首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
PurposeThis study aimed to quantify the extent to which age was associated with joint position sense (JPS) of the asymptomatic shoulder as measured by joint position reproduction (JPR) tasks and assess the reproducibility of these tasks.Methods120 Asymptomatic participants aged 18–70 years each performed 10 JPR-tasks. Both contralateral and ipsilateral JPR-tasks were evaluated on accuracy of JPR under active- and passive conditions at two levels within the shoulder forward flexion trajectory. Each task was performed three times. In a subgroup of 40 participants, the reproducibility of JPR-tasks was assessed one week after initial measurement. Reproducibility of JPR-tasks was evaluated by both reliability (intra-class correlation coefficients (ICC’s)) and agreement (standard error of measurement (SEM)) measures.ResultsAge was not associated with increased JPR-errors for any of the contralateral or ipsilateral JPR-tasks. ICC’s ranged between 0.63 and 0.80 for contralateral JPR-tasks, and from 0.32 to 0.48 for ipsilateral tasks, except for one ipsilateral task where the reliability was similar to contralateral tasks (0.79). The SEM was comparable and small for all JPR-tasks, ranging between 1.1 and 2.1.ConclusionNo age-related decline in JPS of the asymptomatic shoulder was found, and good agreement between test and re-test measurements for all JPR-tasks as indicated by the small SEM.  相似文献   

2.
Unilateral cerebral palsy (uCP) causes upper limb movement disorders that impact on daily activities, especially in bimanual condition. However, a few studies have proposed bimanual tasks for 3D motion analysis. The aim of this study was to validate the new version of a child-friendly, 3D, bimanual protocol for the measurement of joint angles and movement quality variables. Twenty children with uCP and 20 typically developing children (TDC) performed the five-task protocol integrated into a game scenario. Each task specifically targeted one or two upper limb degrees of freedom. Joint angles, smoothness and trajectory straightness were calculated. Elbow extension, supination, wrist extension and adduction amplitudes were reduced; hand trajectories were less smooth and straight in children with uCP compared to TDC. Correlations between the performance-based score and kinematic variables were strong. High within and between-session reliability was found for most joint angle variables and lower reliability was found for smoothness and straightness in most tasks. The results therefore demonstrated the validity and reliability of the new protocol for the objective assessment of bimanual function in children with uCP. The evaluation of both joint angles and movement quality variables should increase understanding of pathological movement patterns and help clinicians to optimize treatment.ClinicalTrials.gov identifier: NCT03888443.  相似文献   

3.
Characterizing hyolaryngeal movement is important to dysphagia research. Prior methods require multiple measurements to obtain one kinematic measurement whereas coordinate mapping of hyolaryngeal mechanics using Modified Barium Swallow (MBS) uses one set of coordinates to calculate multiple variables of interest. For demonstration purposes, ten kinematic measurements were generated from one set of coordinates to determine differences in swallowing two different bolus types. Calculations of hyoid excursion against the vertebrae and mandible are correlated to determine the importance of axes of reference.To demonstrate coordinate mapping methodology, 40 MBS studies were randomly selected from a dataset of healthy normal subjects with no known swallowing impairment. A 5 ml thin-liquid bolus and a 5 ml pudding swallows were measured from each subject. Nine coordinates, mapping the cranial base, mandible, vertebrae and elements of the hyolaryngeal complex, were recorded at the frames of minimum and maximum hyolaryngeal excursion. Coordinates were mathematically converted into ten variables of hyolaryngeal mechanics.Inter-rater reliability was evaluated by Intraclass correlation coefficients (ICC). Two-tailed t-tests were used to evaluate differences in kinematics by bolus viscosity. Hyoid excursion measurements against different axes of reference were correlated. Inter-rater reliability among six raters for the 18 coordinates ranged from ICC = 0.90 - 0.97. A slate of ten kinematic measurements was compared by subject between the six raters. One outlier was rejected, and the mean of the remaining reliability scores was ICC = 0.91, 0.84 - 0.96, 95% CI. Two-tailed t-tests with Bonferroni corrections comparing ten kinematic variables (5 ml thin-liquid vs. 5 ml pudding swallows) showed statistically significant differences in hyoid excursion, superior laryngeal movement, and pharyngeal shortening (p < 0.005). Pearson correlations of hyoid excursion measurements from two different axes of reference were: r = 0.62, r2 = 0.38, (thin-liquid); r = 0.52, r2 = 0.27, (pudding).Obtaining landmark coordinates is a reliable method to generate multiple kinematic variables from video fluoroscopic images useful in dysphagia research.  相似文献   

