首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
BackgroundLeptospirosis, caused by Leptospira bacteria, is a common zoonosis worldwide, especially in the tropics. Reservoir species and risk factors have been identified but surveys for environmental sources are rare. Furthermore, understanding of environmental Leptospira containing virulence associated genes and possibly capable of causing disease is incomplete, which may convolute leptospirosis diagnosis, prevention, and epidemiology.Methodology/Principal findingsWe collected environmental samples from 22 sites in Puerto Rico during three sampling periods over 14-months (Dec 2018-Feb 2020); 10 water and 10 soil samples were collected at each site. Samples were screened for DNA from potentially pathogenic Leptospira using the lipL32 PCR assay and positive samples were sequenced to assess genetic diversity. One urban site in San Juan was sampled three times over 14 months to assess persistence in soil; live leptospires were obtained during the last sampling period. Isolates were whole genome sequenced and LipL32 expression was assessed in vitro.We detected pathogenic Leptospira DNA at 15/22 sites; both soil and water were positive at 5/15 sites. We recovered lipL32 sequences from 83/86 positive samples (15/15 positive sites) and secY sequences from 32/86 (10/15 sites); multiple genotypes were identified at 12 sites. These sequences revealed significant diversity across samples, including four novel lipL32 phylogenetic clades within the pathogenic P1 group. Most samples from the serially sampled site were lipL32 positive at each time point. We sequenced the genomes of six saprophytic and two pathogenic Leptospira isolates; the latter represent a novel pathogenic Leptospira species likely belonging to a new serogroup.Conclusions/SignificanceDiverse and novel pathogenic Leptospira are widespread in the environment in Puerto Rico. The disease potential of these lineages is unknown but several were consistently detected for >1 year in soil, which could contaminate water. This work increases understanding of environmental Leptospira diversity and should improve leptospirosis surveillance and diagnostics.  相似文献   

2.
Leptospirosis is a re-emerging and globally spread zoonosis caused by pathogenic genomospecies of Leptospira. Wild boar (Sus scrofa) are an important Leptospira host and are increasing in population all over Europe. The aim of this investigation was to evaluate Leptospira spp. infection in the reproductive systems of wild boar hunted in two Italian regions: Tuscany and Sardinia. From 231 animals, reproductive system tissue samples (testicles, epididymides, uteri) as well as placentas and fetuses were collected. Bacteriological examination and Real-Time PCR were performed to detect pathogenic Leptospira (lipL32 gene). Leptospires were isolated from the testicles and epididymides of one adult and two subadult wild boar. Four isolates from the two subadult males were identified as Leptospira interrogans serogroup Australis by MLST, whereas Leptospira kirschneri serogroup Grippotyphosa was identified from the adult testicles and epididymis. Using Real-Time PCR, 70 samples were positive: 22 testicles (23.16%) and 22 epididymides (23.16%), 10 uteri (7.35%), 3 placentas (6.66%), and 13 fetuses (28.88%). Amplification of the rrs2 gene identified L. interrogans and L. kirschneri species. The results from this investigation confirmed that wild boar represent a potential source of pathogenic Leptospira spp. Isolation of Leptospira serogroups Australis and Grippotyphosa from the male reproductive system and the positive Real-Time PCR results from both male and female samples could suggest venereal transmission, as already demonstrated in pigs. Furthermore, placentas and fetuses were positive for the lipL32 target, and this finding may be related to a possible vertical transmission of pathogenic Leptospira.  相似文献   

