首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Disrupting components of the ecdysone/EcR/USP signaling pathway in insects leads to morphological defects and developmental arrest. In adult Drosophila melanogaster decreased EcR function affects fertility, lifespan, behavior, learning, and memory; however we lack a clear understanding of how EcR/USP expression and activity impacts these phenotypes. To shed light on this issue, we characterized the wild-type expression patterns and activity of EcR/USP in individual tissues during early adult life. EcR and usp were expressed in numerous adult tissues, but receptor activity varied depending on tissue type and adult age. Receptor activity did not detectably change in response to mating status, environmental stress, ecdysone treatment or gender but is reduced when a constitutively inactive ecdysone receptor is present. Since only a subset of adult tissues expressing EcR and usp contain active receptors, it appears that an important adult function of EcR/USP in some tissues may be repression of genes containing EcRE's.  相似文献   

2.
3.
4.
Wu J  Capp C  Feng L  Hsieh TS 《Developmental biology》2008,323(1):130-142
Members of the RecQ family play critical roles in maintaining genome integrity. Mutations in human RecQL4 cause a rare genetic disorder, Rothmund-Thomson syndrome. Transgenic mice experiments showed that the RecQ4 null mutant causes embryonic lethality. Although biochemical evidence suggests that the Xenopus RecQ4 is required for the initiation of DNA replication in the oocyte extract, its biological functions during development remain to be elucidated. We present here our results in establishing the use of Drosophila as a model system to probe RecQ4 functions. Immunofluorescence experiments monitoring the cellular distribution of RecQ4 demonstrated that RecQ4 expression peaks during S phase, and RecQ4 is expressed only in tissues active in DNA replication, but not in quiescent cells. We have isolated Drosophila RecQ4 hypomorphic mutants, recqEP and recq423, which specifically reduce chorion gene amplification of follicle cells by 4-5 fold, resulting in thin and fragile eggshells, and female sterility. Quantitative analysis on amplification defects over a 14-kb domain in chorion gene cluster suggests that RecQ4 may have a specific function at or near the origin of replication. A null allele recq419 causes a failure in cell proliferation, decrease in DNA replication, chromosomal fragmentation, and lethality at the stage of first instar larvae. The mosaic analysis indicates that cell clones with homozygous recq419 fail to proliferate. These results indicate that RecQ4 is essential for viability and fertility, and is required for most aspects of DNA replication during development.  相似文献   

5.
The methionine sulfoxide reductases MsrA and MsrB reduce Met(O) to Met in epimer-specific fashion. In Drosophila, the major ecdysone induced protein is MsrA, which is regulated by the EcR-USP complex. We tested Kc cells for induction of MsrA, MsrB, EcR, and CAT by ecdysone and found that MsrA and the EcR were induced by ecdysone, but MsrB and CAT were not. When we tested for resistance to 20mM H2O2 toxicity, viability of Kc cells was reduced 3-fold. Pretreatment with 0.2 microM ecdysone for 48 h prior to exposure to H2O2, increased viability to 77% of controls. The EcR-deficient L57-3-11 knockout line was not responsive to ecdysone, and H2O2 resistance of both control and ecdysone-treated L57-3-11 cells was similar to that of the ecdysone-untreated Kc cells. These results show that hormonal regulation of MsrA is implicated in conferring protection against oxidative stress in the Drosophila model.  相似文献   

6.
7.
8.
The teashirt (tsh) gene has dorso-ventral (DV) asymmetric functions in Drosophila eye development: promoting eye development in dorsal and suppressing eye development in ventral by Wingless mediated Homothorax (HTH) induction [Development 129 (2002) 4271]. We looked for DV spatial cues required by tsh for its asymmetric functions. The dorsal Iroquois-Complex (Iro-C) genes and Delta (Dl) are required and sufficient for the tsh dorsal functions. The ventral Serrate (Ser), but not fringe (fng) or Lobe (L), is required and sufficient for the tsh ventral function. We propose that DV asymmetric function of tsh represents a novel tier of DV pattern regulation, which takes place after the spatial expression patterns of early DV patterning genes are established in the eye.  相似文献   