4.
The purpose of the present study was to evaluate the influence of very low ambient illumination and complete darkness on the postural sway of young and elderly adults. Eighteen healthy young participants aged 23.8±1.5 years and 26 community-dwelling elderly aged 69.8±5.6 years were studied. Each participant performed four tests while standing on a force platform in the following conditions: in normal light (215 lx) with open eyes and with closed eyes, in very low illumination (0.25 lx) with open eyes, and in complete darkness with open eyes. The sequences of the tests in the altered visual conditions were determined by random blocs. Postural sway was assessed by means of the force platform measurements. The centre of pressure variables: the medio-lateral and antero-posterior path lengths, mean velocities, sway areas, and fractal dimensions were analysed. Very low illumination resulted in a statistically significant increase in postural sway in both the young and elderly groups compared to normal light, although the increase was significantly smaller than those observed in the eyes closed and complete darkness condition, and no significant effects of illumination on fractal dimensions were detected. The gains of the sways in the very low or no illumination conditions relative to the normal light condition were significantly larger in the group of young participants than in the group of elderly participants (up to 50% and 25%, respectively). However, the response patterns to changes in illumination were similar in the young and elderly participants, with the exception of the short-range fractal dimension of the medio-lateral sway. In conclusion, very low illumination resulted in increased postural sway compared to normal illumination; however, in the closed eye and complete darkness conditions, postural sway was significantly higher than in the very low illumination condition regardless of the age of the participants.  相似文献   

5.
The influence of light passive contact of the forearm with a pliable external object (flexible plate) on the maintenance of upright posture was studied in healthy subjects in several conditions, with the eyes closed and on immersion in a virtual visual environment (VVE). The visual environment was either stable or unstable as a result of a synphase (SP) or antiphase (AP) association between the environment and body sway. The posture maintenance analysis focused on estimating the amplitude and frequency characteristics of two elementary variables, which were calculated from the foot center of pressure (CoP) trajectories in the mediolateral and anteroposterior directions. The variables were trajectory of the vertical projection of the center of gravity (variable CG) and difference between the CoP and CG trajectories (variable CoP–CG). In both the absence and presence of passive tactile contact, the root mean square (RMS) values of the oscillation spectra of the two variables were the lowest in the stable visual environment and in the case of the antiphase association of the environment with body sways and the highest in the cases of the synphase association and standing with the eyes closed. Passive contact decreased body sways in both directions, and the RMSs of the spectra of the two variables decreased in all visual conditions. A greater decrease in RMS was observed for the CG variable. Body sways changed not only in amplitude, but also in frequency. Tactile contact increased the median frequencies (MFs) of the CG variable spectra calculated from the anteroposterior and mediolateral body sways. In contrast, a significant increase in MFs calculated for the CoP–CG variable was observed only for anteroposterior body sways. The results showed that passive contact of a forearm with a pliable external object, which does not provide a mechanical support for the subject, significantly improves the maintenance of the upright posture even in an unstable visual environment.  相似文献   

6.
The periodic sways of a group of ten Pinus contorta var. latifolia (lodgepole pine) trees with slender stems from the Two Creeks site (TW) and ten stout trees from the Chickadee site (CH) both in Alberta, Canada were quantified. Tree displacement at TW was measured during periods of consistent wind direction with three mean wind speeds (1.9, 4.6, and 5.4 m/s) and for two mean wind speeds at CH (5.0 and 7.9 m/s). Spectral analysis of sway displacement data showed a decrease in the frequency with wind speed for trees at TW, but remained unchanged for trees at CH. Significant correlations between tree sway frequency and amplitude during high winds at TW indicate a loss of sway energy concomitant with the occurrence of high collision intensity. These observations support the hypothesis that inter-crown collisions have an important influence on the sway frequency of trees and should be incorporated into efforts to model their sway dynamics. We also present a theoretical collision-damped sway model which supports our empirical findings.  相似文献   

7.

Background

Motion sickness is characterized by subjective symptoms that include dizziness and nausea. Studies have shown that subjective symptoms of motion sickness are preceded by differences in standing body sway between those who experience the symptoms and those who are not. Boxers often report dizziness and nausea immediately after bouts. We predicted that pre-bout standing body sway would differ between boxers who experienced post-bout motion sickness and those who did not.

