihydroxyflavone (DHF); using an in vitro model. The antibiotic activity was determined using a broth microdilution method and the minimum inhibitory concentration (MIC) was determined. The extract and the isolation compounds affect the normal growth of all assayed Staphylococcus aureus strains. The MIC values for ZpE and isolated compounds were between 125 and 500 μg/mL and between 25 and 400 μg/mL, respectively, against all assayed strains. The inhibitory effect of extract and isolated compounds on biofilm formation and on pro-inflammatory enzymes (sPLA2, COX-2, LOX) was analyzed. The compound DHC was the most active on sPLA2 while DHF and DHMC showed the highest activity on LOX. Both the extract and pure compounds except DHMC were active against COX-2. It can be concluded that the phytocomplex and the pure compounds possessed antibiotic and anti-inflammatory activities under the conditions tested, and could be a good alternative therapy for infective and inflammatory processes.  相似文献   

11.
BackgroundPharmacological screening and usage of natural products for the treatment of human diseases has had a long history from traditional medicine to modern drugs. The majority of modern drugs are reported to be mostly from natural products.ObjectiveThe aim of the present study was to evaluate the inhibitory activity of 5-(2,4-dimethylbenzyl) pyrrolidin-2-one (DMBPO) extracted from marine Streptomyces VITSVK5 spp. isolated from sediment samples collected at Marakkanam coast of Bay of Bengal, India.MethodsThe lead compound was isolated by bioactive guided extraction and purified by silica gel column chromatography. Structural elucidation of the lead compound was carried out by using UV, FT-IR, 1H NMR, 13C NMR, DEPT and HR-MS spectral data.ResultsSystematic screening of isolates for antimicrobial activity lead to identification of a potential strain, Streptomyces VITSVK5 spp. (GQ848482). Bioactivity guided extraction yielded a compound DMBPO and its inhibitory activity was tested against selected bacterial and fungal strains. DMBPO showed maximal activity against Escherichia coli with a MIC value of 187 μg/ml, followed by Klebsiella pneumoniae (MIC of 220 μg/ml and 10.3 mm zone of inhibition), Staphylococcus aureus (MIC of >1000 μg/ml and 4.4 mm zone of inhibition) and Bacillus subtilis (MIC of 850 μg/ml and 2.6 mm zone of inhibition). Furthermore, DMBPO was found to be a potent inhibitor of opportunistic fungal pathogens too. It showed a maximum activity against Aspergillus niger with a MIC value of 1 μg/ml and 28 mm zone of inhibition.ConclusionThe result of this study indicates that DMBPO possess antibiotic activity to selected bacterial and fungal pathogens and exhibited better activity against fungi than bacteria.  相似文献   

12.
Two diastereomeric analogs (1 and 2) of diaminopimelic acid (DAP) bearing an isoxazoline moiety were synthesized and evaluated for their inhibitory activities against meso-diaminopimelate dehydrogenase (m-Ddh) from the periodontal pathogen, Porphyromonas gingivalis. Compound 2 showed promising inhibitory activity against m-Ddh with an IC50 value of 14.9 µM at pH 7.8. The two compounds were further tested for their antibacterial activities against a panel of periodontal pathogens, and compound 2 was shown to be selectively potent to P. gingivalis strains W83 and ATCC 33277 with minimum inhibitory concentration (MIC) values of 773 µM and 1.875 mM, respectively. Molecular modeling studies revealed that the inversion of chirality at the C-5 position of these compounds was the primary reason for their different biological profiles. Based on these preliminary results, we believe that compound 2 has properties consistent with it being a lead compound for developing novel pathogen selective antibiotics to treat periodontal diseases.  相似文献   

13.
The alarming growth of the number of antibiotic resistant bacteria and in the same time limited possibilities to develop new antimicrobial compounds, lead to an urgent need to keep the sensitivity of bacteria against currently used antibiotics. Bacterial efflux pumps are an important mechanism of antibiotic resistance as the bacteria use efflux pumps for the extrusion of different types of antibiotics and chemicals. The knowledge about inhibitors of efflux pumps from natural sources suggests that this mechanism may be a good target for new drugs based on synergistic interactions of antibiotics with plant extracts, essential oils, or their constituents with efflux pump inhibitory activity. This review summarizes the current knowledge of staphylococcal efflux pumps and potential strategies to overcome them. Natural inhibitors of efflux pumps and their synergistic interactions with antibiotics are summarized.  相似文献   

