首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A single nucleotide polymorphism that results in substitution at residue 700 of a serine (Ser-700) for an asparagine (Asn-700) in thrombospondin-1 is associated with familial premature coronary artery disease. The polymorphism is located in the first of 13 Ca2+ -binding motifs, within a consensus sequence in which Asn-700 likely coordinates Ca2+. Equilibrium dialysis of constructs comprised of the adjoining epidermal growth factor-like module and the Ca2+ -binding region (E3Ca) demonstrated that E3Ca Ser-700 binds significantly less Ca2+ than E3Ca Asn-700 at low [Ca2+]. The hypothesis that this difference is due to loss of a binding site in Ser-700 protein was tested with truncations of E3Ca containing four (Tr4), three (Tr3), two (Tr2), or one (Tr1) N-terminal Ca2+ -binding motifs. The Ser-700 truncation constructs bound 1 fewer Ca2+ than matching Asn-700 constructs and exhibited decreased binding affinities. Intrinsic fluorescence of a tryptophan at residue 698 (Trp-698) in the most N-terminal motif was cooperatively quenched by the addition of Ca2+ to Asn-700 Tr2, Tr3, and Tr4 constructs. In Ser-700 constructs, quenching of Trp-698 was incomplete in the Tr2 and Tr3 constructs and complete only in the Tr4 construct. Ca2+ -induced quenching of Ser-700 constructs required higher [Ca2+] and was slower as shown in stopped-flow experiments than quenching of Asn-700 constructs. Such differences were not found with Tb3+, which quenched the fluorescence of Asn-700 and Ser-700 constructs equivalently. Thus, the Ser-700 polymorphism alters a rapidly filled, high affinity Ca2+ -binding site in the first Ca2+ -binding motif. Slower Ca2+ binding to adjoining motifs partly compensates for the change.  相似文献   

2.
A single nucleotide polymorphism that substitutes a serine for an asparagine at residue 700 in the Ca2+-binding repeats of thrombospondin-1 is associated with familial premature coronary heart disease. We expressed the Ca2+-binding repeats alone (Ca) or with the third epidermal growth factor-like module (E3Ca), without (Asn-700) or with (Ser-700) the disease-associated polymorphism. The intrinsic fluorescence of a single tryptophan (Trp-698) adjacent to the polymorphic residue was quenched cooperatively by adding Ca2+. The third epidermal growth factor-like repeat dramatically altered the Ca2+-dependent fluorescence transition for the Asn-700 constructs; the half-effective concentration (EC50) of Ca Asn-700 was 390 microM, and the EC50 of E3Ca Asn-700 was 70 microM. The Ser-700 polymorphism shifted the EC50 to higher Ca2+ concentrations (Ca Ser-700 EC50 of 950 microM and E3Ca Ser-700 EC50 of 110 microM). This destabilizing effect is due to local conformational changes, as the Ser-700 polymorphism did not influence the secondary structure of E3Ca or Ca as assessed by far UV circular dichroism. At 200 microM Ca2+, in which both E3Ca Asn-700 and Ser-700 are in the Ca2+-replete conformation at 37 degrees C, the fluorescence of E3Ca Ser-700 reverted to the Ca2+-depleted spectrum at 50 degrees C compared with 65 degrees C for E3Ca Asn-700. These findings indicate that the Ser-700 polymorphism subtly but significantly sensitizes the calcium-binding repeats to removal of Ca2+ and thermal denaturation.  相似文献   

