首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hemodynamic forces play critical roles in vascular pathologies such as atherosclerosis, aneurysms, and stenosis. However, detailed relationships between the specific in vivo hemodynamic microenvironment and vascular responses leading to the triggering or exacerbation of pathological remodeling of the vessel remain elusive. We have developed a hemodynamics-biology co-mapping technique that enables in situ correlation between the in vivo blood flow field and vascular changes secondary to hemodynamic insult. The hemodynamics profile is obtained from computational fluid dynamics simulation within the vascular geometry reconstructed from three-dimensional in vivo images, whereas the vascular response is obtained from histology or immunohistochemistry on harvested vascular tissue. The hemodynamics field is virtually sectioned in the histological slicing planes and digitally co-mapped with the histological images, thereby enabling correlation of the specific local vascular responses with the inciting hemodynamic stresses. We demonstrate application of this technique to rabbit basilar terminus subjected to elevated flow. Morphological changes at the basilar terminus 5 days after the flow increase were co-mapped with the initial wall shear stress and wall shear stress gradient distributions, from which localization of destructive remodeling in a specific hemodynamic zone was noticed. This method paves the way for further investigations to determine the connection between in vivo mechanical stimuli and biological responses, such as initiation of aneurysmal remodeling.  相似文献   

2.
We investigated the effect of indomethacin on responses to isoproterenol, bradykinin and nitroglycerin in the feline pulmonary vascular bed when pulmonary vascular resistance was actively increased by infusion of U46619 in order to determine if vasodilator responses to these agents were dependent on the integrity of the cyclooxygenase pathway. Since pulmonary blood flow left atrial pressure were held constant, changes in lobar arterial pressure directly reflect changes in lobar vascular resistance. Intralobar injections of isoproterenol, bradykinin, and nitroglycerin decreased lobar arterial pressure in a dose-related manner. Pulmonary vasodilator responses to the lower and midrange doses of bradykinin and nitrogylcerin were unchanged in the presence of indomethacin whereas pulmonary responses to the highest doses of nitroglycerin and bradykinin were increased by cyclooxygenase blockade. In contrast, pulmonary vasodilator responses to isoproterenol were significantly attenuated in the presence of propranolol, whereas pulmonary vasodilator responses to bradykinin and nitroglycerin were unchanged after beta blockade. The present data indicate that isoproterenol, bladykinin, and nitroglycerin have significant vasodilator activity in the cat when pulmonary vascular tone is actively increased. These data suggest that the formation of vasodilator cyclooxygenase products such as PGI2 do not mediate vasodilator responses to isoproterenol, bradykinin, and nitroglycerin in the feline pulmonary vascular bed.  相似文献   

3.
We investigated the effect of indomethacin on responses to isoproterenol, bradykinin and nitroglycerin in the feline pulmonary vascular bed when pulmonary vascular resistance was actively increased by infusion of U46619 in order to determine if vasodilator responses to these agents were dependent on the integrity of the cyclooxygenase pathway. Since pulmonary blood flow and left atrial pressure were held constant, changes in lobar arterial pressure directly reflect changes in lobar vascular resistance. Intralobar injections of isoproterenol, bradykinin, and nitroglycerin decreased lobar arterial pressure in a dose-related manner. Pulmonary vasodilator responses to the lower and midrange doses of bradykinin and nitroglycerin were unchanged in the presence of indomethacin whereas pulmonary responses to the highest doses of nitroglycerin and bradykinin were increased by cyclooxygenase blockade. In contrast, pulmonary vasodilator responses to isoproterenol were significantly attenuated in the presence of propranolol, whereas pulmonary vasodilator responses to bradykinin and nitroglycerin were unchanged after beta blockade. The present data indicate that isoproterenol, bradykinin, and nitroglycerin have significant vasodilator activity in the cat when pulmonary vascular tone is actively increased. These data suggest that the formation of vasodilator cyclooxygenase products such as PGI2 do not mediate vasodilator responses to isoproterenol, bradykinin, and nitroglycerin in the feline pulmonary vascular bed.  相似文献   

