首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The condensation of D-fructose 6-phosphate or 1-phosphate with cyanide has been used to synthesize 2-carboxyhexitol 6-phosphates and 1-phosphates. The products have been characterized in terms of their action on ribulose bisphosphate carboxylase/oxygenase. The reaction of D-fructose 6-phosphate with cyanide is four times as fast (at 22°C) at pH 7.5 than at pH 11.5 and the primary products of condensation are more easily isolated by anion exchange chromatography. Two minor chromatographic peaks (I and II) for diastereomeric 2-carboxyhexitol 6-phosphates are isolated in addition to two major peaks, III and IV, which are lactones. The lactones are those of 2-C-carboxy-D-glucitol 6-phosphate (CG6P) in peak III and 2-C-carboxy-D-mannitol 6-phosphate (CM6P) in peak IV, as established after dephosphorylation by the relative rates of oxidation by periodate and by gas chromatographic retention times of the acetates. Analogous methodology has been used to synthesize the diastereomeric 2-carboxy-hexitol 1-phosphates (CG1P and CM1P) and their lactones from D-fructose 1-phosphate. The four carboxylates inhibit ribulose bisphosphate carboxylase/oxygenase from spinach or Pseudomonas oxalaticus in the following decreasing order of potency: CG6P, CM6P, CG1P, CM1P. The inhibition pattern suggests that the binding of the 5-phosphate moiety of the intermediate in the reaction catalyzed by ribulose bisphosphate carboxylase/oxygenase may be stronger by an order of magnitude than the binding of the 1-phosphate group.  相似文献   

2.
Dean C  Leech RM 《Plant physiology》1982,70(6):1605-1608
The quantitative relationships between ribulose bisphosphate carboxylase, nuclear ploidy, and plastid DNA content were examined in the nonisogenic polyploid series Triticum monococcum (2×), Triticum dicoccum (4×), and Triticum aestivum (6×). Ribulose bisphosphate carboxylase per mesophyll cell increased in step with each increase in nuclear ploidy so the ratios of ribulose bisphosphate carboxylase per mesophyll cell (picograms) to nuclear DNA per mesophyll cell (picograms) were almost identical in the three species. Ribulose bisphosphate carboxylase per plastid was 14.1, 14.7, and 16.8 picograms in the 2×, 4×, and 6× ploidy levels, respectively. Plastid area in these three species decreased with increasing nuclear ploidy so the concentration of ribulose bisphosphate carboxylase in the plastoids was 60% higher in the hexaploid compared to the diploid species. DNA levels per plastid were 64 and 67 femtograms for the diploid and tetraploid species, respectively, but were 40% less in the plastids of the hexaploid species. These relationships are discussed in terms of cellular and plastid control of ribulose bisphosphate carboxylase content.  相似文献   

3.
A point mutation in the plastome-encoded psaB gene of the mutant en:alba-1 of Antirrhinum majus L. was identified by an analysis of chloroplast DNA with a modified PCR-SSCP technique. Application of this technique is indicated when a gene or a group of genes is known in which the point mutation is located. Analysis of primary photosynthetic reactions in the yellowish white plastome mutant indicated a dysfunction of photosystem (PS) 1. The peak wavelength of PS I-dependent chlorophyll (Chl) fluorescence emission at 77 K was shifted by 4 nm to 730 nm, as compared to fluorescence from wild-type. There were no redox transients of the reaction center Chl P700 upon illumination of leaves with continuous far-red light or with rate-saturating flashes of white light. The PS I reaction center proteins PsaA and PsaB are not detectable by SDS-PAGE in mutant plastids. Hence, plastome encoded PS I genes were regarded as putative sites of mutation. In order to identify plastome mutations we developed a modified SSCP (single-strand conformation polymorphism) procedure using a large PCR fragment which can be cleaved with various restriction enzymes. When DNA from wild-type and en:alba-1 was submitted to SSCP analysis, a single stranded Hinf I fragment of a PCR product of the psaB gene showed differences in electrophoretic mobility. Sequence analysis revealed that the observed SSCP was caused by a single base substitution at codon 136 (TAT TAG) of the psaB gene. The point mutation produces a new stop codon that leads to a truncated PsaB protein. The results presented indicate that the mutation prevents the assembly of a functional PS I complex. The applicability to other plastome mutants of the new method for detection of point mutations is discussed.  相似文献   