9.
10.
11.
Cryptochrome (CRY) is a blue-light-absorbing protein involved in the photic entrainment of the circadian clock in Drosophila melanogaster. We have investigated the locomotor activity rhythms of flies carrying cryb mutant and revealed that they have two separate circadian oscillators with different responsiveness to light. When kept in constant light conditions, wild-type flies became arrhythmic, while cryb mutant flies exhibited free-running rhythms with two rhythmic components, one with a shorter and the other with a longer free-running period. The rhythm dissociation was dependent on the light intensities: the higher the light intensities, the greater the proportion of animals exhibiting the two oscillations. External photoreceptors including the compound eyes and the ocelli are the likely photoreceptors for the rhythm dissociation, since rhythm dissociation was prevented in so1;cryb and norpAP41;cryb double mutant flies. Immunohistochemical analysis demonstrated that the PERIOD expression rhythms in ventrally located lateral neurons (LNvs) occurred synchronously with the shorter period component, while those in the dorsally located per-expressing neurons showed PER expression most likely related to the longer period component, in addition to that synchronized to the LNvs. These results suggest that the Drosophila locomotor rhythms are driven by two separate per-dependent clocks, responding differentially to constant light.  相似文献   

12.
Lateral inhibition is critical for cell fate determination and involves the functions of Notch (N) and its effectors, the Enhancer of Split Complex, E(spl)C repressors. Although E(spl) proteins mediate the repressive effects of N in diverse contexts, the role of phosphorylation was unclear. The studies we describe implicate a common role for the highly conserved Ser/Thr protein kinase CK2 during eye and bristle development. Compromising the functions of the catalytic (alpha) subunit of CK2 elicits a rough eye and defects in the interommatidial bristles (IOBs). These phenotypes are exacerbated by mutations in CK2 and suppressed by an increase in the dosage of this protein kinase. The appearance of the rough eye correlates, in time and space, to the specification and refinement of the 'founding' R8 photoreceptor. Consistent with this observation, compromising CK2 elicits supernumerary R8's at the posterior margin of the morphogenetic furrow (MF), a phenotype characteristic of loss of E(spl)C and impaired lateral inhibition. We also show that compromising CK2 elicits ectopic and split bristles. The former reflects the specification of excess bristle SOPs, while the latter suggests roles during asymmetric divisions that drive morphogenesis of this sensory organ. In addition, these phenotypes are exacerbated by mutations in CK2 or E(spl), indicating genetic interactions between these two loci. Given the centrality of E(spl) to the repressive effects of N, our studies suggest conserved roles for this protein kinase during lateral inhibition. Candidates for this regulation are the E(spl) repressors, the terminal effectors of this pathway.  相似文献   

13.
14.

Background

Insect metamorphosis proceeds in two modes: hemimetaboly, gradual change along the life cycle; and holometaboly, abrupt change from larvae to adult mediated by a pupal stage. Both are regulated by 20-hydroxyecdysone (20E), which promotes molts, and juvenile hormone (JH), which represses adult morphogenesis. Expression of Broad-complex (BR-C) is induced by 20E and modulated by JH. In holometabolous species, like Drosophila melanogaster, BR-C expression is inhibited by JH in young larvae and enhanced in mature larvae, when JH declines and BR-C expression specifies the pupal stage.

Methods

Using Blattella germanica as a basal hemimetabolous model, we determined the patterns of expression of BR-C mRNAs using quantitative RT-PCR, and we studied the functions of BR-C factors using RNA interference approaches.

Results

We found that BR-C expression is enhanced by JH and correlates with JH hemolymph concentration. BR-C factors appear to be involved in cell division and wing pad growth, as well as wing vein patterning.