4.
Responses to human calcitonin gene-related peptide (hCGRP) and human adrenomedullin (hADM) hAmylin were investigated in isolated mesenteric resistance arteries from the rat. The results of the present investigation show that hCGRP, hAmylin, and hADM induce dose-related vasodilator responses in isolated resistance arteries from the rat mesenteric vascular bed. Vasodilator responses to hCGRP and hAmylin were not altered after denuding the vascular endothelium, after administration of the nitric oxide synthase inhibitor L-NA, or after administration of the soluble guanylate cyclase inhibitor ODQ, suggesting that vasodilator responses to hCGRP and hAmylin are not mediated by the release of nitric oxide from the vascular endothelium and the subsequent increase in cGMP. Vasodilator responses to hCGRP, hAmylin, and hADM were not altered by the vascular selective K+(ATP) channel antagonist U-37883A. The role of the CGRP1 receptor was investigated and responses to hCGRP and hAmylin, but not hADM, were significantly reduced following administration of hCGRP-(8-37). Moreover, vasodilator responses to hCGRP and hAmylin, but not hADM, were significantly reduced by hAmylin-(8-37), suggesting that an hAmylin-(8-37)-sensitive receptor mediates responses to hCGRP and hAmylin in the rat mesenteric artery. These data suggest that hCGRP and hAmylin have direct vasodilator effects in the isolated mesenteric resistance artery that are mediated by hAmylin-(8-37)- and hCGRP-(8-37)-sensitive receptors.  相似文献   

5.
Neurovascular responses to mental stress have been linked to several cardiovascular diseases, including hypertension. Mean arterial pressure (MAP), muscle sympathetic nerve activity (MSNA), and forearm vascular responses to mental stress are well documented in normotensive (NT) subjects, but responses in prehypertensive (PHT) subjects remain unclear. We tested the hypothesis that PHT would elicit a more dramatic increase of MAP during mental stress via augmented MSNA and blunted forearm vascular conductance (FVC). We examined 17 PHT (systolic 120-139 and/or diastolic 80-89 mmHg; 22 ± 1 yr) and 18 NT (systolic < 120 and diastolic < 80 mmHg; 23 ± 2 yr) subjects. Heart rate, MAP, MSNA, FVC, and calf vascular conductance were measured during 5 min of baseline and 5 min of mental stress (mental arithmetic). Mental stress increased MAP and FVC in both groups, but the increases in MAP were augmented (Δ 10 ± 1 vs. Δ14 ± 1 mmHg; P < 0.05), and the increases in FVC were blunted (Δ95 ± 14 vs. Δ37 ± 8%; P < 0.001) in PHT subjects. Mental stress elicited similar increases in MSNA (Δ7 ± 2 vs. Δ6 ± 2 bursts/min), heart rate (Δ21 ± 3 vs. Δ18 ± 3 beats/min), and calf vascular conductance (Δ29 ± 10 vs. Δ19 ± 5%) in NT and PHT subjects, respectively. In conclusion, mental stress elicits an augmented pressor response in PHT subjects. This augmentation appears to be associated with altered forearm vascular, but not MSNA, responses to mental stress.  相似文献   

6.
Pulmonary vasodilator responses to vasoactive intestinal peptide in the cat   总被引:1,自引:0,他引:1  
We investigated the effects of vasoactive intestinal peptide (VIP) in the feline pulmonary vascular bed under conditions of controlled pulmonary blood flow when pulmonary vascular tone was at base-line levels and when vascular resistance was elevated. Under base-line conditions, VIP caused small but significant reductions in lobar arterial pressure without affecting left atrial pressure. Decreases in lobar arterial pressure in response to VIP were greater and were dose related when lobar vascular resistance was increased by intralobar infusion of U 46619, a stable prostaglandin endoperoxide analogue. Acetylcholine and isoproterenol also caused significant decreases in lobar arterial pressure under base-line conditions, and responses to these agents were enhanced when lobar vascular tone was elevated. Moreover, when doses of these agents are expressed in nanomoles, acetylcholine and isoproterenol were more potent than VIP in decreasing lobar arterial pressure. Responses to VIP were longer in duration with a slower onset than were responses to acetylcholine or isoproterenol. Pulmonary vasodilator responses to VIP were unchanged by indomethacin, atropine, or propranolol. The present data demonstrate that VIP has vasodilator activity in the pulmonary vascular bed and that responses are dependent on the existing level of vasoconstrictor tone. These studies indicate that this peptide is less potent than acetylcholine or isoproterenol in dilating the feline pulmonary vascular bed and that responses to VIP are not dependent on a muscarinic or beta-adrenergic mechanism or release of a dilator prostaglandin.  相似文献   