4.
Both activities of ribulose bisphosphate carboxylase/oxygenase are dependent on carbamylation by CO2 of a specific lysyl epsilon-amino group (Lys-191 of the enzyme from Rhodospirillum rubrum). To examine the stringency of the requirement for this lysyl side chain, Lys-191 was converted to an aminoethylcysteinyl residue (net replacement of a gamma-methylene group by a sulfur atom) by a combination of site-directed mutagenesis and subsequent chemical modification. The purified Cys-191 mutant was totally devoid of both carboxylase and oxygenase activities. However, this mutant protein exhibited tight-binding of the transition-state analogue, 2-carboxyarabinitol bisphosphate, a property heretofore ascribed solely to the carbamylated form of the carboxylase. Treatment of the mutant protein with ethylene imine restored catalytic activity to 4-7% of the wild-type level. The carboxylase:oxygenase activity ratio of the aminoethylated protein was unperturbed relative to that of wild-type enzyme.  相似文献   

5.
The functions of His291, His295 and His324 at the active-site of recombinant A. nidulans ribulose-1,5-bisphosphate carboxylase/ oxygenase have been explored by site-directed mutagenesis. Replacement of His291 by K or R resulted in unassembled proteins, while its replacement by E, Q or N resulted in assembled but inactive proteins. These results are in accord with a metal ion-binding role of this residue in the activated ternary complex by analogy to x-ray crystallographic analyses of tobacco and spinach enzymes.His324 (H327 in spinach), which is located within bonding distance of the 5-phosphate of bound bi-substrate analog 2-carboxyarabinitol 1,5-bisphosphate in the crystal structures, has been substituted by A, K, R, Q and N. Again with the exception of the H324K and R variants, these changes resulted in detectable assembled protein. The mutant H324A protein exhibited no detectable carboxylase activity, whereas the H324Q and H324N changes resulted in purifiable holoenzyme with 2.0 and 0.1% of the recombinant wild-type specific carboxylase activity, respectively. These results are consistent with a phosphate binding role for this residue.The replacement of His295, which has been suggested to aid in phosphate binding, with Ala in the A. nidulans enzyme leads to a mutant with 5.8% of the recombinant wild-type carboxylase activity. All other mutations at this position resulted in unassembled proteins. Purified H295A and H324Q enzymes had elevated Km(RuBP) values and unchanged CO2/O2 specificity factors compared to recombinant wild-type.Abbreviations CABP D-2-carboxyarabinitol 1,5 bisphosphate - IPTG isopropyl-b-d-thiogalactopyranoside - L large subunit of rubisco - PAGE polyacrylamide gel electrophoresis - rubisco ribulose 1,5-bisphosphate carboxylase/oxygenase - RuBP ribulose-P2, ribulose 1,5 bisphosphate - S small subunit of rubisco - SDS sodium dodecyl sulfate - X-gal 5-bromo-4-chloro-3-indolyl-b-d-galactoside  相似文献   

6.
Rhizobium japonicum CJ1 was capable of growing using formate as the sole source of carbon and energy. During aerobic growth on formate a cytoplasmic NAD+-dependent formate dehydrogenase and ribulose bisphosphate carboxylase activity was demonstrated in cell-free extracts, but hydrogenase enzyme activity could not be detected. Under microaerobic growth conditions either formate or hydrogen metabolism could separately or together support ribulose bisphosphate carboxylase-dependent CO2 fixation. A number of R. japonicum strains defective in hydrogen uptake activity were shown to metabolise formate and induce ribulose bisphosphate carboxylase activity. The induction and regulation of ribulose bisphosphate carboxylase is discussed.Abbreviations hup hydrogen uptake - MOPS 3-(N-morpholino)-propanesulphonate - TSA tryptone soya agar - RuBP ribulose 1,5-bisphosphate - FDH formate dehydrogenase  相似文献   