3.
Leptospirosis is recognized as the most widespread zoonosis with a global distribution. In this study, the antigenic variation in Leptospira interrogans and Leptospira borgpetersenii isolated from human urine and field rat kidney was preliminarily confirmed by microscopic agglutination test using monoclonal antibodies, and was further subjected to amplification and identification of outer membrane lipoproteins with structural gene variation. Sequence similarity analysis revealed that these protein sequences, namely OmpL1, LipL32 and LipL41, showed no more homologies to outer membrane lipoproteins of non-pathogenic Leptospira and other closely related Spirochetes, but showed a strong identity within L. interrogans, suggesting intra-specific phylogenetic lineages that might be originated from a common pathogenic leptospiral origin. Moreover, the ompL1 gene showed more antigenic variation than lipL32 and lipL41 due to less conservation in secondary structural evolution within closely related species. Phylogenetically, ompL1 and lipL41 of these strains gave a considerable proximity to L. weilii and L. santarosai. The ompL1 gene of L. interrogans clustered distinctly from other pathogenic and non-pathogenic leptospiral species. The diversity of ompL genes has been analyzed and it envisaged that sequence-specific variations at antigenic determinant sites would result in slow evolutionary changes along with new serovar origination within closely related species. Thus, a crucial work on effective recombinant vaccine development and engineered antibodies will hopefully meet to solve the therapeutic challenges.Key words: Leptospira, ompL1, lipL32, lipL41, phylogeny, antigenic variation  相似文献   

4.
BackgroundLeptospirosis, a zoonosis caused by species in the spirochete genus Leptospira, is endemic to the Yaeyama region in Okinawa, subtropical Japan. Species of the P1 subclade “virulent” group, within the genus Leptospira, are the main etiological agents of leptospirosis in Okinawa. However, their environmental persistence is poorly understood. This study used a combination of bacterial isolation and environmental DNA (eDNA) metabarcoding methods to understand the eco-epidemiology of leptospirosis in this endemic region.FindingsPolymerase chain reaction (PCR) characterized twelve human clinical L. interrogans isolates belonging to the P1 subclade “virulent” subgroup and 11 environmental soil isolates of the P1subclade “low virulent” subgroup (genetically related to L. kmetyi, n = 1; L. alstonii, n = 4; L. barantonii, n = 6) from the Yaeyama region targeting four virulence-related genes (lipL32, ligA, ligB and lpxD1). Clinical isolates were PCR positive for at least three targeted genes, while all environmental isolates were positive only for lipL32. Analysis of infected renal epithelial cells with selected clinical and environmental strains, revealed the disassembly of cell-cell junctions for the Hebdomadis clinical strain serogroup. Comparison of leptospiral eDNA during winter and summer identified operational taxonomic units corresponding to the species isolated from soil samples (L. kmetyi and L. barantonii) and additional P2 subclade species (L. licerasiae, L. wolffii-related, among others) that were not detected by soil cultivation. Total Leptospira read counts were higher in summer than in winter and the analysis of leptospiral/animal eDNA relationship suggested Rattus spp. as a potential reservoir animal.ConclusionOur study demonstrated high environmental Leptospira diversity in the Yaeyama region, particularly during summer, when most of the leptospirosis cases are reported. In addition, several Leptospira species with pathogenic potential were identified that have not yet been reported in Yaeyama; however, the environmental persistence of P1 subclade species previously isolated from human clinical cases in this region was absent, suggesting the need of further methodology development and surveillance.  相似文献   

5.
The most common presentation of animal leptospirosis is the subclinical and silent chronic form, that can lead to important reproductive disorders. The diagnosis of this chronic form remains a challenge. The aim of the present study is to gather and critically analyse the current information about molecular tools applied to animal leptospirosis diagnosis, particularly the silent chronic presentation of the infection. Regarding clinical specimens, samples from urinary tract were the most used (69/102, 67·7%), while few studies (12/102, 11·8%) investigated samples from reproductive tract. Concerning the molecular methods applied, the most used is still the conventional polymerase chain reaction (PCR) (46/102, 45%), followed by real-time PCR (38/102, 37·2%). The lipL32 gene is currently the most common target used for Leptospira detection, with 48% of studies applying this genetic marker. From all the studies, only few (21/102, 20·5%) performed gene sequencing. According to the majority of authors, current evidence suggests that lipL32-PCR is useful for an initial screening for Leptospira DNA detection in animal clinical samples. Posteriorly, if DNA sequencing could be performed on positive lipL32-PCR samples, we encourage the use of secY gene as a genetic marker. The molecular methods appear as the most important tools for the diagnosis of the chronic silent leptospirosis on domestic animals, reinforcing its evident impact not only on animal reproduction but also on a One Health context.  相似文献   