14.
The antimicrobial activity of several plant extracts obtained from aerial parts of two invasive plants, Hakea sericeae and Hakea salicifolia, was evaluated against both Gram-positive and Gram-negative bacteria, including resistant strains of Staphylococcus aureus and assayed at different minimum inhibitory concentrations (MIC), ranging between 3.5 and 500 μg/mL. The twigs' aqueous extract showed the strongest antimicrobial activity (MIC 7.5–62 μg/mL) against the tested methicilin and vancomycin resistant strains of S. aureus.  相似文献   

15.
The compound 4-(Phenylsulfonyl) morpholine belongs to the class of sulfonamides, which are widely used in the treatment of a large number of diseases caused by microorganisms. This compound has a morpholine group, which is also known for its antimicrobial properties. The aim of the present study was to investigate the antimicrobial and modulating activity of 4-(Phenylsulfonyl) morpholine against standard and multi-resistant strains of Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa and strains of the fungi Candida albicans, C. tropicalis and C. krusei. Antimicrobial activity was assessed based on the minimum inhibitory concentration (MIC) using the microdilution method. MIC was ⩾1024 μg/mL for all microorganisms. Regarding modulating activity, the most representative effect occurred with the combination of 4-(Phenylsulfonyl) morpholine at a concentration of 128 μg/mL (MIC 1/8) and amikacin against P. aeruginosa 03, with a reduction in MIC from 312.5 to 39.06 μg/mL.  相似文献   

16.
The crude extracts of Dietes bicolor leaves, flowers and rhizomes were subjected to comparative antimicrobial screening against two Gram-positive, two Gram-negative bacteria and four fungal strains using the agar well diffusion method. The minimum inhibitory concentrations (MIC) of the tested extracts were also determined. Furthermore, the cytotoxic activity was evaluated. D. bicolor extracts generally demonstrated notable broad spectrum antimicrobial activities (MIC values  500 μg/mL) against all tested pathogens. D. bicolor leaf extract showed potent broad spectrum antimicrobial activity with MIC values ranging between 0.24 and 31.25 μg/mL against all tested pathogens. Moreover, the flowers extract exhibited promising antimicrobial activities, displaying MIC values ranging between 1.95 and 125 μg/mL against the tested bacteria and fungi. However, the rhizomes extract showed moderate antimicrobial activity with MIC values ranging between 31.25 and 500 μg/mL. Despite the potent antimicrobial activity of D. bicolor extracts, they were ineffective as cytotoxic agents against nine tested cancer cell lines, displaying 50% inhibitory concentration (IC50) values above 100 μg/mL. The reported potent antimicrobial activity along with the lack of measurable cytotoxic activity indicated that the antimicrobial activity of D. bicolor crude extracts is mediated through a mechanism other than cytotoxicity. These results suggest that D. bicolor can act as a potential source for natural antibacterial and antifungal agents with a good safety profile at a preliminary level.  相似文献   

17.
《Journal of Asia》2014,17(3):343-347
Paenibacillus larvae and Melissococcus plutonius are the primary bacterial pathogens of honeybees and the causative agents of American and European foulbrood disease (AFB and EFB) respectively. Such diseases have been gaining importance since there are few therapeutic options beyond the reporting of microorganisms resistant to conventional antibiotics. Due to the inefficiency and/or low efficacy of some antibiotics, researches with nanotechnology represent, possibly, new therapeutic strategies. Nanostructured drugs have presented some advantages over the conventional medicines, such as slow, gradual and controlled release, increased bioavailability, and reduced side-effects, among others. In this study, in vitro antimicrobial activity of tea tree oil (TTO) nanoparticles against Paenibacillus species, including P. larvae and M. plutonius strains was evaluated. Minimal inhibitory concentration (MIC) in Mueller–Hinton or KSBHI broth by the microdilution method was assessed. TTO registered MIC values of 0.18–6.25%, while the MIC values obtained for the TTO nanoparticle were of 0.01–0.93%. The possible toxic effect of TTO and TTO nanoparticle has been assessed by the spraying application method in the concentrations higher than the MICs. Bee mortality was evident only in treatment with TTO and the TTO nanoparticles show no toxic effects after 7 days of observation. Our results showed for the first time that TTO nanoencapsulation presented a high activity against Paenibacillus species and M. plutonius strains showing that the use of nanotechnology may represent one alternative way for the treatment or prevention of AFB and EFB.  相似文献   

18.

