首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
By an improved isolation procedure chloroplasts could be obtained from the alga Bumilleriopsis filiformis (Xanthophyceae) which exhibited high electron transport rates tightly coupled to ATP formation. Uncouplers both stimulate electron transport and inhibit photophosphorylation. These chloroplasts retain almost all soluble cytochrome c-553 besides a membrane-bound cytochrome c-554.5 (=f-554.5). Sonification or iron deficiency removed the soluble cytochrome only with a concurrent decrease of electron transport from water to methyl viologen or to NADP and decreased non-cyclic and cyclic photophosphorylation. However, photosynthetic control and the P2e ratios remain unaltered.In Bumilleriopsis, which apparently has no plastocyanin, the soluble cytochrome c-553 seemingly links electron transport between the bound cytochrome c and P-700.  相似文献   

2.
By assaying partial reactions of the photosynthetic electron transport system using thylakoids from spinach as well as from the algae Bumilleriopsis, Dunaliella , and Anabaena , it was demonstrated that the polyene antibiotic amphotericin B has no specific effect on plastocyanin. Pretreating spinach and algal thylakoids with this antibiotic decreased photosystem-II as well as photosystem-I activity regardless of whether the membranes contained plastocyanin or cytochrome c-553. Different sensitivity of cell-free electron transport activity against this antibiotic was observed due to the species used. With Dunaliella , the photosystem-II region was inhibited more strongly than photosystem-I, while Bumilleriopsis chloroplasts – although not containing plastocyanin – exhibited a stronger inhibition of the photosystem-I region. Apparently, amphotericin B mainly solubilizes redox compounds that form connecting pools in the photosynthetic electron transport chain.  相似文献   

3.
Chloroplast material active in photosynthetic electron transport has been isolated from Scenedesmus acutus (strain 270/3a). During homogenization, part of cytochrome 553 was solubilized, and part of it remained firmly bound to the membrane. A direct correlation between membrane cytochrome 553 and electron transport rates could not be found. Sonification removes plastocyanin, but leaves bound cytochrome 553 in the membrane. Photooxidation of the latter is dependent on added plastocyanin. In contrast to higher plant chloroplasts, added soluble cytochrome 553 was photooxidized by 707 nm light without plastocyanin present. Reduced plastocyanin or cytochrome 553 stimulated electron transport by Photosystem I when supplied together or separately. These reactions and cytochrome 553 photooxidation were not sensitive to preincubation of chloroplasts with KCN, indicating that both redox proteins can donate their electrons directly to the Photosystem I reaction center. Scenedesmus cytochrome 553 was about as active as plastocyanin from the same alga, whereas the corresponding protein from the alga Bumilleriopsis was without effect on electron transport rates.

It is suggested that besides the reaction sequence cytochrome 553 → plastocyanin → Photosystem I reaction center, a second pathway cytochrome 553 → Photosystem I reaction center may operate additionally.  相似文献   


4.
Studies of the respiratory electron transport pathway in the blue-green alga, Aphanocapsa, demonstrated the presence of cytochrome oxidase and a cytochrome complex. The use of antimycin A showed only the occurrence of a plastidal type of cytochrome complex (the cytochrome b6-f complex), which is insensitive to this inhibitor. Determination of the extent of photooxidation of cytochromes c-553 and f-556 under conditions of high and low cytochrome oxidase activities indicated an electron flow through both cytochromes to cytochrome oxidase. Direct evidence for a common segment of photosynthetic and respiratory electron transport from plastoquinone via the cytochrome b6-f complex to the soluble plastocyanin/cytochrome c-553 pool, as well as a competition between cytochrome oxidase and Photosystem I for reductants in this pool in the light, was obtained by measurements of electron transport with suitable electron donors in this alga.  相似文献   