3.
Glycosylation is an important posttranslational modificationin proteins, and aberrant glycosylation occurs in malignancies.Human chorionic gonadotropin (hCG) is a glycoprotein hormoneproduced in high concentrations during pregnancy. It is alsoexpressed as particular glycoforms by certain malignancies.These glycoforms, which are called "hyperglycosylated" hCG (hCGh),have been reported to contain more complex glycan moieties.We have analyzed tryptic glycopeptides of the ß-subunitof hCG of various origins by liquid chromatography (LC) connectedto an electrospray mass spectrometer. Site-specific glycan structureswere visualized by the use of differential expression analysissoftware. hCGß was purified from urine of two patientswith testicular cancer, one with choriocarcinoma, one with aninvasive mole, two pregnant women at early and late gestation,from a pharmaceutical preparation and culture medium of a choriocarcinomacell line. N-glycans at Asn-13 and Asn-30 as well as O-glycansat Ser-121, Ser-127, Ser-132, and Ser-138 were characterized.In all samples, the major type of N-glycan was a biantennarycomplex-type structure, but triantennary structures linked toAsn-30 as well as fucosylation of the Asn-13-bound glycan areincreased in cancer-derived hCGß. There were significantsite-specific differences in the O-glycans, with constant core-2glycans at Ser-121, core-1 glycans at Ser-138, and putativesites unoccupied by any glycan. Core-2 glycans at either Ser-127or Ser-132 were enriched in cancer. The glycans of free hCGßwere larger and had a higher fucose content of Asn-13-linkedoligosaccharides than intact hCG. This may facilitate the detectionof this malignancy-associated variant by a lectin assay. Analysisof hCGh affinity purified with antibody B152 confirmed thatthis antibody recognizes a core-2 glycan on Ser-132.  相似文献   

4.
The amino acid sequences of the two major isozymes of rhizopuspepsin, an aspartic proteinase from Rhizopus chinensis, were determined by analyzing the tryptic peptides derived from the reduced and carboxymethylated (RCm-) derivative of each isozyme. Amino acid substitutions were shown to occur at eight positions. Rhizopuspepsin I, with an isoelectric point of 5.1, had Ile-15, Asn-61, Ser-116, Lys-162, Ile-230, Tyr-241, Asp-293, and Glu-325, whereas rhizopuspepsin II, with an isoelectric point of 5.8, had Val-15, Lys-61, Asn-116, Ser-162, Val-230, Ser-241, Asn-293, and Gln-325, the other parts of the two isozymes being identical with each other. Thus, rhizopuspepsin I had two more net negative charges than rhizopuspepsin II. This is consistent with the difference in isoelectric point of these two isozymes.  相似文献   

5.
Type 1 fimbriae are heteropolymeric surface organelles responsible for the D-mannose-sensitive (MS) adhesion of Escherichia coli. We recently reported that variation of receptor specificity of type 1 fimbriae can result solely from minor alterations in the structure of the gene for the FimH adhesin subunit. To further study the relationship between allelic variation of the fimH gene and adhesive properties of type 1 fimbriae, the fimH genes from five additional strains were cloned and used to complement the FimH deletion in E. coli KB18. When the parental and recombinant strains were tested for adhesion to immobilized mannan, a wide quantitative range in the ability of bacteria to adhere was noted. The differences in adhesion do not appear to be due to differences in the levels of fimbriation or relative levels of incorporation of FimH, because these parameters were similar in low-adhesion and high-adhesion strains. The nucleotide sequence for each of the fimH genes was determined. Analysis of deduced FimH sequences allowed identification of two sequence homology groups, based on the presence of Asn-70 and Ser-78 or Ser-70 and Asn-78 residues. The consensus sequences for each group conferred very low adhesion activity, and this low-adhesion phenotype predominated among a group of 43 fecal isolates. Strains isolated from a different host niche, the urinary tract, expressed type 1 fimbriae that conferred an increased level of adhesion. The results presented here strongly suggest that the quantitative variations in MS adhesion are due primarily to structural differences in the FimH adhesin. The observed differences in MS adhesion among populations of E. coli isolated from different host niches call attention to the possibility that phenotypic variants of FimH may play a functional role in populations dynamics.  相似文献   

6.
The recent elucidation of crystal structures of a bacterial member of the NCS1 family, the Mhp1 benzyl-hydantoin permease from Microbacterium liquefaciens, allowed us to construct and validate a three-dimensional model of the Aspergillus nidulans purine-cytosine/H+ FcyB symporter. The model consists of 12 transmembrane α-helical, segments (TMSs) and cytoplasmic N- and C-tails. A distinct core of 10 TMSs is made of two intertwined inverted repeats (TMS1–5 and TMS6–10) that are followed by two additional TMSs. TMS1, TMS3, TMS6, and TMS8 form an open cavity that is predicted to host the substrate binding site. Based on primary sequence alignment, three-dimensional topology, and substrate docking, we identified five residues as potentially essential for substrate binding in FcyB; Ser-85 (TMS1), Trp-159, Asn-163 (TMS3), Trp-259 (TMS6), and Asn-354 (TMS8). To validate the role of these and other putatively critical residues, we performed a systematic functional analysis of relevant mutants. We show that the proposed substrate binding residues, plus Asn-350, Asn-351, and Pro-353 are irreplaceable for FcyB function. Among these residues, Ser-85, Asn-163, Asn-350, Asn-351, and Asn-354 are critical for determining the substrate binding affinity and/or the specificity of FcyB. Our results suggest that Ser-85, Asn-163, and Asn-354 directly interact with substrates, Trp-159 and Trp-259 stabilize binding through π-π stacking interactions, and Pro-353 affects the local architecture of substrate binding site, whereas Asn-350 and Asn-351 probably affect substrate binding indirectly. Our work is the first systematic approach to address structure-function-specificity relationships in a eukaryotic member of NCS1 family by combining genetic and computational approaches.  相似文献   