7.
Cutaneous vascular responses to isometric handgrip exercise   总被引:9,自引:0,他引:9  
Cutaneous vascular responses to dynamic exercise have been well characterized, but it is not known whether that response pattern applies to isometric handgrip exercise. We examined cutaneous vascular responses to isometric handgrip and dynamic leg exercise in five supine men. Skin blood flow was measured by laser-Doppler velocimetry and expressed as laser-Doppler flow (LDF). Arterial blood pressure was measured noninvasively once each minute. Cutaneous vascular conductance (CVC) was calculated as LDF/mean arterial pressure. LDF and CVC responses were measured at the forearm and chest during two 3-min periods of isometric handgrip at 30% of maximum voluntary contraction and expressed as percent changes from the preexercise levels. The skin was normothermic (32 degrees C) for the first period of handgrip and was locally warmed to 39 degrees C for the second handgrip. Finally, responses were observed during 5 min of dynamic two-leg bicycle exercise (150-175 W) at a local skin temperature of 39 degrees C. Arm LDF increased 24.5 +/- 18.9% during isometric handgrip in normothermia and 64.8 +/- 14.1% during isometric handgrip at 39 degrees C (P less than 0.05). Arm CVC did not significantly change at 32 degrees C but significantly increased 18.1 +/- 6.5% during isometric handgrip at 39 degrees C (P less than 0.05). Arm LDF decreased 12.2 +/- 7.9% during dynamic exercise at 39 degrees C, whereas arm CVC fell by 35.3 +/- 4.6% (in each case P less than 0.05). Chest LDF and CVC showed similar responses.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
A growing number of studies support an important contribution of astrocytes to neurovascular coupling, i.e., the phenomenon by which variations in neuronal activity trigger localized changes in blood flow that serve to match the metabolic demands of neurons. However, since both constriction and dilations have been observed in brain parenchymal arterioles upon astrocyte stimulation, the specific influences of these cells on the vasculature remain unclear. Using acute brain slices, we present evidence showing that the specific degree of constriction of rat cortical arterioles (vascular tone) is a key determinant of the magnitude and polarity of the diameter changes elicited by signals associated with neurovascular coupling. Thus elevation of extracellular K+ concentration, stimulation of metabotropic glutamate receptors (mGluR), or 11,12-epoxyeicosatrienoic acid application all elicited vascular responses that were affected by the particular resting arteriolar tone. Interestingly, the data suggest that the extent and/or polarity of the vascular responses are influenced by a delimited set point centered between 30 and 40% tone. In addition, we report that distinct, tone-dependent effects on arteriolar diameter occur upon stimulation of mGluR during inhibition of enzymes of the arachidonic acid pathway [i.e., phospholipase A2, cytochrome P-450 (CYP) omega-hydroxylase, CYP epoxygenase, and cycloxygenase-1]. Our findings may reconcile previous evidence in which direct astrocytic stimulation elicited either vasoconstrictions or vasodilations and also suggest the novel concept that, in addition to participating in functional hyperemia, astrocyte-derived signals play a role in adjusting vascular tone to a range where dilator responses are optimal.  相似文献   

9.
The angiopoietins Ang-1 and Ang-2 have been identified as ligands of the receptor tyrosine kinase Tie-2 (refs. 1,2). Paracrine Ang-1-mediated activation of Tie-2 acts as a regulator of vessel maturation and vascular quiescence. In turn, the antagonistic ligand Ang-2 acts by an autocrine mechanism and is stored in endothelial Weibel-Palade bodies from where it can be rapidly released upon stimulation. The rapid release of Ang-2 implies functions of the angiopoietin-Tie system beyond its established role during vascular morphogenesis as a regulator of rapid vascular responses. Here we show that mice deficient in Ang-2 (encoded by the gene Angpt2) cannot elicit an inflammatory response in thioglycollate-induced or Staphylococcus aureus-induced peritonitis, or in the dorsal skinfold chamber model. Recombinant Ang-2 restores the inflammation defect in Angpt2(-/-) mice. Intravital microscopy showed normal TNF-alpha-induced leukocyte rolling in the vasculature of Angpt2(-/-)mice, but rolling cells did not firmly adhere to activated endothelium. Cellular experiments showed that Ang-2 promotes adhesion by sensitizing endothelial cells toward TNF-alpha and modulating TNF-alpha-induced expression of endothelial cell adhesion molecules. Together, these findings identify Ang-2 as an autocrine regulator of endothelial cell inflammatory responses. Ang-2 thereby acts as a switch of vascular responsiveness exerting a permissive role for the activities of proinflammatory cytokines.  相似文献   