5.
Four soluble cytochromes of the c type were isolated from the freshwater dinoflagellate Peridinium cinctum collected from Lake Kinneret, Israel. Cytochrome c with alpha-band maximum at 550 nm in the reduced state had a molecular mass of 10,200 Da, pI 7.4, and Em of 278 m V. This cytochrome was active in the respiratory chain of beef heart Keilin-Hartree particles. Cytochrome c-553 had a molecular mass of 13,200 Da, pI 4.9, and Em of 384 m V, and was active in light induced electron transport of Euglena gracilis chloroplast fragments. Cytochrome c-554 had a molecular mass of 13,500 Da, pI 4.4, and Em of 326 m V. This cytochrome was inactive in light induced electron transport but competed with cytochrome c-552 of Euglena in the assay. The acidic cytochrome c-557 was present in very small quantities. The properties of the soluble c-type cytochromes of P. cinctum are compatible with the classification of dinoflagellates as primitive eucaryotes.  相似文献   

6.
Treatment of spheroplasts of Nostoc museorum with hypotonic buffer results in membranes depleted of cytochrome c-553, but still active in photosynthetic and respiratory electron transport. These membranes retain full photosystem II activity (H2ODADox). Complete linear electron transport (H2ONADP+), however, is decreased as compared with untreated spheroplasts. Addition of basic Nostoc cytochrome c-553 to depleted membranes reconstitutes NADP+ reduction and redox reactions of the photosystem I region as well.Using NADPH as electron donor, respiration of depleted membranes is also stimulated by adding cytochrome c-553, indicative of its function in respiratory electron transport.Cytochrome c-553 from Bumilleriopsis filiformis, Spirulina platensis (acidic types), Phormidium foveolarum (basic type), and mitochondrial horse-heart cytochrome c-550 are not effective in reconstituting both photosynthetic and respiratory electron transport, which points to a specific role of Nostoc cytochrome c-553.Abbreviations BSA bovine serum albumin - DAD 3,6-diaminodurene - DADox 3,6-diaminodurene oxidized by potassium ferricyanide - DBMIB 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - DCIP 2,6-dichlorophenolindophenol - DPC 1,5-diphenylcarbazide - Fd ferredoxin - HEPES N-2-hydroxyethylpiperazine-N-2-ethanesulfonic acid - MES 2(-N-morpholino)-ethanesulfonic acid - MV methylviologen (1,1-dimethyl-4,4-bipyridylium dichloride) - PS I photosystem I - PS II photosystem II - Tris tris-(hydroxymethyl)-aminomethane  相似文献   

7.
1. A cell-free preparation of membrane fragments was prepared from the thermophilic blue-green alga Phormidium laminosum by lysozyme treatment of the cells followed by osmotic shock to lyse the spheroplasts. The membrane fragments showed high rates of photosynthetic electron transport and O2 evolution (180-250 mumol of O2/h per mg of chlorophyll a with 2,6-dimethyl-1,4-benzoquinone as electron acceptor). O2-evolution activity was stable provided that cations (e.g. 10mM-Mg2+ or 100mM-Na+) or glycerol (25%, v/v) were present in the suspending medium. 2. The components of the electron-transport chain in P. laminosum were similar to those of other blue-green algae: the cells contained Pigment P700, plastocyanin, soluble high-potential cytochrome c-553, soluble low-potential cytochrome c-54 and membrane-bound cytochromes f, b-563 and b-559 (both low- and high-potential forms). The amounts and midpoint potentials of the membrane-bound cytochromes were similar to those in higher-plant chloroplasts. 3. Although O2 evolution in P. laminosum spheroplasts was resistant to high temperatures, thermal stability was not retained in the cell-free preparation. However, in contrast with higher plants, O2 evolution in P. laminosum membrane fragments was remarkably resistant to the non-ionic detergent Triton X-100.  相似文献   