6.
Leptospirosis is a growing public and veterinary health concern caused by pathogenic species of Leptospira. Rapid and reliable laboratory tests for the direct detection of leptospiral infections in animals are in high demand not only to improve diagnosis but also for understanding the epidemiology of the disease. In this work we describe a novel and simple TaqMan-based multi-gene targeted real-time PCR approach able to detect and differentiate Leptospira interrogans, L. kirschneri, L. borgpeteresenii and L. noguchii, which constitute the veterinary most relevant pathogenic species of Leptospira. The method uses sets of species-specific probes, and respective flanking primers, designed from ompL1 and secY gene sequences. To monitor the presence of inhibitors, a duplex amplification assay targeting both the mammal β-actin and the leptospiral lipL32 genes was implemented. The analytical sensitivity of all primer and probe sets was estimated to be <10 genome equivalents (GE) in the reaction mixture. Application of the amplification reactions on genomic DNA from a variety of pathogenic and non-pathogenic Leptospira strains and other non-related bacteria revealed a 100% analytical specificity. Additionally, pathogenic leptospires were successfully detected in five out of 29 tissue samples from animals (Mus spp., Rattus spp., Dolichotis patagonum and Sus domesticus). Two samples were infected with L. borgpetersenii, two with L. interrogans and one with L. kirschneri. The possibility to detect and identify these pathogenic agents to the species level in domestic and wildlife animals reinforces the diagnostic information and will enhance our understanding of the epidemiology of leptopirosis.  相似文献   

7.
BackgroundOne of the key barriers preventing rapid diagnosis of leptospirosis is the lack of available sensitive point-of-care testing. This study aimed to develop and validate a clustered regularly-interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 12a (CRISPR/Cas12a) platform combined with isothermal amplification to detect leptospires from extracted patient DNA samples.Methodology/Principal findingsA Recombinase Polymerase Amplification (RPA)-CRISPR/Cas12a-fluorescence assay was designed to detect the lipL32 gene of pathogenic Leptospira spp. The assays demonstrated a limit of detection (LOD) of 100 cells/mL, with no cross-reactivity against several other acute febrile illnesses. The clinical performance of the assay was validated with DNA extracted from 110 clinical specimens and then compared to results from qPCR detection of Leptospira spp. The RPA-CRISPR/Cas12a assay showed 85.2% sensitivity, 100% specificity, and 92.7% accuracy. The sensitivity increased on days 4–6 after the fever onset and decreased after day 7. The specificity was consistent for several days after the onset of fever. The overall performance of the RPA-CRISPR/Cas12a platform was better than the commercial rapid diagnostic test (RDT). We also developed a lateral flow detection assay (LFDA) combined with RPA-CRISPR/Cas12a to make the test more accessible and easier to interpret. The combined LFDA showed a similar LOD of 100 cells/mL and could correctly distinguish between known positive and negative clinical samples in a pilot study.Conclusions/SignificanceThe RPA-CRISPR/Cas12 targeting the lipL32 gene demonstrated acceptable sensitivity and excellent specificity for detection of leptospires. This assay might be an appropriate test for acute leptospirosis screening in limited-resource settings.  相似文献   

8.

Background

Bacteria of the genus Leptospira, the causative agents of leptospirosis, are categorized into pathogenic and non-pathogenic species. However, the benefit of using a clinical diagnostic that is specific for pathogenic species remains unclear. In this study, we present the development of a real-time PCR (rtPCR) for the detection of pathogenic Leptospira (the pathogenic rtPCR), and we perform a comparison of the pathogenic rtPCR with a published assay that detects all Leptospira species [the undifferentiated febrile illness (UFI) assay] and a reference 16S Leptospira rtPCR, which was originally designed to detect pathogenic species.