10.
Biodegradable polymers including poly(l-lactic acid) (PLLA) have been used to develop cardiovascular prostheses such as vascular grafts and stents. However, implant-associated thrombosis, inflammation, and restenosis are still major obstacles for the utility of these devices. The lack of an endothelial cell (EC) lining (endothelialization) on the implants and the responses of the immune systems toward the implants have been associated with these complications. In our research strategy, we have combined the drug delivery principle with the strategies of tissue engineering, the controlled release of anti-inflammation drugs and enhanced endothelialization, to reduce the implant-associated adverse responses. We first integrated curcumin, an anti-inflammatory drug and anti-smooth muscle cell (SMC) proliferative drug, with PLLA. This curcumin-loaded PLLA material was then modified using adsorptive coating of adhesive proteins such as fibronectin, collagen-I, vitronectin, laminin, and matrigel to improve the endothelial cell (EC) adhesion and proliferation, and ECs were seeded on top of these modified surfaces. Our results showed steady drug release kinetics over the period of 50 days from curcumin-loaded PLLA materials. Additionally, integration of curcumin in PLLA increased the roughness of the scaffold at the nanometric scale using an atomic force microscopic analysis. Moreover, coating with fibronectin on curcumin-loaded PLLA surfaces gave the highest EC adhesion and proliferation compared to other adhesive proteins using PicoGreen DNA assays. The ability of our strategy to release the curcumin for producing anti-inflammation and anti-proliferation responses and to improve EC adhesion and growth after EC seeding suggests this strategy may reduce implant-associated adverse responses and be a better approach for vascular tissue engineering applications.  相似文献   

11.
It has been known for many years that sex hormones modulate vasodilator responses of arteries supplying the uterus with blood. Recently, it has been shown that sex hormones such as estrogen modulate vasomotor responses of other arteries, including coronary arteries. It is thought that modulation of vasodilator and constrictor responses of coronary arteries may be one mechanism by which estrogen affects the risk of coronary heart disease. Although several studies have examined the effects (and potential mechanisms) of estrogen on vasodilator responses of nonatherosclerotic arteries, few have focused on estrogen's effects on atherosclerotic coronary arteries. In studies of ovariectomized atherosclerotic female cynomolgus monkeys, both long-term (2 years) and short-term (20 min) estradiol treatment augments dilator responses to acetylcholine, but not nitroglycerin. Presumably, this indicates an effect of estradiol on endothelium-mediated dilator responses of coronary arteries. Addition of the progestin medroxyprogesterone acetate diminishes the beneficial effect of conjugated equine estrogens on these dilator responses. This is significant because a progestin is usually added to estrogen replacement to reduce the risk of endometrial and breast cancer associated with unopposed estrogen therapy. However, it would seem that not all progestins act similarly on vascular reactivity. Studies in monkeys indicate that addition of progesterone or the progestin medroxyprogesterone acetate does not diminish the beneficial effects of estrogen on coronary dilator responses. Thus it would appear that different estrogen/progestin combinations may affect vascular reactivity in different manners, There is also an effort being made to examine the potential of different kinds of estrogens on cardiovascular risk. Studies in monkeys indicate that one of the estrogens found in conjugated equine estrogens (17 alpha-dihydroequilenin) has estrogen effects on vascular reactivity without having detrimental effects on uterine pathology. The isoflavones “plant estrogens” found in soy protein also have estrogenic effects on vascular reactivity and inhibition.  相似文献   

