首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Effects of the cyclooxygenase inhibitors indomethacin, naproxen and the thromboxane synthetase inhibitor imidazole on renal sodium water and p-aminohippurate excretion were investigated in sodium loaded conscious rats of different ages. Renal and intrarenal blood flow were studied in anaesthetized adult rats. Indomethacin and naproxen reduced PAH excretion in 5- and 10-day-old rats but not in rats of older ages. Imidazole failed to influence PAH-excretion in young animals. The excretion of PAH was decreased in adult rats at 10 and 60 min following imidazole administration, but not after longer time interval (120 min). Following indomethacin and naproxen administration urine output was decreased in 5-, 10- and 15-day-old rats, but not in rats of older ages. Effects of imidazole on electrolyte excretion can be demonstrated in adult rats only. Cardiac output was not altered by the three drugs. Blood pressure was elevated after indomethacin, but remained unchanged after naproxen and imidazole treatment. Renal and cortical blood flow remained unaltered and no redistribution was seen in intrarenal blood flow after indomethacin, naproxen and imidazole administration. The experimental data suggest that prostaglandins and thromboxanes are involved in the regulation of kidney function, but prostaglandins in the rat--in contrast to the dog--do not seem to play a major role in the regulation of renal vascular tone in adult animals.  相似文献   

2.
Renal tubular transport of p-aminohippurate (PAH) is immature at birth. Repeated saturation of transport sites by treatment with various organic anions is without any influence on the postnatal development of kidney transport capacity. Hormonal regulation of postnatal maturation of PAH transport must therefore be taken into consideration. It was tried to stimulate immature PAH transport by treating rats of different ages with thyroid hormones, corticosteroids or testosterone, respectively. In rats with immature kidney function, renal PAH excretion can be stimulated by daily treatment with thyroid hormones. Experiments on renal cortical slices have shown that PAH excretion is preferentially stimulated by an increase of transport capacity. Whereas thyroid hormones stimulate the renal excretion of PAH both in young and in adult rats, dexamethasone treatment is more effective in rats with immature kidney function. Dexamethasone treatment is without any influence on PAH accumulation in renal cortical slices. Kidney weight and the protein content of kidney tissue was increased after dexamethasone treatment. Repeated testosterone administration did not stimulate the PAH transport in rats of different ages. The data have demonstrated the influence of thyroid hormones or of dexamethasone on renal tubular transport processes in rats with immature kidney function. Treatment with such hormones could be useful in the management of renal insufficiency in full-term and pre-term neonates with immature kidney function.  相似文献   

3.
The transport system for organic acids in the kidney is not fully developed in the neonatal period. The effect of repeated administrations of ethacrynic acid on the renal excretion of p-aminohippurate (PAH) was studied in rats of different ages. Pretreatment with ethacrynic acid was followed by an increase in the renal excretion of PAH in 33-, 55-, 105- and 240-day-old rats but not in newborn rats. In 55-day-old rats the increase in renal excretion of PAH after pretreatment with ethacrynic acid was not associated with any consistent change of the glomerular filtration rate. It is concluded from these results that the stimulation of transport processes in the kidney by ethacrynic acid and some other drugs is linked with their affinity to tissue proteins.  相似文献   

4.
Renal effects of an atrial natriuretic factor preparation were compared in 15, 28 and 66-day-old rats. This factor, prepared from atrial tissue of adult rats, was more effective in 28 and 66-day-old rats than in 15-day-old rats. There was a 6 fold increase of sodium excretion in 15-day-old rats and a 60 fold increase in 28-day-old rats. There was also a 15 fold increase in renal sodium excretion in 66-day-old rats receiving a higher dose (0.1 ml/animal). As indicated by the sodium potassium ratio, the increase in renal excretion of sodium was distinctly more pronounced than the increase in renal potassium excretion. In 15, 28 and 60-day-old rats, the increase of urine volume was 2 fold, 4 fold and 5 fold, respectively. The increase of fractional sodium excretion (FE) in rats receiving an atrial factor preparation was distinctly more pronounced than the increase of GFR. In all experiments, the preparation from ventricular tissue of the same animals was ineffective in producing natriuresis or diuresis.  相似文献   