Methodology/Principal Findings

We collected data on standing body sway before bouts. During measurement of body sway participants performed two visual tasks. In addition, we varied stance width (the distance between the heels). Postural testing was conducted separately before and after participants'' regular warm-up routines. After bouts, we collected self-reports of motion sickness incidence and symptoms. Results revealed that standing body sway was greater after warm-up than before warm-up, and that wider stance width was associated with reduced sway. Eight of 15 amateur boxers reported motion sickness after a bout. Two statistically significant interactions revealed that standing body sway before bouts differed between participants who reported post-bout motion sickness and those who did not.

Conclusions/Significance

The results suggest that susceptibility to motion sickness in boxers may be manifested in characteristic patterns of body sway. It may be possible to use pre-bout data on postural sway to predict susceptibility to post-bout motion sickness.  相似文献   

8.
The aim of this study was to provide detailed information on rationales, calculations, and results of common methods used to quantify reproducibility in plantar pressure variables. Recreational runners (N=95) performed multiple barefoot running trials in a laboratory setup, and pressure variables were analyzed in nine distinct subareas of the foot. Reproducibility was assessed by calculating intraclass correlation coefficients (ICC) and the root mean square error (RMSE). Intraclass correlation coefficients ranged from 0.58 to 0.99, depending on the respective variable and type of ICC. Root mean square errors ranged between 2.3 and 3.1% for relative force-time integrals, between 0.07 and 0.23 for maximum force (Fmax), and between 107 and 278 kPa for maximum pressure (Pmax), depending on the subarea of the foot. Force-time integral variables demonstrated the best within-subject reproducibility. Rear-foot data suffered from slightly increased measurement error and reduced reproducibility compared with the forefoot.  相似文献   

9.
Muscle-tendon moment arm magnitudes are essential variables for accurately calculating muscle forces from joint moments. Their measurement requires specialist knowledge and expensive resources. Research has shown that the patellar tendon moment arm length is related to leg anthropometry in children. Here, we asked whether the Achilles tendon moment arm (MA(AT)) can be accurately predicted in pre-pubescent children from surface anthropometry. Age, standing height, mass, foot length, inter-malleolar ankle width, antero-posterior ankle depth, tibial length, lower leg circumference, and distances from the calcaneus to the distal head of the 1st metatarsal and medial malleolus were determined in 49 pre-pubescent children. MA(AT) was calculated at three different ankle positions (neutral, 10° plantarflexion, and 10° dorsiflexion) by differentiating tendon excursion, measured via ultrasonography, with respect to ankle angle change using seven different differentiation techniques. Backwards stepwise regression analyses were performed to identify predictors of MA(AT.) When all variables were included, the regression analysis accounted for a maximum of 49% of MA(AT) variance at the neutral ankle angle when a third-order polynomial was used to differentiate tendon excursion with respect to ankle angle. For this condition, foot length and the distance between calcaneus and 1st metatarsal were the only significant predictors, accounting for 47% of the variance (p<0.05). The absolute error associated with this regression model was 3.8±4.4 mm, which would result in significant error (mean=14.5%) when estimating muscle forces from joint moments. We conclude that MA(AT) cannot be accurately predicted from anthropometric measures in children.  相似文献   

10.
The unilateral predominance of Parkinson’s disease (PD) symptoms suggests that balance control could be asymmetrical during static tasks. Although studies have shown that balance control asymmetries exist in patients with PD, these analyses were performed using only simple bipedal standing tasks. Challenging postural tasks, such as unipedal or tandem standing, could exacerbate balance control asymmetries. To address this, we studied the impact of challenging standing tasks on postural control asymmetry in patients with PD. Twenty patients with PD and twenty neurologically healthy individuals (control group) participated in this study. Participants performed three 30s trials for each postural task: bipedal, tandem adapted and unipedal standing. The center of pressure parameter was calculated for both limbs in each of these conditions, and the asymmetry between limbs was assessed using the symmetric index. A significant effect of condition was observed, with unipedal standing and tandem standing showing greater asymmetry than bipedal standing for the mediolateral root mean square (RMS) and area of sway parameters, respectively. In addition, a group*condition interaction indicated that, only for patients with PD, the unipedal condition showed greater asymmetry in the mediolateral RMS and area of sway than the bipedal condition and the tandem condition showed greater asymmetry in the area of sway than the bipedal condition. Patients with PD exhibited greater asymmetry while performing tasks requiring postural control when compared to neurologically healthy individuals, especially for challenging tasks such as tandem and unipedal standing.  相似文献   

