首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Application of levulinic acid (LA), a competitive inhibitor of δ-aminolevulinic acid (ALA) dehydratase, to greening plant tissues causes ALA to accumulate at the expense of chlorophyll. 4,6-Dioxoheptanoic acid (DA), which has been reported to be an effective inhibitor of this enzyme in animal systems, has a similar but more powerful effect on ALA and chlorophyll metabolism in greening leaves of Hordeum vulgare L. var. Larker. Both LA and DA also inhibit the uptake of [14C]amino acids into etiolated and greening barley leaves and reduce their incorporation into protein. Treatment of etiolated and greening leaves with these compounds results in the inhibition of 14CO2 evolution from labeled precursors, including amino and organic acids. Inhibition of 14CO2 evolution by these compounds is more effective in greening leaves than in etiolated leaves when [4-14C]ALA or [1-14C]glutamate are employed as precursors. Both LA and DA also inhibit the uptake and increase the incorporation of 32Pi into organophosphorus by etiolated barley leaves. These results indicate that LA and DA have more far-reaching effects upon plant metabolism than was previously believed.  相似文献   

2.
Klein S  Katz E  Neeman E 《Plant physiology》1977,60(3):335-338
A short illumination of etiolated maize (Zea mays) leaves with red light causes a protochlorophyll(ide)-chlorophyll(ide) conversion and induces the synthesis of δ-aminolevulinic acid (ALA) during a subsequent dark period. In leaves treated with levulinic acid, more ALA is formed in the dark than in control leaves. Far red light does not cause a conversion of protochlorophyll(ide) into chlorophyll(ide) and does not induce accumulation of ALA in the dark. Both red and far red preilluminations cause a significant potentiation of ALA synthesis during a period of white light subsequent to the dark period. The results indicate a dual light control of ALA formation. The possible role of phytochrome and protochlorophyllide as photoreceptors in this control system is discussed.  相似文献   

3.
Levulinic acid (LA), a competitive inhibitor of δ-aminolevulinic acid (ALA) dehydratase (EC 4.2.1.24), has been used extensively in the study of ALA formation during greening. When [1-14C]LA is administered to etiolated barley (Hordeum vulgare L. var. Larker) shoots in darkness, 14CO2 is evolved. This process is accelerated when such tissues are incubated with 2 millimolar ALA or placed under continuous illumination. Label from the C-1 of LA becomes incorporated into organic acids, amino acids, sugars, lipids, and proteins during a 4-hour incubation in darkness or in the light. This metabolism is discussed in relation to the use of LA as a tool in the study of chlorophyll synthesis in higher plants.  相似文献   

4.
Toneva  V.  Shalygo  N.  Yaronskaya  E.  Averina  N.  Minkov  I. 《Photosynthetica》1998,34(4):555-560
The influence of 2,2′-dipyridyl (2,2′-DP) on the activity of one of the enzymes at the initial stages of chlorophyll (Chl) biosynthesis, δ-aminolevulinic acid dehydratase (ALAD; δ-aminolevulinate hydro-lyase, EC 4.2.1.24), as well as on δ-aminolevulinic acid (ALA) accumulation was investigated in green barley (Hordeum vulgare L.) leaves. In seven-day-old green leaves treated with 3 mM 2,2′-DP for 17 h in darkness and subsequently irradiated with "white light" (15 W m-2) for 4, 8, and 24 h the ALAD activity was 51 % as compared to that in untreated leaves. At the same time, the ALA forming system was most sensitive to the photodynamic processes caused by 2,2′-DP. After 8 h of irradiation, ALA synthesis was entirely inhibited. After the treatment the leaves accumulated exceptionally high amounts of Chl precursors such as protoporphyrin IX (Proto), Mg-protoporphyrin IX (Mg-Proto), its monomethyl ester, and protochlorophyllide (Pchlide) that are photosensitizers of photodynamic processes in plants. A comparatively low Chl and carotenoid (Car) destruction was registered during the subsequent 4 and 8 h of irradiation. At the same time, the content of Chl precursors was negligible. The low photodestruction of Chl and Car included in pigment-protein complexes, against the background of fast porphyrin disappearance, and fast decrease of enzymatic activities at the initial stages of Chl production could mean that the photodynamic effect induced by porphyrins accumulated in the presence of 2,2′-DP affected first the Chl enzymatic system and did not change the pool of already synthesized photosynthetic pigments.  相似文献   

