首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Crocodilians exhibit a spectrum of rostral shape from long snouted (longirostrine), through to short snouted (brevirostrine) morphologies. The proportional length of the mandibular symphysis correlates consistently with rostral shape, forming as much as 50% of the mandible’s length in longirostrine forms, but 10% in brevirostrine crocodilians. Here we analyse the structural consequences of an elongate mandibular symphysis in relation to feeding behaviours.

Methods/Principal Findings

Simple beam and high resolution Finite Element (FE) models of seven species of crocodile were analysed under loads simulating biting, shaking and twisting. Using beam theory, we statistically compared multiple hypotheses of which morphological variables should control the biomechanical response. Brevi- and mesorostrine morphologies were found to consistently outperform longirostrine types when subject to equivalent biting, shaking and twisting loads. The best predictors of performance for biting and twisting loads in FE models were overall length and symphyseal length respectively; for shaking loads symphyseal length and a multivariate measurement of shape (PC1– which is strongly but not exclusively correlated with symphyseal length) were equally good predictors. Linear measurements were better predictors than multivariate measurements of shape in biting and twisting loads. For both biting and shaking loads but not for twisting, simple beam models agree with best performance predictors in FE models.

Conclusions/Significance

Combining beam and FE modelling allows a priori hypotheses about the importance of morphological traits on biomechanics to be statistically tested. Short mandibular symphyses perform well under loads used for feeding upon large prey, but elongate symphyses incur high strains under equivalent loads, underlining the structural constraints to prey size in the longirostrine morphotype. The biomechanics of the crocodilian mandible are largely consistent with beam theory and can be predicted from simple morphological measurements, suggesting that crocodilians are a useful model for investigating the palaeobiomechanics of other aquatic tetrapods.  相似文献   

2.
Extant and fossil crocodilians have long been divided into taxonomic and/or ecological groups based on broad patterns of skull shape, particularly the relative length and width of the snout. However, these patterns have not been quantitatively analyzed in detail, and their biomechanical and functional implications are similarly understudied. Here, we use geometric morphometrics and finite element analysis to explore the patterns of variation in crocodilian skull morphology and the functional implications of those patterns. Our results indicate that skull shape variation in extant crocodiles is much more complex than previously recognized. Differences in snout length and width are the main components of shape variation, but these differences are correlated with changes in other regions of the skull. Additionally, there is considerable disparity within general classes such as longirostrine and brevirostrine forms. For example, Gavialis and Tomistoma occupy different parts of morphospace implying a significant difference in skull shape, despite the fact that both are traditionally considered longirostrine. Skull length and width also strongly influence the mechanical performance of the skull; long and narrow morphotypes (e.g., Tomistoma) experience the highest amount of stress during biting, whereas short and broad morphotypes (e.g., Caiman latirostris) experience the least amount of stress. Biomechanical stress and the hydrodynamic properties of the skull show a strong relationship with the distribution of crocodilians in skull morphospace, whereas phylogeny and biogeography show weak or no correlation. Therefore, ecological specializations related to feeding and foraging likely have the greatest influence on crocodilian skull shape. J. Morphol., 2008. © 2008 Wiley‐Liss, Inc.  相似文献   

3.
Acanthostega is one of the earliest and most primitive limbed vertebrates. Its numerous fish-like features indicate a primarily aquatic lifestyle, yet cranial suture morphology suggests that its skull is more similar to those of terrestrial taxa. Here, we apply geometric morphometrics and two-dimensional finite-element analysis to the lower jaws of Acanthostega and 22 other tetrapodomorph taxa in order to quantify morphological and functional changes across the fish–tetrapod transition. The jaw of Acanthostega is similar to that of certain tetrapodomorph fish and transitional Devonian taxa both morphologically (as indicated by its proximity to those taxa in morphospace) and functionally (as indicated by the distribution of stress values and relative magnitude of bite force). Our results suggest a slow tempo of morphological and biomechanical changes in the transition from Devonian tetrapod jaws to aquatic/semi-aquatic Carboniferous tetrapod jaws. We conclude that Acanthostega retained a primitively aquatic lifestyle and did not possess cranial adaptations for terrestrial feeding.  相似文献   