11.
System-based methods have been applied to assess trunk motor control in people with and without back pain, although the reliability of these methods has yet to be established. Therefore, the goal of this study was to quantify within- and between-day reliability using systems-based methods involving position and force tracking and stabilization tasks. Ten healthy subjects performed six tasks, involving tracking and stabilizing of trunk angular position in the sagittal plane, and trunk flexion and extension force. Tracking tasks involved following a one-dimensional, time-varying input signal displayed on a screen by changing trunk position (position tracking) or trunk force (force tracking). Stabilization tasks involved maintaining a constant trunk position (position stabilization) or constant trunk force (force stabilization) while a sagittal plane disturbance input was applied to the pelvis using a robotic platform. Time and frequency domain assessments of error (root mean square and H2 norm, respectively) were computed for each task on two separate days. Intra-class correlation coefficients (ICC) for error and coefficients of multiple correlations (CMC) for frequency response curves were used to quantify reliability of each task. Reliability for all tasks was excellent (between-day ICC≥0.8 and CMC>0.75, within-day CMC>0.85). Therefore, position and force control tasks used to assess trunk motor control can be deemed reliable.  相似文献   

12.
Exergames provide a challenging opportunity for home-based training and evaluation of postural control in the elderly population, but affordable sensor technology and algorithms for assessment of whole body movement patterns in the home environment are yet to be developed. The aim of the present study was to evaluate the use of Kinect, a commonly available video game sensor, for capturing and analyzing whole body movement patterns. Healthy adults (n=20) played a weight shifting exergame under five different conditions with varying amplitudes and speed of sway movement, while 3D positions of ten body segments were recorded in the frontal plane using Kinect and a Vicon 3D camera system. Principal Component Analysis (PCA) was used to extract and compare movement patterns and the variance in individual body segment positions explained by these patterns. Using the identified patterns, balance outcome measures based on spatiotemporal sway characteristics were computed. The results showed that both Vicon and Kinect capture >90% variance of all body segment movements within three PCs. Kinect-derived movement patterns were found to explain variance in trunk movements accurately, yet explained variance in hand and foot segments was underestimated and overestimated respectively by as much as 30%. Differences between both systems with respect to balance outcome measures range 0.3–64.3%. The results imply that Kinect provides the unique possibility of quantifying balance ability while performing complex tasks in an exergame environment.  相似文献   

13.

Objectives

System identification techniques have the potential to assess the contribution of the underlying systems involved in standing balance by applying well-known disturbances. We investigated the reliability of standing balance parameters obtained with multivariate closed loop system identification techniques.

Methods

In twelve healthy elderly balance tests were performed twice a day during three days. Body sway was measured during two minutes of standing with eyes closed and the Balance test Room (BalRoom) was used to apply four disturbances simultaneously: two sensory disturbances, to the proprioceptive and the visual system, and two mechanical disturbances applied at the leg and trunk segment. Using system identification techniques, sensitivity functions of the sensory disturbances and the neuromuscular controller were estimated. Based on the generalizability theory (G theory), systematic errors and sources of variability were assessed using linear mixed models and reliability was assessed by computing indexes of dependability (ID), standard error of measurement (SEM) and minimal detectable change (MDC).

Results

A systematic error was found between the first and second trial in the sensitivity functions. No systematic error was found in the neuromuscular controller and body sway. The reliability of 15 of 25 parameters and body sway were moderate to excellent when the results of two trials on three days were averaged. To reach an excellent reliability on one day in 7 out of 25 parameters, it was predicted that at least seven trials must be averaged.

Conclusion

This study shows that system identification techniques are a promising method to assess the underlying systems involved in standing balance in elderly. However, most of the parameters do not appear to be reliable unless a large number of trials are collected across multiple days. To reach an excellent reliability in one third of the parameters, a training session for participants is needed and at least seven trials of two minutes must be performed on one day.  相似文献   

14.

Background

Currently, it is unknown whether the inverted pendulum model is applicable to stooping or crouching postures. Therefore, the aim of this study was to determine the degree of applicability of the inverted pendulum model to these postures, via examination of the relationship between the centre of mass (COM) acceleration and centre of pressure (COP)–COM difference.