5.
Experiments on anaesthetized female Wistar rats have shown that imidazole reduces renal excretion of p-aminohippurate (PAH). This effect occurs only after administration of imidazole simultaneously with a volume load (2 ml/100 g b.wt.). Injection of imidazole immediately before a PAH bolus (100 mg/100 g b.wt. in 2 ml) is followed by reduced PAH excretion via urine for at least 1 hour. In contrast, if a PAH bolus is given 20 min or later after imidazole no effect of this drug on renal PAH transport is demonstrable. These findings indicate that imidazole can interfere effectively with thromboxane synthesis only if thromboxane production is activated by volume expansion. Interestingly, despite 40% reduction of renal PAH excretion in volumen loaded rats, PAH serum disappearance is identical in controls and imidazole treated rats. Thus differences in the volume of distribution for PAH after imidazole must be expected. Under our experimental conditions imidazole was without effect on renal electrolyte excretion.  相似文献   

6.
The effect of pretreatment with penicillin on para-aminohippurate (PAH) transport by the kidney of the immature rat was evaluated in vivo. After 3 days of penicillin administration, renal clearances of inulin (CIN), PAH (CPAH), and the renal tubular transport maximum (Tm) for PAH were measured in rats as young as 17 days of age. The CPAH in 19- to 21-day-old rats pretreated with procaine penicillin was 54% greater than that of their littermate controls. Similarly, CPAH of rats that received sodium penicillin was 31% greater than control. CIN was not increased after penicillin pretreatment. Pretreatment of rats older than 24 days did not change CIN or CPAH. The Tm for PAH of 17-day-old rats pretreated with sodium penicillin was 51% greater than that of control rats. It was concluded that pretreatment with penicillin enhances the renal secretion of organic anions by the immature rat.  相似文献   

7.
Since one of the hypotensive mechanisms of angiotensin-converting enzyme inhibitor (ACEI) has been suggested to be mediated through the renal kinin-prostaglandin (PG) axis, the present study was designed to investigate the effect of captopril (C) or enalapril (E) on renal PGE2 excretion or synthesis. Wistar male rats (BW 200-250 g) were given orally captopril at 30 mg/kg/day or enalapril at 10 or 30 mg/kg for one week. Before and after ACEI, blood pressure (tail cuff method) as well as PRA and urinary PGE2 excretion was determined. Renopapillary slices were obtained from some of the rats including controls and incubated to determine PGE2 synthesis. C or E administration resulted in a blood pressure decrease of 21 to 36 mm Hg with an increase in PRA. Urine volume and sodium excretion increased after daily treatment with C or E at 30 mg/kg. Urinary PGE2 excretion increased 1.4-fold in response to C, but not to E. Papillary PGE2 synthesis demonstrated a marked decrease 2 h after in vivo administration of either ACEI compared to controls. However, when C or enalaprilat was added in vitro to renal slices obtained from controls, only C at 10(-5) M showed a significant 2-fold increase in renal PGE2 synthesis. These results suggest that (1) renal PGE2 synthesis may be dependent on circulating angiotensin II. (2) C, but not enalaprilat, has a direct stimulatory effect on renal PGE2 synthesis and (3) renal PGE2 may not be involved very much in the hypotensive effect of ACEI.  相似文献   