8.
Methylobacterium extorquens AM1 contains a novel c-type cytochrome, called cytochrome c-553, previously thought to be a precursor of the electron acceptor (cytochrome cL) for methanol dehydrogenase. Its amino acid composition and serological characteristics show that it has no structural relationship to cytochrome cL. It usually comprises less than 5% of the total c-type cytochromes. In a moxD mutant, which contains neither methanol dehydrogenase nor cytochrome cL, it comprises 30% of the soluble cytochrome and it has been purified and characterized from that mutant. Cytochrome c-553 is large (Mr 23,000), acidic and monohaem, with a redox potential of 194 mV. It reacts rapidly and completely with CO but is not autoxidizable. It is not autoreducible, and it is not an electron acceptor from methanol dehydrogenase or methylamine dehydrogenase, nor an important electron donor to the oxidase. It is able to accept electrons from cytochrome cL and to donate electrons to cytochrome cH. It is present in the soluble fraction (presumably periplasmic) and membrane fraction of wild-type bacteria during growth on a wide range of growth substrates, but its function in these bacteria or in the moxD mutant has not been determined.  相似文献   

9.
Soluble c-type cytochromes are central to metabolism of C1 compounds in methylotrophic bacteria. In order to characterize the role of c-type cytochromes in methane-utilizing bacteria (methanotrophs), we have purified four different cytochromes, cytochromes c-554, c-553, c-552, and c-551, from the marine methanotroph Methylomonas sp. strain A4. The two major species, cytochromes c-554 and c-552, were monoheme cytochromes and accounted for 57 and 26%, respectively, of the soluble c-heme. The approximate molecular masses were 8,500 daltons (Da) (cytochrome c-554) and 14,000 Da (cytochrome c-552), and the isoelectric points were pH 6.4 and 4.7, respectively. Two possible diheme c-type cytochromes were also isolated in lesser amounts from Methylomonas sp. strain A4, cytochromes c-551 and c-553. These were 16,500 and 34,000 Da, respectively, and had isoelectric points at pH 4.75 and 4.8, respectively. Cytochrome c-551 accounted for 9% of the soluble c-heme, and cytochrome c-553 accounted for 8%. All four cytochromes differed in their oxidized versus reduced absorption maxima and their extinction coefficients. In addition, cytochromes c-554, c-552, and c-551 were shown to have different electron paramagnetic spectra and N-terminal amino acid sequences. None of the cytochromes showed significant activity with purified methanol dehydrogenase in vitro, but our data suggested that cytochrome c-552 is probably the in vivo electron acceptor for the methanol dehydrogenase.  相似文献   

10.
Heterocysts of the blue-green alga Nostoc muscorum have been isolated by prolonged treatment with lysozyme. Quantitative data are presented which show the occurrence of cytochromes c-553, f-557 and b-563 in heterocysts in amounts comparable to vegetative cells. Particularly the content of the water-soluble cytochrome c-553 can be used to evaluate the intactness of a heterocyst preparation. Cytochrome f-557 has been partially purified and found to be a c-type cytochrome corresponding to cytochrome f of higher plants and other algae. Cytochrome b-559 is present in vegetative cells but not in heterocysts. The content of plastoquinone in heterocysts is reduced to 42% of the amount present in vegetative cells. These data suggest a degradation of Photosystem II during heterocyst differentiation. Measurements of photosynthetic electron transport in heterocysts proved the inability of the photosynthetic apparatus to carry out electron transport with electrons donated by water or diphenylcarbazide. In Tris-washed thylakoids from vegetative cells, however, diphenylcarbazide can act as an electron donor to Photosystem II.  相似文献   