7.
GeneQuest was a high throughput, large-scale analysis of single nucleotide polymorphisms (SNPs) to identify gene associated with familial, premature coronary artery disease and myocardial infarction. The three SNPs showing the highest and most significant associations with disease were all members of the thrombospondin gene family, thrombospondin-1, thrombospondin-2 and thrombospondin-4. These unanticipated associations have kindled efforts to understand how the three SNPs influence the structures and functions of the thrombospondins. The SNP in thrombospondin-1 and thrombospondin-4 reside in their coding regions and result in single amino acid changes: in thrombospondin-1, the predominant asparagine at position 700 is changed to a serine while, in thrombospondin-4, it is a change of an alanine to a proline at position 387. The SNP in thrombospondin-2 is a base change in the 3'-untranslated region of the mRNA. At this early stage of investigation, predictive analyses suggest that the substitutions in thrombospondin-2 and thrombospondin-4 should alter structure, and there is direct evidence to indicate that the thrombospondin-1 SNP alters conformational stability. In addition, profound differences in the function of the thrombospondin-4 SNP variants have been identified with respect to their capacity to support endothelial cell adhesion and proliferation. While substantial additional information is needed to understand if and how the polymorphic forms of the thrombospondins affect coronary artery disease, the data assembled to date suggest marked effects of these SNPs on the structures and functions of the thrombospondins, which are consistent with induction of a proatherogenic and prothrombotic phenotype.  相似文献   

8.
The beta(1)-adrenergic receptor (beta(1)AR) is a major mediator of catecholamine effects in human heart. Patients with heart failure who were hetero- or homozygous for the Gly-49 variant of the beta(1)AR (Gly-49-beta(1)AR) showed improved long-term survival as compared with those with the Ser-49 genotype. Here, the functional consequences of this polymorphism were studied in cells expressing either variant. The Gly-49-beta(1)AR demonstrated characteristic features of constitutively active receptors. In cells expressing the Gly-49-beta(1)AR, both basal and agonist-stimulated adenylyl cyclase activities were higher than in cells expressing the Ser-49 variant (Ser-49-beta(1)AR). The Gly-49-beta(1)AR was more sensitive to the inhibitory effect of the inverse agonist metoprolol and displayed increased affinity for agonists. Isoproterenol potency for adenylyl cyclase activation was higher on membranes expressing the Gly-49-beta(1)AR than on those expressing the Ser-49-beta(1)AR. After incubation with saturating concentrations of catecholamines or sustained stimulation, the Gly-49 variant showed a much higher desensitization, which largely prevailed over constitutive activity in terms of cAMP accumulation. The Gly-49-beta(1)AR also displayed a more profound agonist-promoted down-regulation than the Ser-49 variant. The stronger regulation of the Gly-49-beta(1)AR could explain the beneficial effect of the Gly-49 genotypes on survival, further supporting the concept that beta(1)AR desensitization is protective in heart failure.  相似文献   