7.
Ribulose 1,5-bisphosphate in the chloroplast has been suggested to regulate the activity of the ribulose bisphosphate carboxylase/oxygenase. To generate high levels of ribulose bisphosphate, isolated and intact spinach chloroplasts were illuminated in the absence of CO2. Under these conditions, chloroplasts generate internally up to 300 nanomoles ribulose 1,5-bisphosphate per milligram chlorophyll if O2 is also absent. This is equivalent to 12 millimolar ribulose bisphosphate, while the enzyme, ribulose bisphosphate carboxylase, offers up to 3.0 millimolar binding sites for the bisphosphate in the chloroplast stroma. During illumination, the ribulose bisphosphate carboxylase is deactivated, due mostly to the absence of CO2 required for activation. The rate of deactivation of the ribulose bisphosphate carboxylase was not affected by the chloroplast ribulose bisphosphate levels. Upon addition of CO2, the carboxylase in the chloroplast was completely reactivated. Of interest, addition of 3-phosphoglycerate stopped deactivation of the carboxylase in the chloroplast while ribulose bisphosphate accumulated. With intact chloroplasts in light, no correlation between deactivation of the carboxylase and ribulose bisphosphate levels could be shown.  相似文献   

8.
In free-living Rhizobium japonicum cultures, the stimulatory effect of CO2 on nitrogenase (acetylene reduction) activity was mediated through ribulose bisphosphate carboxylase activity. Two mutant strains (CJ5 and CJ6) of R. japonicum defective in CO2 fixation were isolated by mitomycin C treatment. No ribulose bisphosphate carboxylase activity could be detected in strain CJ6, but a low level of enzyme activity was present in strain CJ5. Mutant strain CJ5 also exhibited pleiotropic effects on carbon metabolism. The mutant strains possessed reduced levels of hydrogen uptake, formate dehydrogenase, and phosphoribulokinase activities, which indicated a regulatory relationship between these enzymes. The CO2-dependent stimulation of nitrogenase activity was not observed in the mutant strains. Both mutant strains nodulated soybean plants and fixed nitrogen at rates comparable to that of the wild-type strain.  相似文献   

9.
10.
Diverse approaches that include site-directed mutagenesis have indicated a catalytic role of Lys-329 of ribulosebisphosphate carboxylase/oxygenase from Rhodospirillum rubrum. To determine whether Lys-329 is required for the initial enolization of ribulose bisphosphate or for some subsequent step in the overall reaction pathway, the competence of position 329 mutant proteins (devoid of carboxylase activity) in catalyzing exchange of solvent protons with the C-3 proton of substrate has now been examined. Irrespective of the amino acid substitution for Lys-329, the mutant protein retains 2-6% of the wild-type activity in the proton exchange reaction. The complete stability of ribulose bisphosphate during the enolization catalyzed by mutant protein suggests that the major effect of Lys-329 is to facilitate the addition of gaseous substrates (CO2 or O2) to the enediol intermediate. The exchange reaction requires Mg2+, is CO2-dependent, and is inhibited by the transition-state analogue 2-carboxyarabinitol 1,5-bisphosphate. A mutant protein in which Lys-191, the site for carbamylation by CO2 in an obligatory activation step, is replaced by a cysteinyl residue totally lacks proton exchange activity. Barely detectable exchange activity (approximately 0.2% of wild-type) is displayed by the Lys-166----Cys mutant protein, consistent with the previously implicated role of Lys-166 in the deprotonation of ribulose bisphosphate. Retention of exchange activity by the Glu-48----Gln mutant protein, which is slightly active in overall carboxylation, demonstrates that active site Glu-48, like Lys-329, exerts its major effect at some step subsequent to the initial enolization.  相似文献   