5.
The accumulation of δ-aminolevulinic acid (ALA) was studied in greening maize (Zea mays) leaves which were transferred to darkness and reilluminated after various periods of time. The system synthesizing ALA decays in the dark with a half-life of about 80 minutes. The onset of enzyme decay after transfer to darkness shows a 40-minute lag. The accumulation of ALA in the presence of levulinic acid in leaves transferred to darkness corresponds to that expected from the estimated half-life of the enzyme synthesizing ALA. On the other hand, the accumulation of protochlorophyll upon transfer to darkness in the absence of levulinic acid stops much earlier. It is suggested that a control point exists in the pathway between ALA and protochlorophyll, preventing utilization of the accumulated ALA upon transfer of greening leaves to darkness. This is supported by the observed effects of low intensities of monochromatic light (648 nm) on ALA and chlorophyll accumulation.  相似文献   

6.
Photosynthetic activity in terms of O2 evolution and the growth of Spirulina platensis was stimulated by adding 5-aminolevulinic acid (ALA, 500 mg/l) to photoautotrophically growing cells. After ALA was added to the medium, intracellular accumulations of phycocyanin and chlorophyll were stimulated simultaneously, followed by enhancement of the photosynthetic activities of photosystems I and II, and lastly, growth was promoted. ALA did not directly activate the photosynthetic electron transport system. However, during a 3-h incubation of intact cells with ALA, photosynthetic activity was enhanced.  相似文献   

7.
δ-Aminolevulinic acid (ALA), a key precursor of the tetrapyrroles heme and chlorophyll, is capable of being synthesized by two different routes in cells of the unicellular green alga Euglena gracilis: from the intact carbon skeleton of glutamate, and via the condensation of glycine and succinyl CoA, mediated by the enzyme ALA synthase. The regulatory properties of ALA synthase were examined in order to establish its role in Euglena.

Partially purified Euglena ALA synthase, unlike the case with the bacterial or animal-derived enzyme, does not exhibit allosteric inhibition by the tetrapyrrole pathway products heme, protoporphyrin IX, and porphobilinogen, at concentrations up to 100 micromolar.

In aplastidic mutant cells, extractable ALA synthase activity is constant during exponential growth, and decreases to low levels as the cells reach the stationary state. Rapid exponential decline of ALA synthase (t1/2 = 55 min) occurs after administration of 43 micromolar cycloheximide, but not 6.2 millimolar chloramphenicol. These results suggest that, as in other eukaryotic cells, ALA synthase is synthesized on cytoplasmic ribosomes and is subject to rapid turnover in vivo.

Extractable ALA synthase activity increases 2.5-fold within 6 hours after administration of 100 millimolar ethanol, a stimulator of mitochondrial development, and 4.5-fold within 12 hours after administration of 1 millimolar 4,6-dioxoheptanoic acid, which blocks ALA utilization, suggesting that activity is controlled in vivo by a feedback induction-repression mechanism, coupled with rapid enzyme turnover.

In heterotrophically grown wild-type cells, low levels of ALA synthase rapidly increase 4.5-fold within 12 hours after cells are transferred from the light to the dark, and decrease exponentially (t1/2 = 75 min) when cells are transferred from the dark to light. The dark levels are equal to those in light- or dark-grown aplastidic mutant cells. The low level occurring in light-grown wild-type cells is not altered by the presence of 10 micromolar 3-(3,4-dichlorophenyl)-1,1-dimethylurea, which blocks photosynthetic O2 production. The decrease that occurs on dark-to-light transfer can be diminished by 12- or 24-hour prior incubation with 6.2 millimolar chloramphenicol, which also retards chlorophyll synthesis after the transfer to light.