Conclusions

In B. germanica, expression of BR-C is enhanced by JH, and BR-C factors appear to promote wing growth to reach the right size, form and patterning, which contrast with the endocrine regulation and complex functions observed in holometabolous species.

General significance

Our results shed new light to the evolution from hemimetaboly to holometaboly regarding BR-C, whose regulation and functions were affected by two innovations: 1) a shift in JH action on BR-C expression during young stages, from stimulatory to inhibitory, and 2) an expansion of functions, from regulating wing development, to determining pupal morphogenesis.  相似文献   

15.
16.
During Drosophila metamorphosis some larval tissues escape the general histolysis and are remodelled to form adult tissues. One example is the dorso-longitudinal muscles (DLMs) of the indirect flight musculature. They are formed by an intriguing process in which residual larval oblique muscles (LOMs) split and fuse with imaginal myoblasts associated with the wing disc. These myoblasts arise in the embryo, but remain undifferentiated throughout embryogenesis and larval life, and thus share characteristics with mammalian satellite cells. However, the mechanisms that maintain the Drosophila myoblasts in an undifferentiated state until needed for LOM remodelling are not understood. Here we show that the Him gene is expressed in these myoblasts, but is undetectable in developing DLM fibres. Consistent with this, we found that Him could inhibit DLM development: it inhibited LOM splitting and resulted in fibre degeneration. We then uncovered a balance between mef2, a positive factor required for proper DLM development, and the inhibitory action of Him. Mef2 suppressed the inhibitory effect of Him on DLM development, while Him could suppress the premature myosin expression induced by mef2 in myoblasts. Furthermore, either decreased Him function or increased mef2 function disrupted DLM development. These findings, together with the co-expression of Him and Mef2 in myoblasts, indicate that Him may antagonise mef2 function during normal DLM development and that Him participates in a balance of signals that controls adult myoblast differentiation and remodelling of these muscle fibres. Lastly, we provide evidence for a link between Notch function and Him and mef2 in this balance.  相似文献   

17.
During Drosophila embryogenesis, timely and orderly asymmetric cell divisions ensure the correct number of each cell type that make up the sensory organs of the larval PNS. We report a role of scraps, Drosophila Anillin, during these divisions. Anillin, a constitutive member of the contractile ring is essential for cytokinesis in Drosophila and vertebrates. During embryogenesis we find that zygotically transcribed scraps is required specifically for the unequal cell divisions, those in which cytokinesis occurs in an “off-centred” manner, of the pIIb and pIIIb neuronal precursor cells, but not the equal cell divisions of the lineage related precursor cells. Complementation and genetic rescue studies demonstrate this effect results from zygotic scraps and leads to polyploidy, ectopic mitosis, and loss of the neuronal precursor daughter cells. The net result of which is the formation of incomplete sense organs and embryonic lethality.  相似文献   

18.
19.
In the imaginal tissue of developing fruit flies, achaete (ac) and scute (sc) expression defines a group of neurally-competent cells called the proneural cluster (PNC). From the PNC, a single cell, the sensory organ precursor (SOP), is selected as the adult mechanosensory organ precursor. The SOP expresses high levels of ac and sc and sends a strong Delta (Dl) signal, which activates the Notch (N) receptor in neighboring cells, preventing them from also adopting a neural fate. Previous work has determined how ac and sc expression in the PNC and SOP is regulated, but less is known about SOP-specific factors that promote SOP fate. Here, we describe the role of nervy (nvy), the Drosophila homolog of the mammalian proto-oncogene ETO, in mechanosensory organ formation. Nvy is specifically expressed in the SOP, where it interacts with the Ac and Sc DNA binding partner Daughterless (Da) and affects the expression of Ac and Sc targets. nvy loss- and gain-of-function experiments suggest that nvy reinforces, but is not absolutely required for, the SOP fate. We propose a model in which nvy acts downstream of ac and sc to promote the SOP fate by transiently strengthening the Dl signal emanating from the SOP.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号