8.
Summary. The effects of sodium dichromate (chromate; 1 mg/100 g b. wt. s.c.) and cisdiamminedichloroplatinum(II) (CP; 0.6 mg/100 g b. wt. i.p.) on renal amino acid excretion and plasma amino acid composition were investigated in 10- and 55-day-old anaesthetised rats. On the basis of diuresis experiments on conscious rats the mentioned doses and times (1st day after chromate in both age groups and in 10-day-old rats after CP and 3rd day after CP in adult rats) were found out to be optimal for the characterisation of amino acid transport after heavy metal poisoning. Interestingly, in conscious 10-day-old rats chromate nephrotoxicity is not detectable after 1 mg/100 g b. wt. whereas all of the other experimental groups showed nephrotoxic effects of chromate and CP in conscious rats. Urine volumes are lower, but not significantly, in anaesthetised immature rats, independently of the administered nephrotoxin. But GFR is significantly lower in 10-day-old rats, both in controls and after CP, whereas after chromate GFR is significantly reduced only in adult rats and age differences disappeared. In principle the renal fractional excretion (FE) of amino acids was distinctly higher in immature rats as a sign of lower amino acid reabsorption capacity. Nevertheless, the amino acid plasma concentrations were relatively high in immature rats. However, both chromate and CP did not distinctly influence amino acid plasma concentrations. But in both age groups the administration of chromate and CP significantly decreased amino acid reabsorption capacity (increase in FE) as a sign of nephrotoxicity, most pronounced in adult rats after CP. The investigation of renal amino acid handling confirms (1) that both CP and chromate are nephrotoxins, (2) that CP was more nephrotoxic in 55-day-old animals compared to immature rats as could be demonstrated before using other parameters for nephrotoxicity testing and showed (3) that determination of renal amino acid handling is a highly sensitive marker for nephrotoxicity testing, especially in immature rats. Received March 3, 2000 Accepted October 11, 2000  相似文献   

9.
The velocity of renal excretion of p-aminohippuric acid (PAH) could be raised by repeated administration of phenol red, probenecid and penicillin, which are actively transported by the acid carrier into the urine like PAH. These drugs produced an effect in fairly lower doses than PAH. The renal excretion of PAH can be accelerated by repeated pretreatment with the lipid-soluble drugs sulfaclomide, sulfamethoxypyridazine and cyclopenthiazide. It could be demonstrated that the stimulation of renal excretion of PAH by repeated administration of the investigated compounds is less pronounced in young rats than in adult animals.  相似文献   

10.
The levels of serum monosaccharides (SMO) and hexuronic acids (SHA) were measured in subjects without any metabolic or endocrine disease after a short-time administration of cortisol, dexamethasone and ACTH. The effects of the three hormones were evaluated in regard to the urinary excretion of free cortisol and cortisone at basal conditions. In thirteen subjects a significant increase of SMO during cortisol treatment was registered after 24 hours. A distinct difference in the response of SMO to cortisol treatment was observed in patients with normal or increased cortisol excretion, respectively. In the subjects with high urinary free corticoids a peak of SMO occurred soon after 4 hours after cortisol administration, in the next 48 hours no tendency of return towards basal levels was observed. In the subjects with normal urinary free cortisol excretion only a slight increment was seen after 24 hours. Soon after 4 hours in eight subjects dexamethasone administration resulted in an increase of SMO without regard to the excretion of urinary free corticoids. The highest values were obtained after 28 hours of dexamethasone treatment. Ten hours after cessation of dexamethasone the levels of SMO reached the basal values. In the study in which ACTH was administered, an increment of SMO was registered only in the first four hours. In the group of subjects treated with ACTH a slight difference between subjects with normal and increased corticoid excretion was seen. The levels of SHA successively increased after the administration of all three hormones, without regard to the basal excretion of urinary free corticoids. This increase persisted also 10 hours after cessation of cortisol and dexamethasone, and 40 hours after the last dosis of ACTH, respectively. The possibility of an altered metabolism of glucose through the glucuronate pathway under conditions of glucocorticoid excess is discussed.  相似文献   