The positive relationship of ALA synthase activity to degree of mitochondrial expression, and the inverse relationship to plastid development and chlorophyll synthesis, suggests that ALA synthase functions to provide precursors to nonplastid tetrapyrroles in Euglena. In light-grown, wild-type cells, the diminished levels of ALA synthase may be due to the ability of developing plastids to export heme or a heme precursor to other cellular regions, which thereby supplants the necessity for ALA formation via the ALA synthase route.

  相似文献   

8.
Gabaculine and 4-amino-5-hexynoic acid (AHA) up to 3.0 millimolar concentration strongly inhibited 5-aminolevulinic acid (ALA) synthesis in developing cucumber (Cucumis sativus L. var Beit Alpha) chloroplasts, while they hardly affected protochlorophyllide (Pchlide) synthesis. Exogenous protoheme up to 1.0 micromolar had a similar effect. Exogenous glutathione also exhibited a strong inhibitory effect on ALA synthesis in organello but hardly inhibited Pchlide synthesis. Pchlide synthesis in organello was highly sensitive to inhibition by levulinic acid, both in the presence and in the absence of gabaculine, indicating that the Pchlide was indeed formed from precursor(s) before the ALA dehydratase step. The synthesis of Pchlide in the presence of saturating concentrations of glutamate was stimulated by exogenous ALA, confirming that Pchlide synthesis was limited at the formation of ALA. The gabaculine inhibition of ALA accumulation occurred whether levulinic acid or 4,6-dioxohepatonic acid was used in the ALA assay system. ALA overproduction was also observed in the absence of added glutamate and was noticeable after 10-minute incubation. These observations suggest that although Pchlide synthesis in organello is limited by ALA formation, it does not utilize all the ALA that is made in the in organello assay system. Gabaculine, AHA, and probably also protoheme, inhibit preferentially the formation of that portion of ALA that is not destined for Pchlide. A model proposing a heterogenous ALA pool is described.  相似文献   

9.
Harel E  Ne'eman E  Meller E 《Plant physiology》1983,72(4):1056-1061
Cell-free extracts from greening maize (Zea mays L.) leaves catalyze the conversion of [14C]2-ketoglutarate (KG) to [14C]5-aminolevulinic acid (ALA) in a reaction which requires NADH and an amino donor and shows maximal activity around pH 6.5. The enzymic system is located in the cytosol. This cell fraction contains a low level of `KG dehydrogenase' activity and a transaminase which catalyzes the conversion of 4,5-dioxovaleric acid (DOVA) to ALA. The transaminase can use glutamate, aspartate, or alanine as amino donor. It is effectively inhibited by aminooxyacetate and ethylenediamine tetraacetate and shows maximal activity at pH 6.7. The activity of DOVA transaminase is only slightly affected by preillumination of leaves and can also be detected in green leaves and in roots.

DOVA was isolated from leaves and roots and determined as its benzoquinoxaline derivative. Significant amounts were found only in tissues in which ALA had accumulated or after it was exogenously supplied. DOVA was labeled in vivo by both [14C]ALA and [14C]KG. Small amounts were also formed from ALA in a cell-free system.

It is suggested that DOVA may be an intermediate in the diversion of ALA to respiratory metabolism and that it is not involved in the biosynthesis of this porphyrin precursor.

  相似文献   

10.
When [2,4-14C]porphobilinogen (PBG) or [2 (aminomethyl),5-14C]PBG is administered to etiolated barley (Hordeum vulgare L. var. Larker) leaves in darkness, label becomes incorporated into CO2, organic and amino acids, sugars, lipids, and proteins during a 4-hour incubation. Less than 1% of the label, however, is incorporated into porphyrins. The rate of 14CO2 evolution from leaves fed [2,4-14C]PBG is strongly inhibited by anaerobiosis but is unaffected by aminooxyacetic acid, while the rate of 14CO2 evolution from [2(aminomethyl),5-14C]PBG is strongly inhibited by aminooxyacetic acid but is not affected by anaerobiosis.  相似文献   