Methods

Ten young adults held static standing, stooping and crouching postures, each for 20 s. For both the anterior–posterior (AP) and medio-lateral (ML) directions, the time-varying COM acceleration and the COP–COM were computed, and the relationship between these two variables was determined using Pearson?s correlation coefficients. Additionally, in both directions, the average absolute COM acceleration, average absolute COP–COM signal, and the inertial component (i.e., −I/Wh) were compared across postures.

Results

Pearson correlation coefficients revealed a significant negative relationship between the COM acceleration and COP–COM signal for all comparisons, regardless of the direction (p<0.001). While no effect of posture was observed in the AP direction (p=0.463), in the ML direction, the correlation coefficients for stooping were different (i.e., stronger) than standing (p=0.008). Regardless of direction, the average absolute COM acceleration for both the stooping and crouching postures was greater than standing (p<0.002).

Conclusion

The high correlations indicate that the inverted pendulum model is applicable to stooping and crouching postures. Due to their importance in completing activities of daily living, there is merit in determining what type of motor strategies are used to control such postures and whether these strategies change with age.  相似文献   

15.
This study aimed to determine the factor structure of the center of foot pressure (CFP) movement during static upright posture, and to objectively categorize and summarize parameters to evaluate CFP movement. The subjects were 220 healthy young males and females. The measurement of CFP was carried out 3 times with 1 min rest and the mean of trials 2 and 3 was used for the analysis. The measurement device was an Anima's stabilometer G5500. The data sampling frequency was 20 Hz. Thirty-four parameters with high reliability were selected from the following 6 domains except for the center position which is a fundamental attribute: distance, distribution of amplitude, area, velocity, power spectrum, and body sway vector. Factor analysis (principal factor method and promax rotation) was applied to a correlation matrix consisting of 32 parameters. Four factors abstracted were interpreted as follows; unit time sway, front and back sway, left and right sway and high frequency band of power spectrum. The reliability coefficient (ICC=0.89-0.95) and the congruence coefficient (phi=0.80-0.97) between factors abstracted from the original and the cross-validity groups were very high. It was considered that the CFP movement consists of the above 4 factors that evaluate the amount of body sway and can be synthetically evaluated by them.  相似文献   

16.
Despite the wide use of surface electromyography (EMG) to study pedalling movement, there is a paucity of data concerning the muscular activity during uphill cycling, notably in standing posture. The aim of this study was to investigate the muscular activity of eight lower limb muscles and four upper limb muscles across various laboratory pedalling exercises which simulated uphill cycling conditions. Ten trained cyclists rode at 80% of their maximal aerobic power on an inclined motorised treadmill (4%, 7% and 10%) with using two pedalling postures (seated and standing). Two additional rides were made in standing at 4% slope to test the effect of the change of the hand grip position (from brake levers to the drops of the handlebar), and the influence of the lateral sways of the bicycle. For this last goal, the bicycle was fixed on a stationary ergometer to prevent the lean of the bicycle side-to-side. EMG was recorded from M. gluteus maximus (GM), M. vastus medialis (VM), M. rectus femoris (RF), M. biceps femoris (BF), M. semimembranosus (SM), M. gastrocnemius medialis (GAS), M. soleus (SOL), M. tibialis anterior (TA), M. biceps brachii (BB), M. triceps brachii (TB), M. rectus abdominis (RA) and M. erector spinae (ES). Unlike the slope, the change of pedalling posture in uphill cycling had a significant effect on the EMG activity, except for the three muscles crossing the ankle's joint (GAS, SOL and TA). Intensity and duration of GM, VM, RF, BF, BB, TA, RA and ES activity were greater in standing while SM activity showed a slight decrease. In standing, global activity of upper limb was higher when the hand grip position was changed from brake level to the drops, but lower when the lateral sways of the bicycle were constrained. These results seem to be related to (1) the increase of the peak pedal force, (2) the change of the hip and knee joint moments, (3) the need to stabilize pelvic in reference with removing the saddle support, and (4) the shift of the mass centre forward.  相似文献   