11.
During PAH excretion and 18 h after repeated PAH administrations to rats, renal cortical SDH activity was unchanged in comparison with untreated controls. On the other hand, 18 h after repeated administrations of 0.9% or 1.8% NaCl solution, SDH activity was decreased by about 20% in kidney cortex. In outer medulla SDH activity was decreased 18 h after all pretreatments. The decline of SDH activity was observed whenever an increased urinary Na excretion occurred, except that PAH was repeatedly administered. The probability is discussed that substrate-induced stimulation of the carrier system for weak organic acids is accompanied by an increase of mitochondrial activity in kidney cortex.  相似文献   

12.
The effects of nonselective ET(A)/ET(B) receptor blockade with intravenous bolus injection of bosentan (10 mg/kg) on renal excretory function and blood pressure were investigated in conscious, male, normotensive Wistar rats before and one week after bilateral renal denervation. Renal denervation was followed by an increase in urine flow rate from 4.54+/-0.38 to 5.72+/-0.36 microl/min x 100 g b.w. (p<0.05) and a decrease in urine osmolality from 855.5+/-44.6 to 707.4+/-47.5 mosm/kg H(2)O (p<0.05). Bosentan administration in sham-operated rats resulted in decrease in urine flow rate from 4.54+/-0.38 to 3.49+/-0.34 microl/min x 100 g b.w. (p<0.05), and increase in urine osmolality from 855.5+/-44.6 to 1075.0+/-76.1 mosm/kg H(2)O (p<0.05). Sodium excretion decreased from 226.9+/-20.0 to 155.1+/-11.0 nmol/min x 100 g b.w. (p<0.01). Bosentan administration in renal denervated rats did not produce any changes in renal water or electrolyte excrections. Blood pressure, heart rate, clearance of Inulin or clearance of paraaminohippuric acid (PAH) did not change in sham-operated or renal denervated rats during nonselective ET(A)/ET(B) receptor blockade. Bosentan did not alter the baroreflex sensitivity or sympatho-vagal balance in sham-operated or renal denervated rats. In conclusion, an interaction between renal nerves and endothelins appears to be involved in the regulation of the renal excretory function.  相似文献   

13.
The accumulation of p-aminohippuric acid (PAH) and cyclopenthiazide, two drugs of acidic character and extremely different physico-chemical properties, was determined in renal cortical slices of rats aged 5, 15, 33, 55, 105, and 240 days. PAH is accumulated in the cortical slices of 5- and 15-day-old animals to a lesser extent than in those of adult rats. Cyclopenthiazide is accumulated in much higher amounts than PAH in all age groups. The age dependence of cyclopenthiazide accumulation is not so pronounced as with PAH accumulation. There is no accumulation of PAH in the cortical slices of all age groups through active tubular transport, when the energy supply is inhibited by means of 2,4-dinitrophenol (DNP) or nitrogen 2 times bubbling (i.e. anaerobic incubation). By subsequent addition of DNP to the incubation medium or subsequent N2 atmosphere bubbling, an already existing PAH accumulation may be completely nullified. Contrary to PAH accumulation, cyclopenthiazide accumulation can be neither prevented nor abolished by inhibiting the energy supply.  相似文献   

14.
The amino acid content of three tissues was measured in 10-day-old rats made hyperphenylalaninemic from age 3 to 10 days by daily injection of phenylalanine plus alpha-methylphenylalanine to inhibit phenylalanine hydroxylase (PAH). At 12 h after the last injection, the concentrations of alanine, valine, methionine, isoleucine, and leucine in the cerebral hemispheres were depressed by 25-50%, whereas that of glycine was elevated 2.3-fold. In the spinal cord, the levels of phosphoserine, methionine, and leucine were decreased by 40-50%, and those of serine and threonine increased by 50%. Tyrosine and phenylalanine concentrations were high in all tissues, 2-3 and 15-30 times normal, respectively; of the amino acids investigated, they were the only ones changed in the liver. Cerebral hyperglycinemia was also produced by chronic treatment with phenylalanine plus p-chlorophenylalanine to inhibit PAH, but not by acute (12 h) hyperphenylalaninemia. An increase in cerebral phosphoserine phosphatase activity was greater in rats treated with phenylalanine plus PAH inhibitor than with inhibitor alone. The content of brain glycine normally declines with age from birth to 15 days; this decrease was prevented by chronic hyperphenylalaninemia. Attempts to reduce the cerebral glycine content of the hyperphenylalaninemic rats were unsuccessful. However, one of the therapeutic protocols, methionine loading, may be useful because it increased the methionine and decreased the phenylalanine contents in the brain.  相似文献   