11.
Levulinic acid inhibited the greening of etiolated maize (Zea mays) and bean (Phaseolus vulgaris) leaves and caused accumulation of δ-aminolevulinic acid (ALA). ALA accumulation in maize was equivalent to the decrease in chlorophyll, over a wide range of experimental conditions. It was saturated at low light intensities and was not limited by the supply of substrates during the early hours of greening. During 20 hours in light, levulinic acid had little effect on the structural development of thylakoids in bundle sheath chloroplasts but significantly reduced the number and size of thylakoids in grana of mesophyll chloroplasts. Recrystallization of prolamellar bodies and their reformation was inhibited. Mitochondria appeared not to be affected.  相似文献   

12.
Previously, it was reported that a newly isolated microbial culture, Clavibacter sp. strain ALA2, produced trihydroxy unsaturated fatty acids, diepxoy bicyclic fatty acids, and tetrahydroxyfuranyl fatty acids (THFAs) from linoleic acid (C. T. Hou, J. Am. Oil Chem. Soc. 73:1359-1362, 1996; C. T. Hou and R. J. Forman III, J. Ind. Microbiol. Biotechnol. 24:275-276, 2000; C. T. Hou, H. Gardner, and W. Brown, J. Am. Oil Chem. Soc. 75:1483-1487, 1998; C. T. Hou, H. W. Gardner, and W. Brown, J. Am. Oil Chem. Soc. 78:1167-1169, 2001). In this study, we found that Clavibacter sp. strain ALA2 produced novel THFAs, including 13,16-dihydroxy-12-THFA, 15-epoxy-9(Z)-octadecenoic acid (13,16-dihydroxy-THFA), and 7,13,16-trihydroxy-12, 15-epoxy-9(Z)-octadecenoic acid (7,13,16-trihydroxy-THFA), from α-linolenic acid (9,12,15-octadecatrienoic acid). The chemical structures of these products were determined by gas chromatography-mass spectrometry and proton and 13C nuclear magnetic resonance analyses. The optimum incubation temperature was 30°C for production of both hydroxy-THFAs. 13,16-Dihydroxy-THFA was detected after 2 days of incubation, and the concentration reached 45 mg/50 ml after 7 days of incubation; 7,13,16-trihydroxy-THFA was not detected after 2 days of incubation, but the concentration reached 9 mg/50 ml after 7 days of incubation. The total yield of both 13,16-dihydroxy-THFA and 7,13,16-trihydroxy-THFA was 67% (wt/wt) after 7 days of incubation at 30°C and 200 rpm. In previous studies, it was reported that Clavibacter sp. strain ALA2 oxidized the C-7, C-12, C-13, C-16, and C-17 positions of linoleic acid (n-6) into hydroxy groups. In this case, the bond between the C-16 and C-17 carbon atoms is saturated. In α-linolenic acid (n-3), however, the bond between the C-16 and C-17 carbon atoms is unsaturated. It seems that enzymes of strain ALA2 oxidized the C-12-C-13 and C-16-C-17 double bonds into dihydroxy groups first and then converted them to hydroxy-THFAs.  相似文献   

13.
Extracellular formation of 5-aminolevulinic acid (ALA) by adding levulinic acid (LA), an inhibitor of ALA dehydratase, was examined in the anaerobic-light culture of Rhodobacter sphaeroides. The addition of LA (10–25 mmol/l) during the middle log phase retarded the growth and accelerated the extracellular formation of ALA, while over 50 mmol/l completely suppressed both growth and formation.The formation of ALA was closely related to intracellular ALA synthetase activity. Light intensity was also an important factor for enhancing ALA formation. The optimal condition, addition of 15 mmol/l of LA during the middle log phase with 3 klx illumination, resulted in ALA formation of 0.26 mol/l. In addition, supplementation with glycine (30 mmol/l) and succinate (30 mmol/l), precursors of ALA biosynthesis, enhanced ALA formation up to ca. 2 mmol/l.  相似文献   