9.
Zeitler  R; Hochmuth  E; Deutzmann  R; Sumper  M 《Glycobiology》1998,8(12):1157-1164
The archaeon Halobacterium halobium expresses a cell surface glycoprotein (CSG) with a repeating pentasaccharide unit N- glycosidically linked via N-acetylgalactosamine to Asn-2 of the polypeptide (GalNAc(1-N)Asn linkage type). This aspar-agine of the linkage unit is located within the N-terminal sequence Ala-Asn-Ala-Ser- , in accordance with the tripeptide consensus sequence Asn-Xaa-Ser/Thr typical for nearly every N-glycosylation site known so far, which are of the GlcNAc(1-N)-Asn linkage type. By a gene replacement method csg mutants were created which replace the serine residue of the consensus sequence by valine, leucine, and asparagine. Unexpectedly, this elimination of the consensus sequence did not prevent N-glycosylation. All respective mutant cell surface glycoproteins were N-glycosylated at Asn-2 with the same N-glycan chain as the wild type CSG. Asn-479 is N- glyco-sylated via a Glc(1-N)Asn linkage type in the wild type CSG. Replacement of Ser-481 in the sequence Asn-Ser-Ser for valine prevented glycosylation of Asn-479. From these results we postulate the existence of two different N-glycosyltransferases in H.halobium, one of which does not use the typical consensus sequence Asn-Xaa-Ser/Thr necessary for all other N-glycosyltransferases described so far.   相似文献   

10.
DC-SIGN is a C-type lectin that binds to endogenous adhesion molecules ICAM-2 and ICAM-3 as well as the viral envelope glycoprotein human immunodeficiency virus, type 1, glycoprotein (gp) 120. We wished to determine whether DC-SIGN binds differently to its endogenous ligands ICAM-2 and ICAM-3 versus HIV-1 gp120. We found that recombinant soluble DC-SIGN bound to gp120-Fc more than 100- and 50-fold better than ICAM-2-Fc and ICAM-3-Fc, respectively. This relative difference was maintained using DC-SIGN expressed on three different CD4-negative cell lines. Although the cell surface affinity for gp120 varied by up to 4-fold on the cell lines examined, the affinity for gp120 was not a correlate of the ability of the cell line to transfer virus. Monosaccharides with equatorial 4-OH groups competed as well as D-mannose for gp120 binding to DC-SIGN, regardless of how the other hydroxyl groups were positioned. Disaccharide competitors and glycan chip analysis showed that DC-SIGN has a preference for oligosaccharides linked in an alpha-anomeric configuration. Alanine-scanning mutagenesis of DC-SIGN revealed that highly conserved residues that coordinate calcium (Asp-366) and/or are involved in both calcium and specific carbohydrate interactions (Glu-347, Asn-349, Glu-354, and Asp-355) significantly compromised binding to all three ligands. Mutating non-conserved residues (Asn-311, Arg-345, Val-351, Gly-352, Glu-353, Ser-360, Gly-361, and Asn-362) minimally affected binding except for the Asp-367 mutant, which enhanced gp120 binding but diminished ICAM-2 and ICAM-3 binding. Conversely, mutating the moderately conserved residue (Gly-346) abrogated gp120 binding but enhanced ICAM-2 and ICAM-3 binding. Thus, DC-SIGN appears to bind in a distinct but overlapping manner to gp120 when compared with ICAM-2 and ICAM-3.  相似文献   

11.
Post-translational modifications of RelA play an important role in regulation of NF-κB activation. We previously demonstrated that in malignant hematopoietic cells, histone deacetylase inhibitors (HDACIs) induced RelA hyperacetylation and NF-κB activation, attenuating lethality. We now present evidence that IκB kinase (IKK) β-mediated RelA Ser-536 phosphorylation plays a significant functional role in promoting RelA acetylation, inducing NF-κB activation, and limiting HDACI lethality in human multiple myeloma (MM) cells. Immunoblot profiling revealed that although basal RelA phosphorylation varied in MM cells, Ser-536 phosphorylation correlated with IKK activity. Exposure to the pan-HDACIs vorinostat or LBH-589 induced phosphorylation of IKKα/β (Ser-180/Ser-181) and RelA (Ser-536) in MM cells, including cells expressing an IκBα "super-repressor," accompanied by increased RelA nuclear translocation, acetylation, DNA binding, and transactivation activity. These events were substantially blocked by either pan-IKK or IKKβ-selective inhibitors, resulting in marked apoptosis. Consistent with these events, inhibitory peptides targeting either the NF-κB essential modulator (NEMO) binding domain for IKK complex formation or RelA phosphorylation sites also significantly increased HDACI lethality. Moreover, IKKβ knockdown by shRNA prevented Ser-536 phosphorylation and significantly enhanced HDACI susceptibility. Finally, introduction of a nonphosphorylatable RelA mutant S536A, which failed to undergo acetylation in response to HDACIs, impaired NF-κB activation and increased cell death. These findings indicate that HDACIs induce Ser-536 phosphorylation of the NF-κB subunit RelA through an IKKβ-dependent mechanism, an action that is functionally involved in activation of the cytoprotective NF-κB signaling cascade primarily through facilitation of RelA acetylation rather than nuclear translocation.  相似文献   