4.
Skull structure is intimately associated with feeding ability in vertebrates, both in terms of specific performance measures and general ecological characteristics. This study quantitatively assessed variation in the shape of the cranium and mandible in varanoid lizards, and its relationship to structural performance (von Mises strain) and interspecific differences in feeding ecology. Geometric morphometric and linear morphometric analyses were used to evaluate morphological differences, and finite element analysis was used to quantify variation in structural performance (strain during simulated biting, shaking and pulling). This data was then integrated with ecological classes compiled from relevant scientific literature on each species in order to establish structure-function relationships. Finite element modelling results showed that variation in cranial morphology resulted in large differences in the magnitudes and locations of strain in biting, shaking and pulling load cases. Gracile species such as Varanus salvadorii displayed high strain levels during shaking, especially in the areas between the orbits. All models exhibit less strain during pull back loading compared to shake loading, even though a larger force was applied (pull =30N, shake = 20N). Relationships were identified between the morphology, performance, and ecology. Species that did not feed on hard prey clustered in the gracile region of cranial morphospace and exhibited significantly higher levels of strain during biting (P = 0.0106). Species that fed on large prey clustered in the elongate area of mandible morphospace. This relationship differs from those that have been identified in other taxonomic groups such as crocodiles and mammals. This difference may be due to a combination of the open ‘space-frame’ structure of the varanoid lizard skull, and the ‘pull back’ behaviour that some species use for processing large prey.  相似文献   

5.
A longirostrine choristoderan reptile is described from the Early Cretaceous Tetori Group on the basis of an associated specimen from the Kuwajima Formation, Ishikawa Prefecture. This is the first report of Neochoristodera from Japan. However, the brevirostrine Monjurosuchus has already been reported from the same deposit, and the long-necked Shokawa was recovered from the Okurodani Formation, which is a lateral equivalent of the Kuwajima Formation. This new material demonstrates that the three known choristoderan morphotypes (short-necked longirostrine, short-necked brevirostrine and long-necked brevirostrine) were all present in the Early Cretaceous deposits of the Tetori Group. Until now, the Jiufotang Formation of China was the only deposit where all three were known to have co-occurred.  相似文献   

6.
《Journal of morphology》2017,278(2):203-214
Comparisons of skull shape between closely related species can provide information on the role that phylogeny and function play in cranial evolution. We used 3D‐anatomical landmarks in order to study the skull ontogeny of two closely related species, Lagenorhynchus obscurus and Lagenorhynchus australis , with a total sample of 52 skulls. We found shared trends between species, such as the relative compression of the neurocranium and the enlargement of the rostrum during ontogeny. However, these are common mammalian features, associated with prenatal brain development and sensory capsules. Moreover, we found a posterior displacement of the external nares and infraorbital foramina, and a strong development of the rostrum in an anteroposterior direction. Such trends are associated with the process of telescoping and have been observed in postnatal ontogeny of other odontocetes, suggesting a constraint in the pattern. Interspecific differences related to the deepness of facial region, robustness of the feeding apparatus and rostrum orientation may be related with the specific lifestyles of L. obscurus and L. australis . We also tested the presence of three different modules in the skull (basicranium, neurocranium, rostrum), all of which presented strong integration. Only the rostrum showed a different ontogenetic trajectory between species. Even though we detected directional asymmetry, changes in this feature along ontogeny were not detectable. Because asymmetry may be related to echolocation, our results suggest a functional importance of directional asymmetry from the beginning of postnatal life. J. Morphol. 278:203–214, 2017. © 2016 Wiley Periodicals,Inc.  相似文献   

7.
Rodents are important components of nearly every terrestrial ecosystem and display considerable ecological diversity. Nevertheless, a lack of data on the ecomorphology of rodents has led to them being largely overlooked in palaeoecological reconstructions. Here, geometric and linear morphometrics are used to examine how cranial and dental shapes reflect the diets of living rodent species. Although most rodents are omnivores or generalist herbivores, some species have evolved highly specialized carnivorous, insectivorous, and herbivorous diets. Results show that living rodents with similar diets display convergent morphology, despite their independent evolutionary histories. Carnivores have relatively elongate incisors, elongate and narrow incisor blades, orthodont incisor angles, reduced cheek tooth areas, and enlarged temporal fossae. Insectivores display relatively degenerate dentition, elongate rostra, narrow and thin zygomatic arches, and smaller temporal fossae. Herbivores are characterized by relatively broader incisor blades, longer molar tooth rows, larger cheek tooth areas, wider skull and rostrum, thicker and broader zygomatic arches, and larger temporal fossae. These results suggest that cranial and dental morphology can be used to accurately infer extinct rodent diets regardless of ancestry. Application to extinct beavers suggests that most had highly specialized herbivorous diets.  相似文献   