Methodology/Principal Findings

For the pathogenic rtPCR, a new hydrolysis probe was designed for use with primers from the UFI assay, which targets the 16S gene. The pathogenic rtPCR detected Leptospira DNA in 37/37 cultured isolates from 5 pathogenic and one intermediate species. Two strains of the non-pathogenic L. biflexa produced no signal. Clinical samples from 65 patients with suspected leptospirosis were then tested using the pathogenic rtPCR and a reference Leptospira 16S rtPCR. All 65 samples had tested positive for Leptospira using the UFI assay; 62 (95.4%) samples tested positive using the pathogenic rtPCR (p = 0.24). Only 24 (36.9%) samples tested positive in the reference 16S rtPCR (p<0.0001 for comparison with the pathogenic rtPCR and UFI assays). Amplicon sequencing confirmed the detection of pathogenic Leptospira species in 49/50 cases, including 3 cases that were only detected using the UFI assay.

Conclusions/Significance

The pathogenic rtPCR displayed similar sensitivity to the UFI assay when testing clinical specimens with no difference in specificity. Both assays proved significantly more sensitive than a real-time molecular test used for comparison. Future studies are needed to investigate the clinical and epidemiologic significance of more sensitive Leptospira detection using these tests.  相似文献   

9.
10.

Background

Rapid PCR-based tests for the diagnosis of leptospirosis can provide information that contributes towards early patient management, but these have not been adopted in Thailand. Here, we compare the diagnostic sensitivity and specificity of two real-time PCR assays targeting rrs or lipL32 for the diagnosis of leptospirosis in northeast Thailand.

Methods/Principal Findings

A case-control study of 266 patients (133 cases of leptospirosis and 133 controls) was constructed to evaluate the diagnostic sensitivity and specificity (DSe & DSp) of both PCR assays. The median duration of illness prior to admission of cases was 4 days (IQR 2–5 days; range 1–12 days). DSe and DSp were determined using positive culture and/or microscopic agglutination test (MAT) as the gold standard. The DSe was higher for the rrs assay than the lipL32 assay (56%, (95% CI 47–64%) versus 43%, (95% CI 34–52%), p<0.001). No cases were positive for the lipL32 assay alone. There was borderline evidence to suggest that the DSp of the rrs assay was lower than the lipL32 assay (90% (95% CI 83–94%) versus 93%, (95%CI 88–97%), p = 0.06). Nine controls gave positive reactions for both assays and 5 controls gave a positive reaction for the rrs assay alone. The DSe of the rrs and lipL32 assays were high in the subgroup of 39 patients who were culture positive for Leptospira spp. (95% and 87%, respectively, p = 0.25).

Conclusions/Significance

Early detection of Leptospira using PCR is possible for more than half of patients presenting with leptospirosis and could contribute to individual patient care.  相似文献   

11.
The present study was an attempt to investigate the hepatoprotective and antioxidative property of Phyllanthus amarus (P. amarus) extract and phyllanthin. Phyllanthin, one of the active lignin present in this plant species was isolated from the aerial parts, by silica gel column chromatography employing gradient elution with hexane-ethyl acetate solvent mixture. It was obtained in high yields (1.23%), compared to reported procedures and the purity was ascertained by HPTLC and reversed-phase HPLC analysis. Characterization of phyllanthin was done by mp, UV-Visible spectrophotometry, elemental analysis, FT-IR, 1H NMR, 13C NMR and mass spectral analysis. Free radical scavenging activity of P. amarus extract and phyllanthin was also examined using DPPH assay. The protective effect of P. amarus extract and phyllanthin was studied on CCl4-induced toxicity in human hepatoma HepG2 cell line. The results indicated that CCl4 treatment caused a significant decrease in cell viability. In addition, the toxin treatment initiated lipid peroxidation (LPO), caused leakage of enzymes like alanine transaminase (ALT) and lactate dehydrogenase (LDH) with a significant decrease in glutathione (GSH) levels. It was observed that phyllanthin effectively alleviated the changes induced by CCl4 in a concentration-dependent manner, with much smaller strengths as compared to P. amarus extract.  相似文献   