15.
Renal tubular transport of organic anions is immature at birth and can be stimulated in adult rats by repeated administration of xenobiotics. There is some evidence of an increased synthesis of carrier proteins in renal tubular cells following stimulation as well as during postnatal development of renal tubular transport processes. The effect of pretreatment with an inhibitor of protein biosynthesis (neomycin) on stimulated and maturative transport of p-aminohippurate (PAH) was measured. Neomycin has a dose dependent long acting and reversible effect on stimulated PAH transport and on postnatal maturation of PAH excretion, and increased protein biosynthesis is the likely common basic phenomenon of both processes.  相似文献   

16.
Thyroid hormones are involved in the postnatal development of kidney functions. The influence of pretreatment with thyroid hormones on renal electrolyte excretion was measured in rats of different ages. Pretreatment with triiodothyronine or tetraiodothyronine (10 micrograms/100 g b.wt. i.p. for 3 days, once a day) cannot alter the low sodium excretion in young rats receiving a saline load. In 33-, 55- and 105-day-old rats the pretreatment with thyroid hormones is followed by a preferential increase of renal sodium excretion. Both thyroid hormones are effective.  相似文献   

17.
Twenty hours after unilateral nephrectomy (uNX) the PAH excretion of uninephrectomized rats reaches about 80% of the controls. Immediately after removal of one kidney the parenchyma loss can be compensated by an intensification of glomerular filtration. Thereafter the active tubular secretion capacity raises. 24 h after uNX, a significant increase of renal mass could be measured. The specific PAH accumulation capacity per 1 g renal cortical tissue increases significantly 96 h after uNX if the animals had been pretreated with cyclopenthiazide before the operation. Administration of azauracil or fluoruracil or neomycin causes a dose-dependent reduction of PAH elimination in sham operated as well as in uNX-rats. The effect of stimulation by cyclopenthiazide, also occurring after uNX could be reduced significantly by the inhibitors. The relative extent of compensation (80 +/- 10%) was not influenced by the inhibitors of protein synthesis. The compensation after uNX and the stimulation of renal tubular function are mediated by different mechanisms.  相似文献   

18.
Summary In anaesthetized adult female rats, the influence of epidermal growth factor (EGF) on renal amino acid handling was investigated in glutamine, arginine (both 50 mg/100 g b. wt. per hour), or alanine (90 mg/ 100 g b. wt. per hour) loaded animals. Continuous infusions of the three amino acids were followed by an increase in the fractional excretion (FE) of the administered amino acids as well as of the other endogenous amino acids. Under load conditions (alanine, arginine or glutamine), EGF pretreatment (8g/100g b. wt. subcutaneously for 8 days, twice daily 8 a.m. and 4 p.m.) was followed by a stimulation of renal amino acid reabsorption. The increase in the fractional excretion of the administered amino acids was significantly lower than in non-EGF-treated rats. These changes in amino acid transport were connected with a significant reduction of GFR after EGF pretreatment (0.96 ± 0.10 vs. 0.62 ± 0.07 ml/min X 100 g b. wt.) and a distinct increase in sodium excretion (2.98 ± 0.55 vs. 4.97 ± 0.71val/100 g b. wt. X 20 min). After loading with p-aminohippurate (PAH; 200mg/100g b. wt.), PAH excretion in EGF rats was increased by about 20%, whereas urinary protein excretion was lower in EGF pretreated rats (control: 0.45 ± 0.04 vs. EGF: 0.18 ± 0.03 mg/ 100 g b. wt. X 20 min). The PAH load reduced amino acid reabsorption as a sign of overloading of renal tubular transport capacity, but in EGF pretreated animals the amino acid excretion was only slightly increased under these conditions. Furthermore, EGF pretreatment depressed normal kidney weight gain significantly (874 ± 18 vs. 775 ± 32mg/100g b. wt.). EGF can improve the renal tubular transport capacity, but, compared to well-known stimulators of renal transport like dexamethasone or tri-iodothyronine, its effect is only of a moderate degree.  相似文献   