12.
The hirudin variant HV2 was modified by in vitro site-specific mutagenesis of HV2 cDNA to generate HV2(Asn-47----Lys), HV2(Asn-47----Arg) and HV2(Lys-35----Thr, Asn-47----Lys). Residues 35 and 47 are positioned respectively within the finger and prothrombin-like domains of hirudin, both of which have been suggested as thrombin binding sites. The modified polypeptides were synthesized in Saccharomyces cerevisiae using a secretion vector and purified from culture supernatants. By analysis of the human alpha-thrombin:hirudin inhibition reaction in steady-state conditions it was shown that the dissociation constants for HV2(Lys-47) and HV2(Arg-47) were 5- to 14-fold lower than for unmodified HV2, whereas mutation of Lys-35 did not significantly alter the inhibition kinetics. Furthermore, HV2(Lys-47), whose sequence is identical to a natural hirudin variant, displayed enhanced anti-thrombotic activity in vivo, having a 100-fold lower ED50 compared to HV2 in the rabbit Wessler venous thrombosis model. These results support a role for the prothrombin-like domain in thrombin binding and, moreover, demonstrate that in vivo antithrombotic efficiency correlates with the dissociation constant of the inhibition reaction.  相似文献   

13.
Crystals of the complex of bovine alpha-thrombin with recombinant hirudin variant 1 have space group C222(1) with cell constants a = 59.11, b = 102.62, and c = 143.26 A. The orientation and position of the thrombin component was determined by molecular replacement and the hirudin molecule was fit in 2 magnitude of Fo - magnitude of Fc electron density maps. The structure was refined by restrained least squares and simulated annealing to R = 0.161 at 2.8-A resolution. The binding of hirudin to thrombin is generally similar to that observed in the crystals of human thrombin-hirudin. Several differences in the interactions of the COOH-terminal polypeptide of hirudin, specifically of residues Asp-55h, Phe-56h, Glu-57h, and Glu-58h, and a few differences in the interactions of the hirudin core, specifically of residues Asp-5h, Ser-19h, and Asn-20h, with thrombin from human thrombin-hirudin suggest that there is some flexibility in the binding of these 2 molecules. Most of the residues in the 9 subsites that bind fibrinopeptide A7-16 to thrombin also interact with the NH2-terminal domain of hirudin. The S1 subsite is a notable exception in that only 1 of its 6 residues, namely Ser-214, interacts with hirudin. The only difference between human and bovine thrombins that appears to influence the binding of hirudin is the replacement of Lys-149E by an acidic glutamate in the bovine enzyme.  相似文献   

14.
We present a mutational analysis of vaccinia topoisomerase that highlights the contributions of five residues in the catalytic domain (Phe-88 and Phe-101 in helix alpha1, Ser-204 in alpha5, and Lys-220 and Asn-228 in alpha6) to the DNA binding and transesterification steps. When augmented by structural information from exemplary type IB topoisomerases and tyrosine recombinases in different functional states, the results suggest how closure of the protein clamp around duplex DNA and assembly of a functional active site might be orchestrated by internal conformational changes in the catalytic domain. Lys-220 is a constituent of the active site, and a positive charge at this position is required for optimal DNA cleavage. Ser-204 and Asn-228 appear not to be directly involved in reaction chemistry at the scissile phosphodiester. We propose that (i) Asn-228 recruits the Tyr-274 nucleophile to the active site by forming a hydrogen bond to the main chain of the tyrosine-containing alpha8 helix and that (ii) contacts between Ser-204 and the DNA backbone upstream of the cleavage site trigger a separate conformational change required for active site assembly. Mutations of Phe-88 and Phe-101 affect DNA binding, most likely at the clamp closure step, which we posit to entail a distortion of helix alpha1.  相似文献   