8.
Werth AJ 《Journal of morphology》2006,267(12):1415-1428
The role of cranial morphology in the generation of intraoral and oropharyngeal suction pressures in odontocetes was investigated by manipulating the jaw and hyolingual apparatus of submerged heads of three species presenting varied shapes. Hyoid and gular muscles were manually employed to depress and retract the tongue. Pressures were recorded at three locations in the oral cavity, as gape and site, speed, and force of pull were varied. A biomechanical model was also developed to evaluate pressure data. The species with the shortest, bluntest head and smallest mouth opening generated greater negative pressures. Suction generation diminished sharply as gape increased. Greatest negative pressures attained were around -45 mmHg (-6,000 Pa), a magnitude deemed suitable for capture of small live prey. Odontocetes utilizing this bidirectional flow system should profit by evolution of a rounder mouth opening through progressive shortening and widening of the rostrum and jaws, a trend evident in cranial measurements from fossil and recent odontocetes. Blunt heads correlate with anatomical, ecological, and behavioral traits associated with suction feeding. Small-gape suction (with minimally opened jaws) could be used by odontocetes of all head and oral shapes to draw prey sufficiently close to the mouth for suction ingestion or grasping via dentition. Principal limitations of the experimental and mathematical simulations include assumption of a stationary odontocete with static (open or closed) jaws and potential scaling issues with differently sized heads and gapes.  相似文献   

9.
The present paper is concerned with the comparative morphology of the archeocete and odontocete skull. Among the archeocetes, the recently described lower Eocene Pakicetus inachus obviously represents an early stage of adaptation to aquatic life. The morphology of the incomplete cranial remains, however, gives no evidence that Pakicetus was an amphibious intermediate stage. The evolution of advanced archeocetes and odontocetes is characterized by the successive acquirement of new morphological devices related to the emission and perception of ultrasound under water. The formation of a sonar system in odontocetes obviously not only helped to compensate for the loss of the peripheral olfactory system but moreover was a substantial factor in the evolution of the exceptional dolphin brain.  相似文献   

10.
Gavialoid crocodylians are the archetypal longirostrine archosaurs and, as such, understanding their patterns of evolution is fundamental to recognizing cranial rearrangements and reconstructing adaptive pathways associated with elongation of the rostrum (longirostry). The living Indian gharial Gavialis gangeticus is the sole survivor of the group, thus providing unique evidence on the distinctive biology of its fossil kin. Yet phylogenetic relationships and evolutionary ecology spanning ~70 million-years of longirostrine crocodylian diversification remain unclear. Analysis of cranial anatomy of a new proto-Amazonian gavialoid, Gryposuchus pachakamue sp. nov., from the Miocene lakes and swamps of the Pebas Mega-Wetland System reveals that acquisition of both widely separated and protruding eyes (telescoped orbits) and riverine ecology within South American and Indian gavialoids is the result of parallel evolution. Phylogenetic and morphometric analyses show that, in association with longirostry, circumorbital bone configuration can evolve rapidly for coping with trends in environmental conditions and may reflect shifts in feeding strategy. Our results support a long-term radiation of the South American forms, with taxa occupying either extreme of the gavialoid morphospace showing preferences for coastal marine versus fluvial environments. The early biogeographic history of South American gavialoids was strongly linked to the northward drainage system connecting proto-Amazonian wetlands to the Caribbean region.  相似文献   

11.
Both extinct and extant crocodilians have repeatedly diversified in skull shape along a continuum, from narrow‐snouted to broad‐snouted phenotypes. These patterns occur with striking regularity, although it is currently unknown whether these trends also apply to microevolutionary divergence during population differentiation or the early stages of speciation. Assessing patterns of intraspecific variation within a single taxon can potentially provide insight into the processes of macroevolutionary differentiation. For example, high levels of intraspecific variation along a narrow‐broad axis would be consistent with the view that cranial shapes can show predictable patterns of differentiation on relatively short timescales, and potentially scale up to explain broader macroevolutionary patterns. In the present study, we use geometric morphometric methods to characterize intraspecific cranial shape variation among groups within a single, widely distributed clade, Caiman crocodilus. We show that C. crocodilus skulls vary along a narrow/broad‐snouted continuum, with different subspecies strongly clustered at distinct ends of the continuum. We quantitatively compare these microevolutionary trends with patterns of diversity at macroevolutionary scales (among all extant crocodilians). We find that morphological differences among the subspecies of C. crocodilus parallel the patterns of morphological differentiation across extant crocodilians, with the primary axes of morphological diversity being highly correlated across the two scales. We find intraspecific cranial shape variation within C. crocodilus to span variation characterized by more than half of living species. We show the main axis of intraspecific phenotypic variation to align with the principal direction of macroevolutionary diversification in crocodilian cranial shape, suggesting that mechanisms of microevolutionary divergence within species may also explain broader patterns of diversification at higher taxonomic levels.  相似文献   