17.
The use of array surface EMG recordings for detailed assessment of motor control and muscle properties is increasing. Motor unit action potentials (MUAPs) and their properties can be extracted from these recordings. The objective of this study was to determine the reproducibility of variables obtained from array surface EMG recordings of the shoulder and neck muscles during different functional tasks.Eight-channel linear arrays were placed on the upper trapezius (UT) and sternocleidomastoid (SCM) muscles of 12 healthy subjects. Subjects performed 3 tasks: shoulder abduction (90°), ironing (repetitively touching two ends of a horizontal bar in front of the subject), and 90° head turning. The protocol was performed twice while electrodes remained on and repeated a third time a week later.Three global and six MUAP-related variables were calculated. Intra-class correlation coefficients (ICC) were calculated to assess reliability and smallest detectable changes (SDC) were calculated to assess agreement.In general, the EMG variables showed high levels of reliability which suggests they may be effective for differentiating between-subjects. SDC was found to be considerably lower for the frequency-related (5–23%) than for the amplitude-related variables (15–78%), indicating that the frequency-related variables may be more suitable for investigating interventions which aim to modify motor control. There was no difference in reproducibility between global and MUAP-related variables, which justifies their complementary use.  相似文献   

18.
Preserving upright stance requires central integration of the sensory systems and appropriate motor output from the neuromuscular system to keep the centre of pressure (COP) within the base of support. Unilateral peripheral vestibular disorder (UPVD) causes diminished stance stability. The aim of this study was to determine the limits of stability and to examine the contribution of multiple sensory systems to upright standing in UPVD patients and healthy subjects. We hypothesized that closure of the eyes and Achilles tendon vibration during upright stance will augment the postural sway in UPVD patients more than in healthy subjects. Seventeen UPVD patients and 17 healthy subjects performed six tasks on a force plate: forwards and backwards leaning, to determine limits of stability, and upright standing with and without Achilles tendon vibration, each with eyes open and closed (with blackout glasses). The COP displacement of the patients was significantly greater in the vibration tasks than the controls and came closer to the posterior base of support boundary than the controls in all tasks. Achilles tendon vibration led to a distinctly more backward sway in both subject groups. Five of the patients could not complete the eyes closed with vibration task. Due to the greater reduction in stance stability when the proprioceptive, compared with the visual, sensory system was disturbed, we suggest that proprioception may be more important for maintaining upright stance than vision. UPVD patients, in particular, showed more difficulty in controlling postural stability in the posterior direction with visual and proprioceptive sensory disturbance.  相似文献   

19.
The purpose of the present study was to determine the day-to-day reliability in stride characteristics in rats during treadmill walking obtained with two-dimensional (2D) motion capture. Kinematics were recorded from 26 adult rats during walking at 8 m/min, 12 m/min and 16 m/min on two separate days. Stride length, stride time, contact time, swing time and hip, knee and ankle joint range of motion were extracted from 15 strides. The relative reliability was assessed using intra-class correlation coefficients (ICC(1,1)) and (ICC(3,1)). The absolute reliability was determined using measurement error (ME). Across walking speeds, the relative reliability ranged from fair to good (ICCs between 0.4 and 0.75). The ME was below 91 mm for strides lengths, below 55 ms for the temporal stride variables and below 6.4° for the joint angle range of motion. In general, the results indicated an acceptable day-to-day reliability of the gait pattern parameters observed in rats during treadmill walking. The results of the present study may serve as a reference material that can help future intervention studies on rat gait characteristics both with respect to the selection of outcome measures and in the interpretation of the results.  相似文献   

20.
Knowledge of three-dimensional scapular movements is essential to understand post-stroke shoulder pain. The goal of the present work is to determine the feasibility and the within and between session reliability of a movement protocol for three-dimensional scapular movement analysis in stroke patients with mild to moderate impairment, using an optoelectronic measurement system. Scapular kinematics of 10 stroke patients and 10 healthy controls was recorded on two occasions during active anteflexion and abduction from 0° to 60° and from 0° to 120°. All tasks were executed unilaterally and bilaterally. The protocol’s feasibility was first assessed, followed by within and between session reliability of scapular total range of motion (ROM), joint angles at start position and of angular waveforms. Additionally, measurement errors were calculated for all parameters. Results indicated that the protocol was generally feasible for this group of patients and assessors. Within session reliability was very good for all tasks. Between sessions, scapular angles at start position were measured reliably for most tasks, while scapular ROM was more reliable during the 120° tasks. In general, scapular angles showed higher reliability during anteflexion compared to abduction, especially for protraction. Scapular lateral rotations resulted in smallest measurement errors. This study indicates that scapular kinematics can be measured reliably and with precision within one measurement session. In case of multiple test sessions, further methodological optimization is required for this protocol to be suitable for clinical decision-making and evaluation of treatment efficacy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号