14.
The effects of 2,2′-bipyridyl on porphyrin formation differed in illuminated and dark-treated barley leaves. In the dark, bipyridyl treatment increased photoconvertible protochlorophyllide (Pchlide, P650) and decreased the protohaem content. The increase in Pchlide could not be wholly accounted for by a diversion of ‘substrate’ from protohaem synthesis. The rate of Pchlide regeneration was slightly higher in chelator treated leaves which suggests increased δ-aminolaevulinic acid (ALA) synthesis. Only small quantities of Mg-protoporphyrinmonomethylester (Mg-protoME) were detected in etiolated leaves treated with bipyridyl in the dark. Protochlorophyll (P630) synthesis from exogenously supplied ALA was lower in the chelator treatments. The results suggest that only when substantial quantities of ALA are being utilized in dark-grown leaves does a ‘metal’ become limiting in the bipyridyl treated leaves. In the light, bipyridyl inhibited chlorophyll synthesis, again suggesting that when substantial amounts of ALA were being utilized a ‘metal’ becomes rate limiting. Bipyridyl treatment also inhibited ALA production in light-treated leaves. The incorporation of glycine-[14C] into ALA in the presence of bipyridyl was severely restricted compared to the incorporation of glutamate-[14C]. The data suggest two pathways for ALA synthesis; the classical ALA-synthetase which utilizes glycine and is operative in dark-grown leaves and a second enzyme system, which uses glutamate, and is of quantitative importance in the light.  相似文献   

15.
The in vivo oxidation of the C4 and C5 of 5-aminolevulinic acid (ALA) to CO2 has been studied in etiolated barley (Hordeum vulgare L. var. Larker) leaves in darkness. The rate of 14CO2 evolution from leaves fed [4-14C]ALA is strongly inhibited by aminooxyacetate, anaerobiosis, and malonate. The rate of 14CO2 evolution from leaves fed [5-14C]ALA is also inhibited by these treatments but to a lesser extent. These results suggest that (a) one step in ALA catabolism is a transamination reaction and (b) the C4 is oxidized to CO2 via the tricarboxylic acid cycle to a greater extent than is the C5.  相似文献   

16.
Adult females of Meloidogyne incognita were excised from tomato roots and incubated in 0.04 M phosphate buffered saline, pH 7.4 for 18-72 hours to allow accumulation of stylet exudate. Twenty-four percent of the females produced exudate during the initial 18-hour incubation period; 70% of those females producing exudate initially produced additional exudate during the subsequent 54-hour incubation period. Analysis of exudate by sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed the presence of at least nine major protein bands. Differential staining with silver and Coomassie Brilliant Blue G-250 stains indicated that three of the bands were glycoproteins. Upon acid hydrolysis, 14 amino acids were detected in the stylet exudate. The basic amino acids lysine, histidine, and arginine comprised 21.8% of the total amino acids detected. No peroxidase activity was detected in the stylet exudates. Data presented extend and generally confirm prior work on the chemical composition of stylet exudate.  相似文献   

17.
This study evaluates the role of exogenous foliar application of 5-aminolevulinic acid (ALA) on water relations, gas exchange, chlorophyll fluorescence, and the activities and gene expression patterns of antioxidant enzymes in leaves of oilseed rape under drought stress and recovery conditions. Seedlings at four-leaf stage were imposed to well-watered condition (80 % of water-holding capacity) or drought stress (40 % of water-holding capacity) and subsequently foliar sprayed with water or ALA (30 mg l?1). Drought suppressed the accumulation of plant biomass and decreased chlorophyll content and leaf water status (relative water content and water potential). The actual quantum yield of photosystem II and electron transport rates were hampered in parallel to net photosynthetic rate. However, drought stress induced the accumulation of malondialdehyde (MDA) and hydrogen peroxide, enhanced the activities of catalase (CAT), peroxidase (POD), ascorbate peroxidase (APX), glutathione reductase (GR) and superoxide dismutase and up-regulated the expression of APX and GR. After rehydration for 4 days, the growth of drought-treated seedlings was restored to normal level for most of the physiological parameters. Foliar application of ALA maintained relatively higher leaf water status and enhanced chlorophyll content, net photosynthetic rate, actual quantum yield of photosystem II, photochemical quenching, non-photochemical quenching and electron transport rates in stressed leaves. Exogenous ALA also alleviated the accumulation of MDA and hydrogen peroxide, increased the activities of antioxidant enzymes and enhanced the expression of CAT and POD in drought-treated plants. These results indicate that ALA may effectively protect rapeseed seedlings from damage induced by drought stress.  相似文献   