12.
Peroxynitrite (PN) worsens pathological conditions associated with oxidative stress. However, beneficial effects have also been reported. PN has been shown to demonstrate vasodilator as well as vasoconstrictor properties that are dependent upon the experimental conditions and the vascular bed studied. PN-induced vascular smooth muscle relaxation may involve the formation of nitric oxide (NO) donors. The present results show that PN has significant vasodilator activity in the pulmonary and systemic vascular beds, and that responses to PN were not attenuated by L-penicillamine (L-PEN), a PN scavenger, whereas responses to sodium nitroprusside (SNP) were decreased. PN had a small inhibitory effect on decreases in arterial pressure in response to the NO donors diethylammonium (Z)-1-(N,N-diethylamino)diazen-1-ium-1,2-diolate (DEA/NO) and S-nitrosoglutathione (GSNO). PN partially reversed hypoxic pulmonary vasoconstriction. PN responses were attenuated by the soluble guanylate cyclase (sGC) inhibitor, 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) and responses to PN and the PN precursor, 3-morpholinosydnonimine (SIN-1), were different. These data show that PN has potent pulmonary vasodilator activity in the rat, and provide evidence that a PN interaction with S-nitrosothiols is not the major mechanism mediating the response. These data suggest that responses to PN are mediated by the activation of sGC, and that PN has a small inhibitory effect on NO responses.  相似文献   

13.
Cocaine or air jet stress evokes pressor responses due to either a large increase in systemic vascular resistance (vascular responders) or small increases in both cardiac output and vascular resistance (mixed responders) in conscious rats. Repeated cocaine administration results in elevated arterial pressure in vascular responders but not in mixed responders. The present study examined the hypothesis that the pattern of cardiovascular responses to an unconditioned stimulus (UCS; air jet) is related to responses to a conditioned stimulus (CS; tone followed by brief foot shock) in individual rats. Our data demonstrate that presentation of the UCS produced variable cardiac output responses that correlated with responses to the CS (n = 60). We also determined whether individual cardiovascular response patterns to acute stress correlated with predisposition to a sustained stress-induced elevation in arterial pressure. Rats were exposed to three different stressors presented one per day successively for 4 wk and during a poststress period of 3 wk while arterial pressure was recorded periodically. Mean arterial pressure was elevated in all rats during chronic stress but, during the poststress period, remained at significantly higher levels in vascular responders but not mixed responders. Therefore, we conclude that acute behavioral stress to a conditioned stimulus elicits variable hemodynamic responses that predict the predisposition to a sustained stress-induced elevation in arterial pressure.  相似文献   

14.
Induced muscular contraction in anesthetized animals results in significant hemodynamic and regional blood flow (RBF) changes. Although reflex cardiovascular responses initiated in contracting muscle have been firmly established, little is known about the effects of age on these responses. Because other reflex responses that involve sympathetic activation appear to be attenuated with age, it was hypothesized that reflex efferent cardiovascular responses that normally occur during muscular contraction would be impaired in senescent dogs. Therefore, hemodynamic and RBF responses to induced static hindlimb contraction (HLC) were evaluated in 8- to 14- and 2- to 3-yr-old beagles during alpha-chloralose anesthesia. Most baseline hemodynamic parameters were similar in both groups, but heart rate was significantly (P < 0.05) higher in old dogs. During HLC, heart rate and blood pressure increased in the young and old dogs. However, increases in stroke volume and cardiac output were greater in old dogs, combined with a reduction in systemic vascular resistance not observed in young dogs. No age-related difference in baseline RBF (microspheres) was observed in six of eight abdominal regional circulations and in each of four skeletal muscle groups. During HLC, RBF reductions occurred in six of eight abdominal organs in young and old dogs. However, the reduction in RBF and concomitant increase in vascular resistance in all eight abdominal regions combined was almost twice as great in young vs. old dogs. In noncontracting skeletal muscle, RBF decreased and vascular resistance increased four times more in young vs. old dogs.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Chronic exposure of rats to cold for 1-3 weeks results in a mild form of hypertension. The renin-angiotensin system (RAS) has been implicated in this model of cold-induced hypertension. Previously we have characterized the vascular responsiveness in cold-acclimated animals, using aortic tissue, and recent studies have focused on the thermoregulatory responses of angiotensin II (AngII), utilizing the tail artery of the rat. Therefore in the current study we evaluated the vascular responsiveness of cold-treated rats to AngII in both aorta and tail artery at 2 and 4 weeks of cold exposure (5+/-2 degrees C). Systolic blood pressures were significantly elevated in cold-treated animals compared with control animals at both 2 and 4 weeks of cold exposure. At both of these time points body weights were reduced and ventricular weights were increased in cold-treated animals. After 2 weeks of cold exposure the vascular responsiveness of the aorta to AngII was significantly lower than that of controls. This vascular responsiveness to AngII was elevated and returned to control levels after 5 weeks of cold exposure. However, this pattern was not observed in the tail artery. The vascular responsiveness of tail artery rings from cold-treated rats to AngII was significantly greater than that of control animals during both 2 and 5 weeks of exposure to cold. The vascular contractile responses of both the aorta and tail artery to KCI in the cold-treated animals was not different from that of the control animals maintained at ambient room temperature, suggesting that the vascular smooth muscle contractile components were not altered by the cold exposure. Thus, the in vitro vascular reactivity to the receptor-mediated vasoconstrictor AngII was decreased in the sparsely innervated aorta and increased in the more densely innervated tail artery of the cold-treated animals when compared with controls. These results suggest that the increased responsiveness of AngII on the smooth muscle of the tail artery may play a role in adaptation to the cold and the maintenance of cold-induced hypertension.  相似文献   