11.
Oligonucleotide-directed mutagenesis of cloned Rhodospirillum rubrum ribulose bisphosphate carboxylase/oxygenase with a synthetic 13mer oligonucleotide primer was used to effect a change at Met-330 to Leu-330. The resultant enzyme was kinetically examined in some detail and the following changes were found. The Km(CO2) increased from 0.16 to 2.35 mM, the Km(ribulose bisphosphate) increased from 0.05 to 1.40 mM for the carboxylase reaction and by a similar amount for the oxygenase reaction. The Ki(O2) increased from 0.17 to 6.00 mM, but the ratio of carboxylase activity to oxygenase activity was scarcely affected by the change in amino acid. The binding of the transition state analogue 2-carboxyribitol 1,5-bisphosphate was reversible in the mutant and essentially irreversible in the wild type enzyme. Inhibition by fructose bisphosphate, competitive with ribulose bisphosphate, was slightly increased in the mutant enzyme. These data suggest that the change of the residue from methionine to leucine decreases the stability of the enediol reaction intermediate.  相似文献   

12.
Summary Oenothera plants homozygous for a recessive allele at the plastome mutator (pm) locus show non-Mendelian mutation frequencies that are 1000-fold higher than spontaneous levels. Chloroplast DNA (cpDNA) was isolated from nine mutants and two green isolates of the plastome mutator line. cpDNA restriction patterns were compared to cpDNA from a representative of the progenitor Johansen strain, and cpDNAs from all eleven plastome mutator lines show changes of fragment mobility due to deletion events at five discrete regions of the plastome. Most of the mutants have cpDNA restriction patterns identical to that of one of the green isolates from the plastome mutator line, and therefore, most of the differences in fragment length are probably not responsible for the mutant phenotypes. In contrast to the plastome mutator line, cpDNA from several populations of a closely related wild-type Oenothera species have few restriction fragment length polymorphisms. This suggests that both mutation frequencies and site-specific cpDNA deletions are elevated in the plastome mutator line, and implicates a defect in the cpDNA repair or replication machinery.  相似文献   

13.
Alice L. Givan 《Planta》1979,144(3):271-276
The ac-20 mutant strain of the unicellular green alga, Chlamydomonas reinhardii, lacks both chloroplast ribosomes and ribulose bisphosphate carboxylase activity when grown on organic medium. Under these conditions, the cells do not posses pools of either the large or small subunit of this enzyme. When transferred to inorganic medium, the carboxylase activity recovers. During this recovery, de novo synthesis of both subunits occurs. Synthesis of both subunits is inhibited by chloramphenicol even when possible free subunit pools rather than just the subunits incorporated into whole enzyme are examined.Abbreviations RubP ribulose bisphosphate - CAP D-threochloramphenicol - CHI cycloheximide - PPO 2,5-diphenyloxazole - POPOP 1,4-bis[2(5-phenyloxazolyl)]-benzene - SDS sodium dodecyl sulfate  相似文献   

14.
The unusual chemical properties of active-site Lys-329 of ribulose bisphosphate carboxylase/oxygenase from Rhodospirillum rubrum have suggested that this residue is required for catalysis. To test this postulate Lys-329 was replaced with glycine, serine, alanine, cysteine, arginine, glutamic acid or glutamine by site-directed mutagenesis. These single amino acid substitutions do not appear to induce major conformational changes because (i) intersubunit interactions are unperturbed in that the purified mutant proteins are stable dimers like the wild-type enzyme and (ii) intrasubunit folding is normal in that the mutant proteins bind the competitive inhibitor 6-phosphogluconate with an affinity similar to that of wild-type enzyme. In contrast, all of the mutant proteins are severely deficient in carboxylase activity (less than 0.01% of wild-type) and are unable to form the exchange-inert complex, characteristic of the wild-type enzyme, with the transition-state analogue carboxyarabinitol bisphosphate. These results underscore the stringency of the requirement for a lysyl side-chain at position 329 and imply that Lys-329 is involved in catalysis, perhaps stabilizing a transition state in the overall reaction pathway.  相似文献   