18.
α-Hydroxypyridine methane sulphonic acid (HPMS), isonicotinyl hydrazide (INH) and nialamide inhibit chlorophyll synthesis in etiolated barley leaves exposed to light. HPMS lowered the rate of protochlorophyllide regeneration but had little effect on the synthesis of protochlorophyll (P630) from exogenous δ-aminolaevulinic acid (ALA). The addition of glycine to HPMS treated leaves partially overcame the inhibition of chlorophyll synthesis. Glycine-[14C] was readily incorporated into ALA in dark-grown leaves. HPMS treatment increased the sp. act. of ALA in leaves fed glycine-[14C]. Glycollate oxidation was lower in extracts from HPMS treated leaves. Plants may therefore have two pathways for ALA production with the glutamate pathway becoming more important in conditions where photorespiration is high.  相似文献   

19.
    
The influence of 2,2′-dipyridyl (2,2′-DP) on the activity of one of the enzymes at the initial stages of chlorophyll (Chl) biosynthesis, δ-aminolevulinic acid dehydratase (ALAD; δ-aminolevulinate hydro-lyase, EC 4.2.1.24), as well as on δ-aminolevulinic acid (ALA) accumulation was investigated in green barley (Hordeum vulgare L.) leaves. In seven-day-old green leaves treated with 3 mM 2,2′-DP for 17 h in darkness and subsequently irradiated with "white light" (15 W m-2) for 4, 8, and 24 h the ALAD activity was 51 % as compared to that in untreated leaves. At the same time, the ALA forming system was most sensitive to the photodynamic processes caused by 2,2′-DP. After 8 h of irradiation, ALA synthesis was entirely inhibited. After the treatment the leaves accumulated exceptionally high amounts of Chl precursors such as protoporphyrin IX (Proto), Mg-protoporphyrin IX (Mg-Proto), its monomethyl ester, and protochlorophyllide (Pchlide) that are photosensitizers of photodynamic processes in plants. A comparatively low Chl and carotenoid (Car) destruction was registered during the subsequent 4 and 8 h of irradiation. At the same time, the content of Chl precursors was negligible. The low photodestruction of Chl and Car included in pigment-protein complexes, against the background of fast porphyrin disappearance, and fast decrease of enzymatic activities at the initial stages of Chl production could mean that the photodynamic effect induced by porphyrins accumulated in the presence of 2,2′-DP affected first the Chl enzymatic system and did not change the pool of already synthesized photosynthetic pigments. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

20.
Osmotic stress induced with 1 M sorbitol inhibited δ-aminolevulinic acid dehydratase (ALAD) and aminolevulinic acid (ALA) synthesizing activities in etiolated maize leaf segments during greening; the ALAD activity was inhibited to a greater extent than the ALA synthesis. When the leaves were exposed to light, the ALAD activity increased for the first 8 h, followed by a decrease observed at 16 and 24 h in both sorbitol-treated and untreated leaf tissues. The maximum inhibition of the enzyme activity was observed in the leaf segments incubated with sorbitol for 4 to 8 h. Glutamate increased the ALAD activity in the in vitro enzymatic preparations obtained from the sorbitol-treated leaf segments; sorbitol inhibited the ALAD activity in the preparations from both sorbitol-treated and untreated leaves. It was suggested that sorbitol-induced osmotic stress inhibits the enzyme activity by affecting the ALAD induction during greening and regulating the ALAD steady-state level of ALAD in leaf cells. The protective effect of glutamate on ALAD in the preparations from the sorbitol-treated leaves might be due to its stimulatory effect on the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号