19.
Downregulation of the renal glucocorticoid-metabolizing enzyme 11beta-hydroxysteroid dehydrogenase type 2 (11beta-HSD-2) during liver cirrhosis may allow activation of the mineralocorticoid receptor (MR) by glucocorticoids and contribute to sodium retention. We tested this hypothesis in male Wistar rats with decompensated liver cirrhosis and ascites 7 wk after bile duct ligation (BDL). Renal 11beta-HSD-2 mRNA, protein, and activity were significantly decreased in decompensated rats. The urinary Na(+)/K(+) ratio was reduced by 40%. Renal epithelial sodium channel (ENaC) mRNA and immunostaining were only slightly affected. Complete metabolic studies, including fecal excretion, showed that the BDL rats had avid renal sodium retention. Treatment of the BDL rats with dexamethasone suppressed endogenous glucocorticoid production, normalized total sodium balance and renal sodium excretion, and reduced ascites formation to the same degree as direct inhibition of MR with K-canrenoate. Total potassium balance was negative in the BDL rats, whereas renal potassium excretion was unchanged. In the distal colon, expression of ENaC was increased in BDL rats. Fecal potassium excretion was increased in cirrhotic rats, and this was corrected by treatment with K-canrenoate but not dexamethasone. We conclude that development of sodium retention and decompensation in cirrhotic rats is associated with downregulation of renal 11beta-HSD-2 activity and inappropriate activation of renal sodium reabsorption by endogenous glucocorticoids. In addition, the overall potassium loss in the BDL model is due to increased fecal potassium excretion, which is associated with upregulation of ENaC in distal colon.  相似文献   

20.
This study was undertaken to examine changes in Zn and Cu homeostasis in the liver and kidney of rats caused by cadmium (Cd) or lipopolysaccharide (LPS) administration. Twenty-five male, 7- to 8-week-old Wistar rats were divided into five groups: saline only treatment, saline treatment and food deprivation, exposure to a single dose of Cd, exposure to LPS alone, and exposure to Cd + LPS. Changes in plasma nitrate concentrations and hepatic and renal Zn and Cu contents were measured together with urinary excretion rates for the metals and nitrate on 3 consecutive days: 24 h before treatment and 24 and 48 h after treatments. Cd exposure alone for 48 h caused a nearly 2-fold increase in plasma nitrate levels with no changes in urinary nitrate excretion whereas LPS treatment caused plasma nitrate levels to increase by 10-fold and urinary nitrate excretion to increase by 4-fold. Administration of LPS 24 h after Cd exposure caused a 10-fold increase in plasma nitrate concentrations and a 100-fold increase in urinary nitrate excretion compared to the rates prior to LPS administration. These results indicate a synergistic interaction between Cd and LPS toxicity. Cd exposure also caused a marked increase in hepatic Zn levels, but LPS did not cause any changes in hepatic Zn or Cu content. In sharp contrast, both Zn and Cu contents were decreased in the kidneys by 16 and 36% in animals exposed to Cd or LPS. A correlation analysis of measured variables reveals that renal Cu contents were inversely associated with plasma nitrate concentrations while urinary Cu excretion on day 3 showed a strong positive correlation with both urinary nitrate and Cd excretions on the same day. A linear regression analysis shows 20% of the variation in urinary Cu excretion was associated with urinary Cd excretion on the same day. It is concluded that reductions in renal Cu contents caused by Cd or LPS administration may be a result of Cd and NO displacement of Cu previously bound to metallothionein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号