12.
Disparity and geometry of the skull in Archosauria (Reptilia: Diapsida)   总被引:2,自引:0,他引:2  
A metric comparison of 155 fossil and extant species in lateral view based on the proportions of three homologous units (braincase, orbit and rostrum) reveals the existence of an archosaurian skull geometry. An empirical morphospace depicting skull proportions shows that the most variable unit is the rostrum. Three skull types based on rostral proportion are proposed: meso-, longi- and brevirostral. These types depend, on one hand, on a direct numerical relationship between the braincase and the orbit, with a mean ratio of 1:1; never surpassing a 2:1 or 1:2 ratio limit. On the other hand, skull types show a significant negative correlation between braincase and rostrum proportions. Close relationships have been obtained between orbit and the rostrum, although with lower significance and a geometric meaning specific to each group. Skull types depend mainly on the proportional relationship between the rostrum and the braincase. Mesorostral types account for more natural occurrences within morphospace, implying a plesiomorphic condition in Archosauria. Skulls with highest longirostral values (flying forms) display a more restrictive braincase–orbit ratio relationship. Brevirostrals are limited to the smallest skull lengths, up to approximately 180 mm. 85% of brevirostral modern birds have altricial post-hatchling development. General allometric pattern is very similar for all sampled archosaurs, although giant taxa (i.e. non-avian theropods) display a different type of skull proportional growth, closer to isometry. Results reveal the existence of a constructional skull geometry, highlighting the importance of the deviance of the structural design from adaptive explanations on craniofacial morphology in macroevolution.  © 2003 The Linnean Society of London, Biological Journal of the Linnean Society , 2003, 80, 67–88.  相似文献   

13.
Evolutionary integration (covariation) of traits has long fascinated biologists because of its potential to elucidate factors that have shaped morphological evolution. Studies of tetrapod crania have identified patterns of evolutionary integration that reflect functional or developmental interactions among traits, but no studies to date have sampled widely across the species-rich lissamphibian order Anura (frogs). Frogs exhibit a vast range of cranial morphologies, life history strategies, and ecologies. Here, using high-density morphometrics we capture cranial morphology for 172 anuran species, sampling every extant family. We quantify the pattern of evolutionary modularity in the frog skull and compare patterns in taxa with different life history modes. Evolutionary changes across the anuran cranium are highly modular, with a well-integrated “suspensorium” involved in feeding. This pattern is strikingly similar to that identified for caecilian and salamander crania, suggesting replication of patterns of evolutionary integration across Lissamphibia. Surprisingly, possession of a feeding larval stage has no notable influence on cranial integration across frogs. However, late-ossifying bones exhibit higher integration than early-ossifying bones. Finally, anuran cranial modules show diverse morphological disparities, supporting the hypothesis that modular variation allows mosaic evolution of the cranium, but we find no consistent relationship between degree of within-module integration and disparity.  相似文献   

14.
Marine tetrapod clades (e.g. seals, whales) independently adapted to marine life through the Mesozoic and Caenozoic, and provide iconic examples of convergent evolution. Apparent morphological convergence is often explained as the result of adaptation to similar ecological niches. However, quantitative tests of this hypothesis are uncommon. We use dietary data to classify the feeding ecology of extant marine tetrapods and identify patterns in skull and tooth morphology that discriminate trophic groups across clades. Mapping these patterns onto phylogeny reveals coordinated evolutionary shifts in diet and morphology in different marine tetrapod lineages. Similarities in morphology between species with similar diets—even across large phylogenetic distances—are consistent with previous hypotheses that shared functional constraints drive convergent evolution in marine tetrapods.  相似文献   