15.
The predicted conformation of ranatuerin-1 (SMLSVLKNLG(10)KVGLGFVACK(20)INK QC), an antimicrobial peptide first isolated from the skin of the bullfrog Rana catesbeiana, comprises three structural domains: alpha-helix (residues 1-8), beta-sheet (residues 11-16) and beta-turn (residues 20-25). Circular dichroism studies confirm significant alpha-helical character in 50% trifluoroethanol. Replacement of Cys-19 and Cys-25 by serine resulted only in decreased antimicrobial potency but deletion of either the cyclic heptapeptide region [residues (19-25)] or the N-terminal domain [residues (1-8)] produced inactive analogs. Substitution of the glycine residues in the central domain of the [Ser-19, Ser-25] analog by lysine produced inactive peptides despite increased alpha-helical content and cationicity. The substitution Asn-8-->Lys gave a ranatuerin-1 analog with increased alpha-helicity and cationicity and increased potency against a range of Gram-positive and Gram-negative bacteria and against C. albicans but only a small increase (21%) in hemolytic activity. In contrast, increasing alpha-helicity and hydrophobicity by the substitution Asn-22-->Ala resulted in a 3.5-fold increase in hemolytic activity. Effects on antimicrobial potencies of substitutions of neutral amino acids at positions 4, 18, 22, and 24 by lysine were less marked. Strains of pathogenic E. coli from different groups showed varying degrees of sensitivity to ranatuerin-1 (MIC between 5 and 40 microM) but [Lys-8] ranatuerin-1 showed increased potency (between 2- and 8-fold; P < 0.01) against all strains. The data demonstrate that [Lys-8] ranatuerin-1 shows potential as a candidate for drug development.  相似文献   

16.
Hepatitis B virus (HBV) DNA was extracted from sera of six carriers with hepatitis B e antigen as well as antibody to hepatitis B surface antigen and sequenced within the pre-S regions and the S gene. HBV DNA clones from five of these carriers had point mutations in the S gene, resulting in conversion from Ile-126 or Thr-126 of the wild-type virus to Ser-126 or Asn-126 in three carriers and conversion from Gly-145 to Arg-145 in three of them; clones with Asn-126 or Arg-145 were found in one carrier. All 12 clones from the other carrier had an insertion of 24 bp encoding an additional eight amino acids between Thr-123 and Cys-124. In addition, all or at least some of the HBV DNA clones from these carriers had in-phase deletions in the 5' terminus of the pre-S2 region. These results indicate that HBV escape mutants with mutations in the S gene affecting the expression of group-specific determinants would survive in some carriers after they seroconvert to antibody against surface antigen. Carriers with HBV escape mutants may transmit HBV either by donation of blood units without detectable surface antigen or through community-acquired infection, which would hardly be prevented by current hepatitis B immuneglobulin or vaccines.  相似文献   

17.
Adherence of capsulate Neisseria meningitidis to endothelial and epithelial cells is facilitated in variants that express pili. Whereas piliated variants of N. meningitidis strain C311 adhered to endothelial cells in large numbers (<150 bacteria/cell), derivatives containing specific mutations that disrupt pilE encoding the pilin subunit were both non-piliated and failed to adhere to endothelial cells (<1 bacterium/ cell). In addition, meningococcal pili recognized human endothelial and epithelial cells but not cells originating from other animals. Variants of strain C311 were obtained that expressed pilins of reduced apparent Mr and exhibited a marked increase in adherence to epithelial cells. Structural analysis of pilins from two hyper-adherent variants and the parent strain were carried out by DNA sequencing of their pilE genes. Deduced molecular weights of pilins were considerably tower compared with their apparent Mr values on SDS-PAGE. Hyper-adherent pilins shared unique changes in sequence including substitution of Asn-113 for Asp-113 and changes from Asn-Asp-Thr-Asp to Thr-Asp-Ala-Lys at residues 127-130 in mature pilin. Asn residues 113 and 127 of‘parental’pilin both form part of the typical eukaryotic N-glycosylation motif Asn-X-Ser/Thr and could potentially be glycosylated post-translationally. The presence of carbohydrate on pilin was demonstrated and when pilins were deglycosylated, their migration on SDS-PAGE increased, supporting the notion that variable glycosylation accounts for discrepancies in apparent and deduced molecular weights. Functionally distinct pilins produced by two fully piliated variants of a second strain (MC58) differed only in that the putative glycosylation motif Asn-60-Asn-61-Thr-62 in an adherent variant was replaced with Asp-60-Asn-61-Ser-62 in a non-adherent variant. Fully adherent backswitchers obtained from the non-adherent variant always regained Asn-60 but retained Ser-62. We propose, therefore, that functional variations in N. meningitidis pili may be modulated in large part by primary amino acid sequence changes that ablate or create N-linked glycosylation sites on the pilin subunit.  相似文献   