12.
Leptospirosis is a zoonosis caused by pathogenic Leptospira spp. Most of the outbreaks of leptospirosis occur after floods caused by heavy rain in countries where Leptospira spp. are endemic. It has been believed that the overflow of seawater rarely causes outbreaks of leptospirosis because the leptospires are killed by salt water. On 8 November 2013, a storm surge caused by Super Typhoon Haiyan (Yolanda) inundated the entire coastal areas of Tacloban and Palo in Leyte, Philippines. The present study was carried out in order to determine whether the environmental leptospires in soil were able to survive after the storm surge in the affected areas. We collected 23 wet soil samples along the coastal areas of Tacloban and Palo 2 months after the storm surge. The samples were suspended in HEPES buffer, and the supernatants were cultured in liquid or semisolid Korthof''s medium supplemented with five antimicrobial agents to inhibit the growth of contaminants. Leptospires were isolated from primary cultures of 22 out of 23 samples. The DNA of pathogenic Leptospira species was detected in 11 samples (47.8%) by analysis of flaB by nested PCR. Eventually, two pathogenic Leptospira strains were isolated and showed the highest 16S rRNA gene sequence similarity to Leptospira kmetyi. When these isolates were experimentally mixed with soil, they were found to survive in seawater for 4 days. These results show the possibility that leptospires living in soil survived after the storm surge. Our findings may serve as a warning that when seawater inundates the land during a storm surge or a tsunami, an outbreak of leptospirosis could occur in the disaster-stricken area.  相似文献   

13.

Background

Leptospirosis is the most common bacterial zoonoses and has been identified as an important emerging global public health problem in Southeast Asia. Rodents are important reservoirs for human leptospirosis, but epidemiological data is lacking.

Methodology/Principal Findings

We sampled rodents living in different habitats from seven localities distributed across Southeast Asia (Thailand, Lao PDR and Cambodia), between 2009 to 2010. Human isolates were also obtained from localities close to where rodents were sampled. The prevalence of Leptospira infection was assessed by real-time PCR using DNA extracted from rodent kidneys, targeting the lipL32 gene. Sequencing rrs and secY genes, and Multi Locus Variable-number Tandem Repeat (VNTR) analyses were performed on DNA extracted from rat kidneys for Leptospira isolates molecular typing. Four species were detected in rodents, L. borgpetersenii (56% of positive samples), L. interrogans (36%), L. kirschneri (3%) and L. weilli (2%), which were identical to human isolates. Mean prevalence in rodents was approximately 7%, and largely varied across localities and habitats, but not between rodent species. The two most abundant Leptospira species displayed different habitat requirements: L. interrogans was linked to humid habitats (rice fields and forests) while L. borgpetersenii was abundant in both humid and dry habitats (non-floodable lands).

Conclusion/Significance

L. interrogans and L. borgpetersenii species are widely distributed amongst rodent populations, and strain typing confirmed rodents as reservoirs for human leptospirosis. Differences in habitat requirements for L. interrogans and L. borgpetersenii supported differential transmission modes. In Southeast Asia, human infection risk is not only restricted to activities taking place in wetlands and rice fields as is commonly accepted, but should also include tasks such as forestry work, as well as the hunting and preparation of rodents for consumption, which deserve more attention in future epidemiological studies.  相似文献   

14.

Background

Leptospirosis is one of the most widespread zoonoses in the world and with over 260 pathogenic serovars there is an urgent need for a molecular system of classification. The development of multilocus sequence typing (MLST) schemes for Leptospira spp. is addressing this issue. The aim of this study was to identify loci with potential to enhance Leptospira strain discrimination by sequencing-based methods.