16.
This study investigated the hypothesis that atrial natriuretic peptide (ANP) responses are mediated by particulate guanylate cyclase in the pulmonary vascular bed of the cat. When tone in the pulmonary vascular bed was raised to a high steady level with the thromboxane mimic U-46619, injections of ANP caused dose-related decreases in lobar arterial pressure. After administration of HS-142-1, an ANP-A- and ANP-B-receptor antagonist, vasodilator responses to ANP were reduced. The nitric oxide (NO) synthase inhibitor N(omega)-nitro-L-arginine methyl ester (L-NAME) enhanced ANP vasodilator responses, suggesting that inhibition of NO modulates ANP responses. L-NAME administration with constant 8-bromo-cGMP infusion attenuated the increased vasodilator response to ANP, suggesting that supersensitivity to ANP occurs upstream to activation of a cGMP-dependent protein kinase. In pulmonary arterial rings, ANP produced concentration-related vasorelaxant responses with and without endothelium. Methylene blue, L-NAME, or N(omega)-monomethyl-L-arginine did not alter ANP vasorelaxant responses. These data show that ANP supersensitivity observed in the intact pulmonary vascular bed is not seen in isolated pulmonary arterial segments, suggesting that it may only occur in resistance vessel elements. These results suggest that ANP responses occur through activation of ANP-A and/or -B receptors in an endothelium-independent manner and are modulated by NO in resistance vessel elements in the pulmonary vascular bed of the cat.  相似文献   

17.
Vascular functions are regulated not only by chemical mediators, such as hormones, cytokines, and neurotransmitters, but by mechanical hemodynamic forces generated by blood flow and blood pressure. The mechanical force-mediated regulation is based on the ability of vascular cells, including endothelial cells and smooth muscle cells, to recognize fluid mechanical forces, i.e., the shear stress produced by flowing blood and the cyclic strain generated by blood pressure, and to transmit the signals into the cell interior, where they trigger cell responses that involve changes in cell morphology, cell function, and gene expression. Recent studies have revealed that immature cells, such as endothelial progenitor cells (EPCs) and embryonic stem (ES) cells, as well as adult vascular cells, respond to fluid mechanical forces. Shear stress and cyclic strain promote the proliferation and differentiation of EPCs and ES cells into vascular cells and enhance their ability to form new vessels. Even more recently, attempts have been made to apply fluid mechanical forces to EPCs and ES cells cultured on polymer tubes and develop tissue-engineered blood vessel grafts that have a structure and function similar to that of blood vessels in vivo. This review summarizes the current state of knowledge concerning the mechanobiological responses of stem/progenitor cells and its potential applications to tissue engineering.  相似文献   