11.
Roy Powls  J. Wong  Norman I. Bishop 《BBA》1969,180(3):490-499
To investigate the possible alteration of various components of the photosynthetic electron transport system of certain mutants of Scenedesmus techniques were developed for their extraction and purification from whole cells of this alga. The components identified in the normal alga were cytochrome c 549, cytochrome b 562, a cytochrome c 551, flavoprotein-ferredoxin reductase, plastocyanin, cytochrome c 552, and ferredoxin. Lamellar-bound cytochrome c 552 and cytochromes b were also detected. Application of the extraction and purification techniques to two photosynthetic mutants revealed that Mutants 26 and 50 lacked cytochrome f in both the bound and soluble forms (Mutant 50) or in only the bound form (Mutant 26). Chloroplasts prepared from either of these mutants lacked Hill reaction activity with a variety of oxidants with water as the electron donor but photoreduced NADP+ with 2,6-dichlorophenolindophenol and ascorbate as the electron donor system. No photophosphorylation in vivo was detected with either mutant, but isolated chloroplasts performed a cyclic photophosphorylation with phenazine methosulphate as cofactor. Fluorescence analysis revealed that both mutants possess a measurable Photosystem II activity.

It was concluded that the loss of cytochrome f prevents the normal flow of electrons from Photosystem II to NADP and also to a variety of other Hill reaction oxidants. Furthermore, cytochrome f is not required for the reduction of NADP with electron donor systems other than water nor is it an essential component of the mechanism of cyclic photophosphorylation with phenazine methosulphate as cofactor.  相似文献   


12.
Isolated Euglena chloroplasts retain up to 50% of cytochrome 552 on a chlorophyll basis compared to the content of cells. Cytochrome 563 is found in equal amount in chloroplasts and cells. The amount of cytochrome 552 retained depends on the isolation procedure of chloroplasts.Cytochrome 552 can be further liberated from chloroplasts by mechanical treatment or incubation with detergent. It is concluded that cytochrome 552 is not tightly bound in the membrane but rather trapped in the thylakoids of the chloroplasts.In photosynthetic electron flow, cytochrome 552 is functioning as donor for photosystem I, mediating electron flow from cytochrome 558 to P700 under our conditions.Antimycin A stimulates the photooxidation of cytochrome 552 and of cytochrome 558.The rates of electron flow from water to NADP+ and of cyclic photophosphorylation mediated by phenazine methosulfate correlate with the content of endogenous cytochrome 552 in the chloroplasts. External readdition of cytochrome 552 to deficient chloroplasts causes reconstitution of NADP+ reduction but not of cyclic photophosphorylation. Mechanical treatment or other means of fragmentation of chloroplasts results in the exposure of originally buried reaction sites for external cytochrome 552.  相似文献   

13.
We have examined the bacteriochlorophyll reaction-center complex of Chlorobium limicola f. thiosulfatophilum, strain Tassajara. Our results indicate that the midpoint potential of the primary electron donor bacteriochlorophyll of the reaction center is +250 mV at pH 6.8, while that of cytochrome c-553 is +165 mV. There are two cytochrome c-553 hemes per reaction center, and the light-induced oxidation of each is biphasic (t1/2 of less than 5 mus and approximately 50 mus). We belive that this indicates a two state equilibrium with each cytochrome heme being either close to, or a little removed from, the reaction-center bacteriochlorophyll. We have also titrated the primary electron acceptor of the reaction center. Its equilibrium midpoint potential at pH 6.8 is below -450 mV. This is very much lower than the previous estimate for green bacteria, and also substantially lower than values obtained for purple bacteria. Such a low-potential primary acceptor would be thermodynamically capable of direct reduction of NAD+ via ferredoxin in a manner analagous to photosystem I in chloroplasts and blue-green algae.  相似文献   