Methodology and Principal Findings

We used bioinformatics to evaluate pre-existing loci with the potential to increase the discrimination of outbreak strains. Previously deposited sequence data were evaluated by phylogenetic analyses using either single or concatenated sequences. We identified and evaluated the applicability of the ligB, secY, rpoB and lipL41 loci, individually and in combination, to discriminate between 38 pathogenic Leptospira strains and to cluster them according to the species they belonged to. Pairwise identity among the loci ranged from 82.0–92.0%, while interspecies identity was 97.7–98.5%. Using the ligB-secY-rpoB-lipL41 superlocus it was possible to discriminate 34/38 strains, which belong to six pathogenic Leptospira species. In addition, the sequences were concatenated with the superloci from 16 sequence types from a previous MLST scheme employed to study the association of a leptospiral clone with an outbreak of human leptospirosis in Thailand. Their use enhanced the discriminative power of the existing scheme. The lipL41 and rpoB loci raised the resolution from 81.0–100%, but the enhanced scheme still remains limited to the L. interrogans and L. kirschneri species.

Conclusions

As the first aim of our study, the ligB-secY-rpoB-lipL41 superlocus demonstrated a satisfactory level of discrimination among the strains evaluated. Second, the inclusion of the rpoB and lipL41 loci to a MLST scheme provided high resolution for discrimination of strains within L. interrogans and L. kirschneri and might be useful in future epidemiological studies.  相似文献   

15.
S10-spc-α is a 17.5 kb cluster of 32 genes encoding ribosomal proteins. This locus has an unusual composition and organization in Leptospira interrogans. We demonstrate the highly conserved nature of this region among diverse Leptospira and show its utility as a phylogenetically informative region. Comparative analyses were performed by PCR using primer sets covering the whole locus. Correctly sized fragments were obtained by PCR from all L. interrogans strains tested for each primer set indicating that this locus is well conserved in this species. Few differences were detected in amplification profiles between different pathogenic species, indicating that the S10-spc-α locus is conserved among pathogenic Leptospira. In contrast, PCR analysis of this locus using DNA from saprophytic Leptospira species and species with an intermediate pathogenic capacity generated varied results. Sequence alignment of the S10-spc-α locus from two pathogenic species, L. interrogans and L. borgpetersenii, with the corresponding locus from the saprophyte L. biflexa serovar Patoc showed that genetic organization of this locus is well conserved within Leptospira. Multilocus sequence typing (MLST) of four conserved regions resulted in the construction of well-defined phylogenetic trees that help resolve questions about the interrelationships of pathogenic Leptospira. Based on the results of secY sequence analysis, we found that reliable species identification of pathogenic Leptospira is possible by comparative analysis of a 245 bp region commonly used as a target for diagnostic PCR for leptospirosis. Comparative analysis of Leptospira strains revealed that strain H6 previously classified as L. inadai actually belongs to the pathogenic species L. interrogans and that L. meyeri strain ICF phylogenetically co-localized with the pathogenic clusters. These findings demonstrate that the S10-spc-α locus is highly conserved throughout the genus and may be more useful in comparing evolution of the genus than loci studied previously.  相似文献   

16.

Background  

Leptospira is the causative genus of the disease, leptospirosis. Species identification of pathogenic Leptospira in the past was generally performed by either DNA-DNA hybridisation or 16s rRNA gene sequencing. Both methods have inherent disadvantages such as the need for radio-labelled isotopes or significant homology between species. A conventional and real-time PCR amplification and sequencing method was developed for an alternate gene target: DNA gyrase subunit B (gyrB). Phylogenetic comparisons were undertaken between pathogenic Leptospira 16srRNA and gyrB genes using clustering and minimum evolution analysis. In addition 50 unidentified Leptospira isolates were characterised by gyrB sequencing and compared with conventional 16s rRNA sequencing.  相似文献   