18.
We have determined the structures and thermodynamic stabilities of the wild type Asn-52 and unusually thermostable mutant Ile-52 yeast iso-1-cytochromes c (Das, G., Hickey, D. R. McLendon, D., McLendon, G., and Sherman, F. (1989) Proc. Natl. Acad. Sci. U.S.A. 86, 496-499). Although both structures were similar, Water-166, buried within the wild type protein, is excluded from the Ile-52 mutant, which substantially reorganizes the local hydrogen bonding. Wild type Cys-102 was replaced with alanine or serine to eliminate dimerization in vitro. The Cys-102 (wild type), Ala-102, and Ser-102 proteins were equally stable, whereas the chemically modified Cys-102-SCH3 was less stable. The order of stability observed with replacements at positions 52 and 102 was as follows: Ile-52 Ala-102 greater than Ala-52 Ala-102 greater than Asn-52 Ala-102 ("normal") greater than Gly-52 Ala-102. No significant stabilization was attributed to potential energy interactions expressed as helix-forming propensities of replacements at position 52. A high correlation between differences in free energy changes and transfer free energies suggests hydrophobic interactions are the main factor for enhancing stability in the Ile-52 mutant. Additional possible contributions to the thermostability of the Ile-52 variant are energetic effects due to packing and hydrogen bonding changes surrounding position 52.  相似文献   

19.
The topography of the colicin E1 immunity (Imm) protein was determined from the positions of TnphoA and complementary lacZ fusions relative to the three long hydrophobic segments of the protein and site-directed substitution of charged for nonpolar residues in the proposed membrane-spanning segments. Inactivation of the Imm protein function required substitution and insertion of two such charges. It was concluded that the 113-residue colicin E1 Imm protein folds in the membrane as three trans-membrane alpha-helices, with the NH2 and COOH termini on the cytoplasmic and periplasmic sides of the membrane, respectively. The approximate spans of the three helices are Asn-9 to Ser-28, Ile-43 to Phe-62, and Leu-84 to Leu-104. An extrinsic highly charged segment, Lys-66 to Lys-74, containing seven charges in nine residues, extends into the cytoplasmic domain. The specificity of the colicin E1 Imm protein for interaction with the translocation apparatus and the colicin E1 ion channel is proposed to reside in its peripheral segments exposed on the surface of the inner membrane. These regions include the highly charged segment Lys-66 to Lys-83 (loop 2) and the short (approximately eight-residue) NH2 terminus on the cytoplasmic side, and Glu-29 to Val-44 (loop 1) and the COOH-terminal segment Gly-105 to Asn-113 on the periplasmic side.  相似文献   

20.
The variant surface glycoprotein (VSG) of the ILTat 1.3 variant of Trypanosoma brucei has two asparagine-linked glycan moieties, as well as a phosphatidylinositol glycan membrane anchor. We have investigated the structure and processing of each of these oligosaccharides through analysis of the intact protein and of glycopeptides. Processing has been examined by comparing glycan structures purified from an immature intracellular form (58 kDa) of VSG with those of the mature form (59 kDa) found on the parasite surface. We find exclusively high mannose oligosaccharides (Man4-7-GlcNAc2) at Asn-432 in both the immature 58-kDa and mature 59-kDa forms. In contrast, the "core" oligosaccharide of Asn-419 (Man3-GlcNAc2) appears to be nearly quantitatively processed to a complex biantennary structure [Gal-GlcNAc-Man)2-Man-GlcNAc2) during VSG maturation. The asparagine-linked structures at Asn-419, but not those at Asn-432, are resistant to endo-beta-N-acetylglucosaminidase H within 30 s of biosynthesis. This suggests possible novel and selective mechanisms for glycosylation in African trypanosomes. Finally, we show that the carboxyl-terminal glycolipid is galactosylated (3-4 residues) relatively late in VSG biosynthesis. Phosphatidylinositol glycans have been identified on a growing number of eukaryotic membrane proteins. This report provides a direct demonstration of the processing of such a glycolipid anchor following its attachment to protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号