14.
Helicobacter pylori, a microaerophilic Gram-negative spiral bacterium residing in the human stomach, contains a small size soluble cytochrome c. This cytochrome c was purified from the soluble fraction of H. pylori by conventional chromatographies involving octyl-cellulose and CM-Toyopearl. Its reduced form gave an alpha absorption band at 553 nm, and thus the cytochrome was named H. pylori cytochrome c-553. The cytochrome, giving a band below 10,000 Da upon SDS-PAGE, was determined to have a mass of 8,998 by time of flight mass spectroscopy. Its N-terminal peptide sequence was TDVKALAKS---, indicating that the nascent polypeptide was cleaved to produce a signal peptide of 19 amino acid residues and a mature protein composed of 77 amino acid residues. The cb-type cytochrome c oxidase oxidized ferrocytochrome c-553 of this bacterium actively (V(max) of about 250 s(-1)) with a small K(m) (0.9 microM). Analysis of the effect of the salt concentration on the oxidase activity indicated that oxidation of cytochrome c-553 is highly inhibited under high ionic conditions. The amino acid sequence of H. pylori cytochrome c-553 showed the closest similarity to that of Desulfovibrio vulgaris cytochrome c-553, and these sequences showed a weak relationship to that of the cytochrome c(8)-group among class I cytochromes c.  相似文献   

15.
Desulfovibrio spp. are sulfate-reducing organisms characterized by having multiple periplasmic hydrogenases and formate dehydrogenases (FDHs). In contrast to enzymes in most bacteria, these enzymes do not reduce directly the quinone pool, but transfer electrons to soluble cytochromes c. Several studies have investigated electron transfer with hydrogenases, but comparatively less is known about FDHs. In this work we conducted experiments to assess potential electron transfer pathways resulting from formate oxidation in Desulfovibrio desulfuricans ATCC 27774. This organism can grow on sulfate and on nitrate, and contains a single soluble periplasmic FDH that includes a cytochrome c (3) like subunit (FdhABC(3)). It has also a unique cytochrome c composition, including two cytochromes c not yet isolated from other species, the split-Soret and nine-heme cytochromes, besides a tetraheme type I cytochrome c (3) (TpIc (3)). The FDH activity and cytochrome composition of cells grown with lactate or formate and nitrate or sulfate were determined, and the electron transfer between FDH and these cytochromes was investigated. We studied also the reduction of the Dsr complex and of the monoheme cytochrome c-553, previously proposed to be the physiological partner of FDH. FdhABC(3) was able to reduce the c-553, TpIc (3), and split-Soret cytochromes with a high rate. For comparison, the same experiments were performed with the [NiFe] hydrogenase from the same organism. This study shows that FdhABC(3) can directly reduce the periplasmic cytochrome c network, feeding electrons into several alternative metabolic pathways, which explains the advantage of not having an associated membrane subunit.  相似文献   

16.
17.
Biggins J 《Plant physiology》1967,42(10):1447-1456
Reactions of photosynthetic electron transport and photophosphorylation were studied in preparations from the blue-green alga, Phormidium luridum. Osmotic lysis of protoplasts proved to be a superior technique for the production of cell-free preparations with high enzymatic activity. Such lysed protoplasts sustain high rates of photophosphorylation coupled to the photo-reduction of NADP+ or ferricyanide. P/2e ratios close to unity were routinely observed. The same preparations, and also those prepared by grinding the cells in solutions containing sucrose or ethylene glycol, are active in cyclic photophosphorylation mediated by phenazine methosulfate or dichloro-phenolindophenol. The particles prepared by grinding the cells are, however, inactive in non-cyclic photophosphorylation.

Extensive washing of the membranes with solutions containing sucrose removes the majority of the residual soluble fraction of the algal cell which includes cytochromes C554 and C549 and phycocyanin. Cyclic photophosphorylation activity is unimpaired by this treatment, but is abolished when the membranes are washed with very dilute buffers. This activity is restored by the addition of a soluble protein which is not a known redox constituent such as cytochrome C554 or plastocyanin, and may be a coupling factor.

Analysis of the well-washed membranes by low temperature (77°K) difference spectrophotometry reveals the presence of cytochrome b6 and a bound form of cytochrome C554 in proportions similar to that found in higher plant chloroplasts. The concentration of the membrane-bound cytochrome C554, relative to cytochrome b6 is not altered by extensive washing, sonication or treatment with 1% digitonin. This indicates that this cytochrome is an integral component of the cytoplasmic lamellae and we suggest that it is of functional significance. The soluble form of cytochrome C554, which is present in concentrations about 3-fold higher than the bound form, depending upon growth conditions, is not essential for cyclic photophosphorylation. The concentration of cytochrome b6: chlorophyll a was found to be 1:500.