17.
Leptospirosis is caused by Leptospira, gram negative spirochaetes whose microbiologic identification is difficult due to their low rate of growth and metabolic activity. In Colombia leptospirosis diagnosis is achieved by serological techniques without unified criteria for what positive titers are. In this study we compared polymerase chain reaction (PCR) with microbiological culture and dark field microscopy for the diagnosis of leptospirosis. Microbiological and molecular techniques were performed on 83 samples of urine taken from bovines in the savannahs surrounding Bogotá in Colombia, with presumptive diagnosis of leptospirosis. 117 samples of urine taken from healthy bovines were used as negative controls. 83 samples were MAT positive with titers ≥ 1:50; 81 with titers ≥ 1:100; and 66 with titers ≥ 1:200. 36% of the total samples (73/200) were Leptospira positives by microbiological culture, 32% (63/200) by dark field microscopy and 37% (74/200) by PCR. Amplicons obtained by PCR were 482 base pair long which are Leptospira specific. An amplicon of 262 base pairs typical of pathogenic Leptospira was observed in 71 out of the 74 PCR positive samples. The remaining 3 samples showed a 240 base pair amplicon which is typical of saprophytic Leptospira. PCR as a Leptospira diagnosis technique was 100% sensitive and 99% specific in comparison to microbiological culture. Kappa value of 0.99 indicated an excellent concordance between these techniques. Sensitivity and specificity reported for MAT when compared to microbiological culture was 0.95 and 0.89 with a ≥ 1:50 cut off. PCR was a reliable method for the rapid and precise diagnosis of leptospirosis when compared to traditional techniques in our study. The research presented here will be helpful to improve diagnosis and control of leptospirosis in Colombia and other endemic countries.  相似文献   

18.
Analysis of gene expression requires sensitive, precise, and reproducible measurements for specific mRNA sequences. To avoid bias, real-time RT-PCR is referred to one or several internal control genes. Here, we sought to identify a gene to be used as normalizer by analyzing three functional distinct housekeeping genes (lipL41, flaB, and 16S rRNA) for their expression level and stability in temperature treated Leptospira cultures. Leptospira interrogans serovar Hardjo subtype Hardjoprajitno was cultured at 30°C for 7 days until a density of 106 cells/ml was reached and then shifted to physiological temperatures (37°C and 42°C) and to environmental temperatures (25°C and 30°C) during a 24 h period. cDNA was amplified by quantitative PCR using SYBR Green I technology and gene-specific primers for lipL41, flaB, and 16S rRNA. Expression stability (M) was assessed by geNorm and Normfinder v.18. 16S rRNA registered an average expression stability of M = 1.1816, followed by flaB (M = 1.682) and lipL41 (M = 1.763). 16S rRNA was identified as the most stable gene and can be used as a normalizer, as it showed greater expression stability than lipL41 and flaB in the four temperature treatments. Hence, comparisons of gene expression will have a higher sensitivity and specificity.  相似文献   

19.
The Herpesviridae includes at least eight viral species pathogenic for humans, responsible for a wide variety of clinical symptoms. The lack of an effective vaccine and the moderate to high toxicity of the available synthetic anti-herpes compounds emphasises the need for new inhibitors. Several Phyllanthus genus (Euphorbiaceae) members have been widely used in traditional medicine and their biological properties have been intensely studied. In this study we investigated the in vitro antiviral activity of the Cuban-endemic plant Phyllanthus orbicularis H.B.K. against Herpes simplex virus type 1 (HSV-1) and 2 (HSV-2) reference strains and clinical isolates with different sensitivities to acyclovir. The inhibitory activity on Human cytomegalovirus (HCMV) replication was also investigated. The selectivity indexes (SI) found for Ph. orbicularis aqueous extract ranged from 8.7 to 37.6. Studies on the antiviral mechanisms involved revealed that the drug acted at early stages of herpesvirus replication, possibly by producing a virucidal effect, although further inhibition of intracellular replication events could not be ruled out.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号