18.
The effects of N omega-nitro-L-arginine methyl ester (L-NAME), an inhibitor of endothelium-derived relaxing factor (EDRF) production, on vascular tone and responses were investigated in the pulmonary vascular bed of the intact-chest cat under conditions of controlled blood flow and constant left atrial pressure. When pulmonary vascular tone was elevated with U-46619, intralobar injections of acetylcholine, bradykinin, sodium nitroprusside, isoproterenol, prostaglandin E1 (PGE1), lemakalim, and 8-bromo-guanosine 3',5'-cyclic monophosphate (8-bromo-cGMP) dilated the pulmonary vascular bed. Intravenous administration of L-NAME elevated lobar arterial and systemic arterial pressures without altering left atrial pressure. When U-46619 was infused after L-NAME to raise lobar arterial pressure to levels similar to those attained during the control period, vasodilator responses to acetylcholine and bradykinin were reduced significantly, whereas responses to PGE1, lemakalim, and 8-bromo-cGMP were not altered, and responses to nitroprusside were increased. There was a small effect on the response to the highest dose of isoproterenol, and pressor responses to BAY K 8644 and angiotensin II were not altered. These results are consistent with the hypothesis that EDRF production may involve the formation of nitric oxide or a nitroso compound from L-arginine and that EDRF production may have a role in the regulation of tone and in the mediation of responses to acetylcholine and bradykinin in the pulmonary vascular bed of the cat.  相似文献   

19.
Flow-induced mechanotransduction in vascular endothelial cells has been studied over the years with a major focus on putative connections between disturbed flow and atherosclerosis. Recent studies have brought in a new perspective that the glycocalyx, a structure decorating the luminal surface of vascular endothelium, may play an important role in the mechanotransduction. This study reports that modifying the amount of the glycocalyx affects both short-term and long-term shear responses significantly. It is well established that after 24 h of laminar flow, endothelial cells align in the direction of flow and their proliferation is suppressed. We report here that by removing the glycocalyx by using the specific enzyme heparinase III, endothelial cells no longer align under flow after 24 h and they proliferate as if there were no flow present. In addition, confluent endothelial cells respond rapidly to flow by decreasing their migration speed by 40% and increasing the amount of vascular endothelial cadherin in the cell-cell junctions. These responses are not observed in the cells treated with heparinase III. Heparan sulfate proteoglycans (a major component of the glycocalyx) redistribute after 24 h of flow application from a uniform surface profile to a distinct peripheral pattern with most molecules detected above cell-cell junctions. We conclude that the presence of the glycocalyx is necessary for the endothelial cells to respond to fluid shear, and the glycocalyx itself is modulated by the flow. The redistribution of the glycocalyx also appears to serve as a cell-adaptive mechanism by reducing the shear gradients that the cell surface experiences.  相似文献   

20.
Intrauterine growth restriction (IUGR) increases the risk of cardiovascular disease later in life. Vascular dysfunction occurs in adult offspring from animal models of IUGR including maternal undernutrition, but the influence of reduced fetal oxygen supply on adult vascular function is unclear. Myogenic responses, essential for vascular tone regulation, have not been evaluated in these offspring. We hypothesized that 7-mo-old offspring from hypoxic (12% O(2); H) or nutrient-restricted (40% of control; NR) rat dams would show greater myogenic responses than their 4-mo-old littermates or control (C) offspring through impaired modulation by vasodilators. Growth restriction occurred in male H (P < 0.01), male NR (P < 0.01), and female NR (P < 0.02), but not female H, offspring. Myogenic responses in mesenteric arteries from males but not females were increased at 7 mo in H (P < 0.01) and NR (P < 0.05) vs. C offspring. There was less modulation of myogenic responses after inhibition of nitric oxide synthase (P < 0.05), prostaglandin H synthase (P < 0.005), or both enzymes (P < 0.001) in arteries from 7-mo male H vs. C offspring. Thus reduced vasodilator modulation may explain elevated myogenic responses in 7-mo male H offspring. In contrast, there was increased modulation of myogenic responses in arteries from 7-mo female H vs. C or NR offspring after inhibition of both enzymes (P < 0.05). Thus increased vasodilator modulation may maintain myogenic responses in female H offspring at control levels. In summary, vascular responses in adult offspring from adverse intrauterine environments are impaired in a gender-specific, age-dependent, and maternal insult-dependent manner, with males more profoundly affected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号