Under the conditions employed, we were unable to detect a bound form of the low potential cytochrome C549.

  相似文献   

18.
Light-induced absorbance changes were investigated in chloroplast fragments of wild type Chlamydomonas reinhardi and 5 different mutant strains having impaired photosynthesis. Two absorbance changes were detected, 1 having a maximum at 553 nm and the other at 559 nm. The component exhibiting the 553 nm change is a cytochrome similar to cytochrome f from higher plant chloroplasts. The component exhibiting the 559 nm change has the properties of a cytochrome similar to cytochrome b(3). Two of the mutant strains (ac-115 and ac-141) were found to lack the 559 cytochrome and light induced only the oxidation of the 553 cytochrome. A third mutant strain (ac-206), previously shown to lack the 553 cytochrome, exhibited only the light-induced reduction of the 559 cytochrome. A fourth mutant strain (ac-208), shown to lack plastocyanin, exhibited absorbance changes attributable to both cytochromes. However, light was capable of inducing the reduction of the 559 cytochrome but not its oxidation. On the other hand, light induced the oxidation of the 553 cytochrome but not its reduction.These observations are discussed in terms of the series formulation for photosynthetic electron transport in which the 559 cytochrome is reduced by system II and transfers electrons via the component affected in ac-21 to the 553 cytochrome. Accordingly, system I sensitizes the oxidation of the 3 components of the electron transport chain.  相似文献   

19.
A membrane-bound cytochrome resembling higher plant cytochrome f in many respects has been extracted from the algae Chlamydomonas. Euglena and Anacystis, and partially purified. The spectra of the cytochromes from Chlamydomonas and Euglena are virtually identical to that of parsley cytochrome f, with alpha-band maxima near 554 nm, very asymmetrical beta-bands, and gamma-band maxima at 421 nm. The cytochrome from Anacystis had alpha and gamma-bands both shifted to slightly longer wavelengths. The redox potential of the cytochrome from Chlamydomonas was determined as +350 mV, and its minimum molecular weight in sodium dodecyl sulphate as 31 000. The cytochrome from Euglena showed a rate of reaction with higher plant plastocyanin at least 100 times that of the soluble Euglena cytochrome c-552, and was unaffected by Euglena cytochrome c-552 antiserum. A very fast rate of electron transfer occurred between this cytochrome purified from Euglena and cytochrome c-552. The roles of the membrane-bound and soluble c-type cytochromes in algal photosynthesis are discussed, and it is recommended that the name cytochrome f should be reserved for the membrane-bound cytochrome (to emphasize its affinity with higher plant cytochrome f), while the soluble one should be named by its alpha-band (c-552, c-553, etc.) to make clear its distinctness from higher plant cytochrome f and homology with mitochondrial cytochrome c.  相似文献   

20.
Fifteen species from different genera of blue-green algae have been examined for their formation of plastocyanin (PC) and cytochrome c-553 (cyt c-553) in high or low Cu media. In addition to species which contain only cyt c-553 and those which completely exchange their cyt c-553 by PC, a new regulatory type was detected in which this exchange was incomplete. By comparing different species, it could be shown that either this incomplete exchange of cyt c-553 by PC as well as lack of PC in some other blue-green algae is not caused by restricted Cu uptake but is due to different biosynthetic and regulatory properties. Occurrence of PC and cyt c-553 cannot be used as a taxonomic criterium to classify blue-green algae. However, formation of either one or both of these redox components fits well into a line of evolution of the photosynthetic apparatus from the blue-green algae via green algae to higher plants.Abbreviations PC plastocyanin; cyt c-553, cytochrome c-553  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号