15.
16.
17.
Shunosaurus, from the Middle Jurassic of China, is probably the best‐known basal sauropod and is represented by several complete skeletons. It is unique among sauropods in having a small, bony club at the end of its tail. New skull material provides critical information about its anatomy, brain morphology, tooth replacement pattern, feeding habits and phylogenetic relationships. The skull is akinetic and monimostylic. The brain is relatively small, narrow and primitively designed. The tooth replacement pattern exhibits back to front replacement waves in alternating tooth position. The teeth are spatulate, stout and show well‐developed wear facets indicative of coarser plant food. Upper and lower tooth rows interdigitate and shear past each other. Tooth morphology, skull architecture, and neck posture indicate that Shunosaurus was adapted to ground feeding or low browsing. Shunosaurus exhibits the following cranial autapomorphies: emargination of the ventral margin of the jugal/quadratojugal bar behind the tooth row; postorbital contains a lateral pit; vomers do not participate in the formation of the choanae; pterygoid is extremely slender and small with a dorsal fossa; quadrate ramus of the pterygoid is forked; quadratojugal participates in the jaw articulation; tooth morphology is a combination of cylindrical and spatulate form; basipterygoid process is not wrapped by the caudal process of the pterygoid; trochlear nerve has two exits; occlusal level of the maxillary tooth row is convex downward, whereas that of the dentary is concave upward, acting like a pair of garden shears; dentary tooth count is 25 or more; and the replacing teeth invade the labial side of the functional teeth. Cranial characters among the basal sauropods are reviewed. As Shunosaurus is the earliest sauropod for which cranial remains are known, it occupies an important position phylogenetically, showing the modification of skull morphology from the prosauropod condition. Although the skull synapomorphies of Sauropoda are unknown at present, 27 cranial synapomorphies are known for the clade Eusauropoda. © 2002 The Linnean Society of London, Zoological Journal of the Linnean Society, 2002, 136 , 145?169.  相似文献   

18.
19.
A cribriform plate, a perpendicular plate, and two lateral masses are major components of the ethmoid bone of mammals. Notwithstanding the noticeable bone, virtually sitting in the center of the skull, extensive modifications of the skull of modern cetaceans, especially odontocetes (toothed whales), and the lack of clarity as to what characteristics delimit each element of the ethmoid has made the problem of the nature of the cetacean ethmoid more complicated and elusive than in other, less modified mammals. Furthermore, contention as to whether a perpendicular plate of the ethmoid, or the mesethmoid, exists in all mammals including cetaceans has remained unsettled. In odontocetes, the mesethmoid has been variably identified not only as the osseous nasal septum but also as the mediodorsal region of the posterior wall of the nasal passage below the nasals, as a mass of bone encased by the vomer in front of the osseous nasal cavity at the base of the rostrum, and as a combination of some portions mentioned above. The presence or absence of the mesethmoid in various groups of mammals has attracted the attention of some biologists, and here, I demonstrate that cetaceans have no mesethmoid. The close inspection of the ontogenetic changes of the basicranial elements in cetaceans reveals that a mass of bone ensheathed by the vomer in front, or at the level of the osseous nasal cavity is actually the presphenoid. It is highly likely that in odontocetes the posterior wall of the nasal passages below the nasals consists of the combination of the frontal, the imperforated cribriform plate, the paired ectethmoids, and the vomer, the latter three of which partially concealing the presphenoid dorsally and laterally as the ontogeny proceeds. In contrast, mysticetes clearly display ethmoturbinates and a cribriform plate, which are morphologically similar to those in terrestrial mammals. J. Morphol. 277:1661–1674, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

20.
The present study investigates the pattern of differentiation of cranial shape in three closely related delphinid cetacean species of the complex Delphinus-Stenella-Tursiops: Delphinus delphis, Stenella coeruleoalba and Tursiops truncatus. Dorsal and ventral aspects of the cranium were analysed using landmark-based geometric morphometric methods. While there was no evidence of sexual dimorphism for shape or size, multivariate statistical analyses showed that there were interspecific differences in skull morphology. Skull shape differences between the three studied species were related with cranial width and differences in the length of the rostrum relative to the cranial portion of the skull. D. delphis and S. coeruleoalba showed high cranial shape similarity, which is indicative of their evolutionary proximity when compared with T. truncatus. Phenetic clusters based on cranial shape similarities were found to be concordant with the molecular phylogenetic clades obtained from mitochondrial DNA genes. Geometric morphometric methods can thus be an exceptionally useful tool for the study of differentiation of delphinid cetacean species and therefore provide some insights into their evolutionary history.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号