Background

Efflux systems are involved in multidrug resistance in most Gram-negative non-fermentative bacteria. We have chosen Burkholderia thailandensis to dissect the development of multidrug resistance phenotypes under antibiotic pressure.

Methodology/Principal Findings

We used doxycycline selection to obtain several resistant B. thailandensis variants. The minimal inhibitory concentrations of a large panel of structurally unrelated antibiotics were determined ± the efflux pump inhibitor phenylalanine-arginine ß-naphthylamide (PAßN). Membrane proteins were identified by proteomic method and the expressions of major efflux pumps in the doxycycline selected variants were compared to those of the parental strains by a quantitative RT-PCR analysis. Doxycycline selected variants showed a multidrug resistance in two major levels corresponding to the overproduction of two efflux pumps depending on its concentration: AmrAB-OprA and BpeEF-OprC. The study of two mutants, each lacking one of these pumps, indicated that a third pump, BpeAB-OprB, could substitute for the defective pump. Surprisingly, we observed antagonistic effects between PAßN and aminoglycosides or some ß-lactams. PAßN induced the overexpression of AmrAB-OprA and BpeAB-OprB pump genes, generating this unexpected effect.

Conclusions/Significance

These results may account for the weak activity of PAßN in some Gram-negative species. We clearly demonstrated two antagonistic effects of this molecule on bacterial cells: the blocking of antibiotic efflux and an increase in efflux pump gene expression. Thus, doxycycline is a very efficient RND efflux pump inducer and PAßN may promote the production of some efflux pumps. These results should be taken into account when considering antibiotic treatments and in future studies on efflux pump inhibitors.  相似文献   

19.
A di-bromo substituted nitrovinylfuran with reported broad-spectrum antibacterial activity was found to be a potent inhibitor of MurA, a key enzyme in peptidoglycan biosynthesis. Further characterization of the compound was carried out to assess its reactivity towards thiol nucleophiles, its stability and degradation under aqueous conditions, inhibitory potential at other enzymes, and antibacterial and cytotoxic activity. Our results indicate that the nitrovinylfuran derivative is reactive towards cysteine residues in proteins, as demonstrated by the irreversible inhibition of MurA and bacterial methionine aminopeptidase. Experiments with proteins and model thiols indicate that the compound forms covalent adducts with SH groups and induces intermolecular disulfide bonds, with the intermediate formation of a monobromide derivative. The parent molecule as well as most of its breakdown products are potent antibiotics with MIC values below 4 μg/mL and are active against multiresistant strains such as methicillin-resistant Staphylococcus aureus (MRSA). Further development of the bromonitrovinyl scaffold towards antibiotics with clinical relevance, however, requires optimization of the antibiotic–cytotoxic selectivity profile.  相似文献   

20.
BackgroundIncreasing resistance in bacteria towards antibiotics has made it imperative to research on their revitalization to combat infectious diseases. This study dealt with synthesis of a nano-form of the antibiotic tetracycline, its characterization and potency of killing different multi-drug resistant diarrhea-causing bacteria.MethodsNano-formulation was done by loading tetracycline within biocompatible calcium phosphate nanoparticle. The synthesized tetracycline-loaded calcium phosphate nanoparticle (Tet-CPNP) was characterized by the techniques like TEM, DLS, EDS, FTIR, spectrofluorimetry and dialysis. Bactericidal activity of nano-particulate tetracycline was investigated by agar plating, spectrophotometry, phase contrast-fluorescence-atomic force microscopy and flow cytometry techniques.ResultsThe Tet-CPNPs were 8 ± 5 nm in size and nearly spherical in shape, efficiency of tetracycline loading in CPNP was about 20% and the release of antibiotic from Tet-CPNPs was sustainable during 7 days. Minimum inhibitory concentration (MIC) of Tet-CPNP on multiple antibiotic (including tetracycline) resistant bacteria like Escherichia coli, Salmonella kentuckey and Shigella flexneri was in the range of 20–40 μg/ml, whereas MIC of free tetracycline was in the range of 150–180 μg/ml. NP-mediated cell filamentation and cell membrane disintegration caused cell killing. Moreover, death of Shigella-infected Zebra fish larvae was stalled by Tet-CPNP treatment. CPNP itself had no toxic effect on bacteria as well as on Zebra fish.ConclusionOur nano-formulation of tetracycline might reclaim a nearly obsolete antibiotic to further potential function.General significanceSuch a study on revival of an old, cheap, broad-spectrum antibiotic to further action is highly beneficial to developing countries with limited health care budgets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号