15.
Isolated wheat chloroplasts were pre-incubated in the dark inthe presence of various concentrations of inorganic phosphatewith or without carbon dioxide, oxaloacetate, glycerate, and3-phosphoglycerate. The effect of subsequent illumination onphotosynthetic oxygen evolution, ribulose bisphosphate carboxylaseactivity, ATP content, and ribulose bisphosphate content wasinvestigated. Inorganic phosphate had little effect on ribulosebisphosphate carboxylase activity in darkness or during theinitial phase of illumination, but it prevented the declinein activity that occurred during later stages of illumination,when photoreduction of CO2 was decreasing in rate. Additionof inorganic phosphate to chloroplasts illuminated without phosphaterestored the ribulose bisphosphate carboxylase activity, increasedthe ATP, and decreased the ribulose bisphosphate in the organelles.The responses to CO2, oxaloacetate, glycerate, and 3-phosphoglyceratesuggest that the decreased activity of ribulose bisphosphatecarboxylase during photosynthesis results from ATP consumption. Purified ribulose bisphosphate carboxylase was activated byinorganic phosphate, but this activation did not occur in thepresence of ATP. ATP inhibited ribulose bisphosphate carboxylasewhen it was present in combination with various photosyntheticmetabolites. Inactivation of ribulose bisphosphate carboxylase in chloroplasts,illuminated in the absence of inorganic phosphate, is not dueto lack of activation by inorganic phosphate or ATP. It mayresult from decreased stromal pH. Key words: Ribulose bisphosphate carboxylase, Chloroplasts, Wheat, Phosphate, ATP  相似文献   

16.
A point mutation in the plastome-encoded psaB gene of the mutant en:alba-1 of Antirrhinum majus L. was identified by an analysis of chloroplast DNA with a modified PCR-SSCP technique. Application of this technique is indicated when a gene or a group of genes is known in which the point mutation is located. Analysis of primary photosynthetic reactions in the yellowish white plastome mutant indicated a dysfunction of photosystem (PS) 1. The peak wavelength of PS I-dependent chlorophyll (Chl) fluorescence emission at 77 K was shifted by 4 nm to 730 nm, as compared to fluorescence from wild-type. There were no redox transients of the reaction center Chl P700 upon illumination of leaves with continuous far-red light or with rate-saturating flashes of white light. The PS I reaction center proteins PsaA and PsaB are not detectable by SDS-PAGE in mutant plastids. Hence, plastome encoded PS I genes were regarded as putative sites of mutation. In order to identify plastome mutations we developed a modified SSCP (single-strand conformation polymorphism) procedure using a large PCR fragment which can be cleaved with various restriction enzymes. When DNA from wild-type and en:alba-1 was submitted to SSCP analysis, a single stranded Hinf I fragment of a PCR product of the psaB gene showed differences in electrophoretic mobility. Sequence analysis revealed that the observed SSCP was caused by a single base substitution at codon 136 (TAT → TAG) of the psaB gene. The point mutation produces a new stop codon that leads to a truncated PsaB protein. The results presented indicate that the mutation prevents the assembly of a functional PS I complex. The applicability to other plastome mutants of the new method for detection of point mutations is discussed.  相似文献   

17.
With the use of spinach chloroplast RNAs as probes, we have mapped the rRNA genes and a number of protein genes on the chloroplast DNA (cpDNA) of the duckweed Spirodela oligorhiz. For a more precise mapping of these genes we had to extend the previously determined [14] restriction endonuclease map of the duckweed cpDNA with the cleavage sites for the restriction endonucleases Sma I and Bgl I. The physical map indicates that duckweed cpDNA contains two inverted repeat regions (18 Md) separated by two single copy regions with a size of 19 Md and 67 Md, respectively.By hybridization with spinach chloroplast rRNAs it could be shown that each of the two repeat units contains one set of rRNA genes in the order: 16S rRNA gene — spacer — 23S rRNA gene — 5S rRNA gene.A spinach chloroplast mRNA preparation (14S RNA), which is predominantly translated into a 32 Kilodalton (Kd) protein [9], hybridized strongly to a DNA fragment in the large single copy region, immediately outside one of the inverted repeats. With another mRNA preparation (18S), which mainly directs the in vitro synthesis of a 55 Kd protein [9], hybridization was observed with two DNA regions, located between 211° and 233° and between 137° and 170°, respectively. Finally, with a spinach chloroplast genomic probe for the large subunit of ribulose 1,5-bisphosphate carboxylase [17], hybridization was found with a DNA fragment located between 137° and 158° on the map.  相似文献   

18.
Irradiation of buoyant, gas-vacuolate cells of the cyanobacteriumMicrocystis aeruginosa by 5·104 Wm–2 of blue light for 1 h caused a 5% loss of extractable ribulose bisphosphate carboxylase activity compared to dark and red-light controls. Ribulose bisphosphate carboxylase activity was unaffected by blue light in similar experiments conducted with cells containing collapsed gas vacuoles.Abbreviations RuBP Ribulose 1,5-bis-phosphate carboxylase  相似文献   

19.
In spite of only slightly subnormal pigment contents, two plastome mutants of Oenothera (Vα, Iσ) were practically incapable of photosynthetic CO2 fixation and another one exhibited considerably reduced photosynthesis (IVβ). While other photosynthetic enzymes were present as far as investigated, ribulose-1,5-bisphosphate carboxylase (EC 4.1.1.39) activity was very low or missing altogether. As shown by gel electrophoresis, mutant IVβ contained some, though little, fraction I protein. In the other two mutants fraction I protein could not be detected. Also, neither the small nor the large subunit of ribulose-1,5-bisphosphate carboxylase could be found in these mutants. In immunodiffusion experiments with a monospecific antiserum against rye ribulose-1,5-bisphosphate carboxylase, only extracts from wild-type Oenothera produced visible precipitation lines. Still, the presence of very low levels of immunochemically reactive antigen was indicated for all three mutants. The highest level was observed in mutant IVβ. The behaviour of the mutant extracts suggested that the antigens of mutant and wild type leaves reacting with the antiserum were not identical. All mutants appeared to have a coupled electron transport system as shown by ATP measurements, light scattering and 515 nm absorption changes. Linear electron transport was possible in the mutants. Still, the photoresponse of cytochrome f and fluorescence measurements suggested altered electron transport properties in the mutants. These are interpreted to be secondary lesions of the photosynthetic apparatus caused by primary deficiency in ribulose-1,5-bisphosphate carboxylase activity. From the absence in two mutants (Vα, Iσ) of the small subunit of ribulose-1,5-bisphosphate carboxylase, which is known to be coded for by nuclear DNA and to be synthesized on cytoplasmic ribosomes, it appears that the genetic system of the plastids is capable of interfering with the genome-controlled synthesis of plastid components.  相似文献   

20.
The gene for the large subunit of ribulose bisphosphate carboxylase/oxygenase (rbcL) has been mapped on the Oenothera hookeri plastid chromosome. It is located close to the gene for the herbicide-binding “32 kd” protein of the photosystem II reaction center (psbA), at a position different from that found in the ancestral angiosperm type of plastid chromosomes, due to an inversion in the large single-copy region. The gene codes for a polypeptide of 475 amino acid residues corresponding to a molecular mass of 52.7 kd. The deduced amino acid composition diverges by 4.8% from the amino acid sequence of the spinach protein and by 8.2% from that of maize. The corresponding nucleotide sequences differ by 8.5 % and 15 % from each other. The rbcL gene of the RuBPcase/oase-deficient Oenothera plastome mutant sigma contains a TTAAC deletion at amino acid residues 270/271 which introduces a frame shift and an amber stop codon seven triplets later. This lesion which probably arose by slipped mispairing is consistent with the previously observed, virtually full-length mRNA that is decoded into a truncated large subunit polypeptide of approximately 30 kd in vitro and in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号